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Abstract. Most of current service selection approaches in service-oriented
environments fail to capture the dynamic relationships between services
or assume the complete knowledge of service composition is known as a
prior. In these cases, problems may arise when consumers are not aware
of the underlying composition behind services. We propose a distributed
trust-aware service selection model based on a Bayesian network for con-
sumers to maintain their knowledge of the environment locally. Results
show our model can punish and reward services in terms of QoS prop-
erties accurately with incomplete observations so that consumers can
prevent themselves from interacting services with unsatisfying QoS.

1 Introduction

In service-oriented computing environments, computing resources are managed
as services, which can be used directly or composed into larger services. Service-
oriented architecture has been widely adopted in modern distributed environ-
ments, such as for cloud computing. We address the problem of selecting services
based on criteria such as user requirements and service qualities.

The dynamism of quality of service (QoS) is the first challenge of service se-
lection. For example, the number of requests to a shopping service is much higher
in the holiday sale season than usual. Traditional approaches, for example, Web

Service Definition Language or WSDL, describe the functionalities of services
statically for users to match services to their needs. However, These approaches
lack capabilities of capturing the non-functional aspect of services.

The research on trust modeling in artificial intelligence provides us with a
promising solution to service selection. Trust is a basis of interactions, indicating
the relationships between parties in large, open systems. Two parties must trust
each other sufficiently to be willing to carry out desired interactions. In service-
oriented context, a party Alice trusts another party Bob, because Alice expects
Bob will provide desired service under the expected QoS. The trustworthiness
of the parties can be defined by both functional and non-functional properties.
Selecting desired services based on trust is called trust aware service selection.

Maximilien and Singh [1] develop a trust-aware approach to select services
based on well-defined ontologies that provide a basis for describing consumers’
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requirements and providers’ advertisements. Their approach also captures the
dynamism by taking QoS properties into account. However, the other aspect
of dynamism comes from service composition. Unfortunately, Maximilien and
Singh’s approach fails to take service composition into consideration. Services
may be composed into larger services. The underlying services of composed ser-
vices may not be shown externally to the consumers. Service composition can be
divided into many scenarios [2] and these scenarios can be nested. This makes
QoS properties difficult to collect and evaluate. Consequently, our service selec-
tion is more complicated than selection without considering compositions be-
cause the consumers may not even know with whom they are interacting.

An ideal trust aware service selection should be able to (1) reward/punish
underlying services in an appropriate way so that consumers and composed
services will become reluctant to interact with low reputation services, and (2)
suggest suitable composition.

This paper aims to provide a trust aware service selection model that can
capture the dynamism from not only non-functional QoS properties but also
service composition in service-oriented environments. We formalize a Bayesian
service selection model, develop approaches for consumers to monitor and explore
desired service composition. In this paper, we will show that how our approach
rewards/punishes the services dynamically with incomplete knowledge of the
composition. The suggestion of better service composition will be left as one of
our future work.

2 Related Work

Milanovic and Malek [3] compare various modern web service composition ap-
proaches. They also conclude four necessary requirements for service compo-
sition: connectivity, nonfunctional QoS properties, correctness, and scalability.
However, these approaches poorly define QoS properties. Our approach deals
with QoS properties separately. No QoS properties are pre-defined.

Menascé [2] studies how QoS properties are aggregated in different service
composition scenarios. However, this approach requires the knowledge of the
composition. For example, service A invokes service B, which may invoke C and
D with probability pc and pd. This information is not always available because
of two reasons. First, the providers have no incentive to give such information.
Second, modeling the invocation probabilities is not trivial. By contrast, our
service composition model makes no assumptions. Our approach monitors and
explores the desired services dynamically.

Wu et al. [4] use Bayesian networks to model a consumer’s assessment of
a service’s QoS. Their approach provides consumers to combine different QoS
attributes. Our model uses Bayesian networks to model service composition to
evaluate the QoS properties of the composed services. Instead of combining these
properties based on the trustworthiness of each QoS property, we may use mul-

tiattribute utility theory for decision making, which is beyond our scope.



3

Yue et al.’s approach is the closest work to ours. Yue et al. [5] propose a
Bayesian network-based approach to model the causal relationships between el-
ementary services. Their approach construct a web service Bayesian networks
(WSBN) based on the invocations between the services. Then the service com-
position guidance can be made from the Markov Blanket of a given service.
However, this approach fails to consider the dynamism because the guidance
remains unchanged if the causal relationships are fixed. Our model captures the
dynamism by updating the Bayesian network, which will eventually affect the
trustworthiness of a service.

3 Service Selection Model

We propose a trust-aware service selection model based on a Bayesian network.
We represent trust based on the beta distribution, which can be integrated with
Wang and Singh’s model [6, 7]. The trustworthiness of services should be esti-
mated based on both direct and indirect experience. Direct experience is referred
to the previous quality of service received from the target, whereas indirect ex-
perience comes from referrals by peers. To model trust from indirect experience,
which can be found in [8], is beyond our scope.

Estimating trust from direct experience is not straightforward in a service
composition setting, because some services may not expose details of their com-
position to their clients directly. A client may interact with a composed service
without knowing other underlying services. In such a case, evaluating the trust-
worthiness of services is no longer an easy task. For example, a client books an
itinerary from a composed travel agent service, which interacts with other un-
derlying services like flight services, hotel services, and transportation services.
Suppose the client is not satisfied with the composed service because of its late
response time. The model should penalize the composed service, as well as the
underlying ones. If the hotel service, for instance, is reported to be the cause of
unsatisfying QoS, the model should reflect the changes in the way that clients or
other composed services become reluctant to interact with it. Also, as the expe-
rience increases, the model should be able to suggest appropriate composition.

Our service selection method models causal relationships between services
with a Bayesian network. Each consumer maintains its own local model to guide
itself to reward or penalize services based on direct interactions. The trust in-
formation can be also aggregated with referrals from other consumers. Figure 1
shows the architecture of our trust-aware service selection model. Our model is
two-fold. First, a consumer keeps interacting with the services, constructs and
updates its local service composition model, and get composition suggestions
from the model. Second, consumers may exchange referrals with each other.
This indirect evidence can be aggregated with the trust information in our ser-
vice selection model, helping consumers discover strangers and identify desired
services more quickly. The integration of the indirect evidence is our future work.
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Fig. 1. Trustworthy service selection architecture

3.1 Bayesian Networks

The purpose of modeling service composition is to model how a certain QoS
property of a component service can affect the whole composition. For example,
the reliability of a composed travel service may be affected by the reliability
of the underlying hotel service and flight service. If the underlying service is
not reliable, the composed service is very likely not reliable either. Thus, the
composition model should be able to not only represent the relationships be-
tween (composed) services, but also capture the causal factors between them.
Of course, QoS properties of underlying services may not have influence on the
composed services. For example, the reliability of the composed service may stay
the same no matter how a particular underlying service performs. In other words,
the trustworthiness regarding the reliability of the composed service should not
correspond to the trustworthiness of that underlying service.

We introduce a Bayesian network-based service selection model, which can be
constructed from the incomplete observations (direct experience) of a consumer.
Here, we emphasize incomplete observations because not all QoS properties are
observable from the consumers’ point of view. An observation of a particular
QoS property of a service d at time t can be represented as a number xt

d be-
tween 0 and 1. Some QoS properties, say, error, can be simply considered as
positive 1 or negative 0. Other quantitative QoS properties like up-time should
be further projected to an real number from 0 to 1. An observation Dt of the
whole composition at time t can be written as Dt = (xt

1, x
t
2, . . . , x

t
d), where d is

the number of services in the composition.

A Bayesian network is an acyclic directed graph G = 〈V, R〉 with random
variables V as nodes, and edges R as the direct relationships between variables.
A conditional probability associated to each node represents the probability of
the node variable given its parent variable value. Let each node in the Bayesian
network be the probability of getting good service (in terms of a particular QoS
property) captured from a composed or elementary service. An edge represents
the relationship of composition. For example, in Figure 2, a composed hotel
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service H is composed of Four Season hotel service f , i.e., f is a child of H . Then
the conditional probability of node H is the probability of getting good service
in terms of a particular QoS property from H , given f provides good service. T ,
a travel service, is composed of composed hotel and car rental services H and
C, which is also a composed service composed of Enterprise car service e.

T

H

ef

C

Fig. 2. Service composition example

The Bayesian network models the causal relationships between services. The
conditional probability table associated with each node provides consumers a ba-
sis of how much responsibility an underlying service should take behind a service
composition. The network can be constructed and the conditional probabilities
can be learned from the consumers’ direct experience.

3.2 Parameter (Trust) Estimation

Given an acyclic Bayesian network graph G over d variables, x1, x2, . . . xd, the
associated joint distribution is written as

P (x1, . . . , xd) =

d∏
i=1

P (xi|xpai
) =

d∏
i=1

θi (1)

The conditional probability P (xi|xpai
) = θi can be estimated by n observa-

tions, D = {(xt
1, . . . , x

t
d), t = 1, . . . , n}, where xpai

is the set of parent variables
of xi. In fully observable environments, θi can be learned from the observed data
by maximum likelihood estimation (MLE) [9].

In our model, each variable θi represents the probability of getting a good
service from xi given getting a good service from xpai

. The likelihood function
can be then defined as [10],

P (D|θ) =

n∏
t=1

P (xt
1, . . . , x

t
d|θ) (2)
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=

n∏
t=1

d∏
i=1

θi (3)

=

d∏
i=1

∏
xi,xpai

θ
n(xi,xpai

)

i (4)

=

d∏
i=1

θmi

i (1 − θi)
li (5)

where n(xi, xpai
) is the number of observations that satisfy the variable set-

ting, and mi = n(xi, xpai
) and li = n(xpai

) − mi. Then, the parameters that

maximize the likelihood is θ̂i = mi

mi+li
.

3.3 Bayesian Inference

Note that, when the number of observations is small, MLE may yield over-fitted
results. Consider an extreme case where xt

i = 1 for t = 1, . . . , n. The parameter

θ̂i maximizing the likelihood is 1, which is not reasonable. Thus, we use Bayesian

inference to treat this problem by introducing a beta distribution P (θi) over the
parameter θi as a conjugacy prior.

P (θi) =
Γ (αi + βi)

Γ (αi)Γ (βi)
θαi−1

i (1 − θi)
βi−1 (6)

where αi and βi are hyperparameters controlling the distribution of param-
eter θi. The expected value or mean of θi is given by E(θi) = αi

αi+βi
. Bayesian

inference uses observations to update the prior. The parameters θi can be learned
using Bayes rule.

P (θi|D) =
P (D|θi)P (θi)

P (D)
(7)

That is, the posterior distribution P (θi|D) is propositional to the multipli-
cation of the prior P (θi) and the likelihood function P (D|θi). Now we can put
equations 5, 6, and 7 together and normalize it,

P (θi|D) =
Γ (mi + αi + li + βi)

Γ (mi + αi)Γ (li + βi)
θm+αi−1

i (1 − θi)
li+βi−1 (8)

Note that the posterior distribution is also a beta distribution. Here we as-
sume the values of xi are independent of θi, i.e., P (D|θi) = θi. Then the pre-
dictive distribution of xi given the observations D is defined by the mean of θi

given the observations D.

P (xi|D) =

∫ 1

0

P (xi|θi)P (θi|D)dθi (9)
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=

∫ 1

0

θiP (θi|D)dθi (10)

= E(θi|D) (11)

=
mi + αi

mi + αi + li + βi

(12)

3.4 Dealing with Incomplete Data using Expectation Maximization

In service-oriented settings, some variables may not be observable, which means
data is incomplete. In this case, we can use expectation maximization (EM)
algorithm to calculate a optimal parameter estimation [11, 12].

The idea is that, since some variables are not observable, we can consider
those variables without data as latent variables and calculate the expected values
of those variables. Let Dobserved and Dmissing be the observed and missing data,
respectively. Then probabilistic inference can be used to infer P (xt

i|Dobserved, θt
i),

where xt
i ∈ Dmissing and θt

i is the current parameter estimation. We can complete
the counts (i.e., mi and li) by P (xt

i|Dobserved, θt
i). This is called the E step

of EM algorithm. For example, suppose there is a composed travel service T ,
which is composed of an underlying hotel service h. If a consumer observes T

has reliability 1 at timestep t (i.e., xt
T = 1) but does not observes the reliability

of h, then we can use the expected reliability of h, which is P (h = 1, T = 1),
as the observation (i.e., xt

h = P (h = 1, T = 1)). The completed data, i.e.,
(xt

T , xt
h) = (1, P (h = 1, T = 1)), can be used as the observations in the M

step to update parameter estimation by Bayesian inference. The new parameter
estimation of θt+1

i can be calculated by the posterior mean of θt
i . The E and M

steps are executed iteratively until the convergence of the estimation. This EM
process, which can be viewed as a sequential (on-line) learning method, can be
repeated whenever the consumer has new observations.

3.5 Example

We can implement a sequential approach to construct and learn the service com-
position model from observations. Take the scenario in Figure 2 as an example,
Table 1 shows the incomplete observations from a consumer in terms of response
time. In the first observation, the consumer interacts with hotel service H with
a satisfying response time. The consumer is also aware of the existing under-
lying Four Season hotel service f and its good response time. In the second
observation, the consumer interacts with the car rental service C but with a bad
response time. This time the consumer is not aware of any underlying services
behind C. In the third observation, the consumer directly interacts with the
travel service T with positive experience. It also realizes the presence of the two
underlying services H and C. Service H is reported good, whereas service C is
reported bad. Service C further reports the bad response time is caused by its
underlying Enterprise service e.

Table 2 show the parameters estimation using Bayesian inference. The pa-
rameters are represented as a pair of hyperparameters αi, βi of the corresponding
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t x
t
f x

t
e x

t
H x

t
C x

t
T

1 1 1
2 (0.67) (0.61) 0
3 (0.67) 0 1 0 1

Table 1. An example of observation from a consumer’s experience

beta distribution. The numbers in the parentheses in Table 1 are the inferred
counts to complete the missing data in E step. For example, n(x2

f = 1) =

E(θ1
f ) =

α1

f

α1

f
+β1

f

= 0.67. Then n(x2
H = 1) can be inferred by

n(x2
H = 1) = n(x2

H = 1|x2
f = 1) + n(x2

H = 1|x2
f = 0) (13)

= P (x2
H = 1|x2

f = 1)P (x2
f = 1) + P (x2

H = 1|x2
f = 0)P (x2

f = 0)(14)

= 0.5 × 0.33 + 0.67 × 0.67 = 0.61 (15)

Then the completed data can be used to update the parameter estimation.
For example, the new estimation θ2

H (including θ2
H|f=0 and θ2

H|f=1) is given by

(α2
H|f=1, β

2
H|f=1) (16)

= (α1
H|f=1 + n(x2

H = 1, x2
f = 1), β1

H|f=1 + n(x2
H = 0, x2

f = 1)) (17)

= (2 + P (x2
H = 1|x2

f = 1) × x2
f , 1 + P (x2

H = 0|x2
f = 1) × x2

f ) (18)

= (2.44, 1.22) (19)

(α2
H|f=0, β

2
H|f=0) (20)

= (α1
H|f=0 + n(x2

H = 1, x2
f = 0), β1

H|f=0 + n(x2
H = 0, x2

f = 0)) (21)

= (1 + P (x2
H = 1|x2

f = 0) × (1 − x2
f ), 1 + P (x2

H = 0|x2
f = 0) × (1 − x2

f ))(22)

= (1.17, 1.17) (23)

t θ
t
f θ

t
e θ

t
H|f=0

θ
t
H|f=1

θ
t
C|e=0

θ
t
C|e=1

0 (1,1) (1,1) (1,1)
1 (2,1) (1,1) (2,1) (1,1)
2 (2.67,1.33) (1,1) (1.17,1.17) (2.44,1.22) (1,2) (1,2)
3 (3.33,1.67) (1,2) (1.5,1.17) (3.11,1.22) (1,3) (1,2)

Table 2. The parameter estimation based on the observations
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Note that some parameters may not exist until particular observation because
the consumer is not aware of the corresponding random variables. For example,
service C does not exist until the second observation. The conditional depen-
dencies may change because some underlying services may not be discovered in
the first place. For example, θ1

C|e=0 actually means θ1
C in the first observation

because service e does not exist. However, θ2
C changes to θ2

C|e=0 and θ2
C|e=1 is

initialized because service e and the dependency on service C are discovered in
the third observation. In these cases, the Bayesian network is updated at the
same time to reflect new discovery.

4 Evaluation

bbadabad
agood bgood

Cgood Cbad

(a) (b)

Fig. 3. Two basic experiment scenarios

4.1 Service Selection with Missing Data

Now we evaluate our trust aware service selection model by showing it can
reward/punish underlying services in an appropriate way so that consumers and
composed services will become reluctant to interact with low reputation services.
Two basic scenarios are considered as shown in Figure 3. Shaded nodes represent
bad services, which provides unsatisfiable QoS with high probability 0.8, whereas
good services provide 80% satisfying QoS. To enable our service composition
assumption that underlying services may not be exposed to the consumer, we
introduce δ as the percentage of missing data. In each scenario, the consumer
interacts with the composed service for d times. Each time the composed service
may report the QoS metric of each of its underlying service with independent
probability δ. The service selection model is updated sequentially. We measure
the quality of the estimation by root mean square error (RMS). We also show
how the trust (i.e., parameter θ) in services changes over time, and how the
performance of underlying services affect the composed services and the whole
composition by comparing the parameter θ and the joint probability.

Figure 4 shows the error of trust in agood service in the first experiment
scenario for 20% and 40% missing data (i.e., δ = 0.2 or 0.4). The total number
of observations d is 100. The trust learned from 40% missing data captures
agood’s behavior more slowly than the one learned from 20% missing data. Also,
other results show that our approach successfully reward or punish underlying
services based on incomplete observations. For example, with δ = 0.4, P (Cgood =
1|abad = 0) and P (Cgood = 1|agood = 1) are 0.78 and 0.76, respectively. P (Cbad =
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1|bgood = 1) and P (Cbad = 1|bbad = 0) are 0.12 and 0.13, respectively. This result
indicates our model correctly evaluates underlying services with 40% missing
data, regardless of the goodness or badness of the composed service.
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4.2 Service Selection with Dynamic Service Providers
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Fig. 5. Tracking a random walk service for different percentages of missing data

Our second evaluation examines the ability of tracking the dynamic behavior
of services. We introduce two behavior profiles: random walk and damping. The
random walk profile models the general predictable behavior. The random walk
service changes behavior every certain period. Its current behavior xt depends
on the previous behavior xt−1, defined as xt = xt−1 + γU(−1, 1), where γ is a
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real number between 0 and 1, and U(−1, 1) represents the uniform distribution
from −1 to 1. In our settings, the random walk service changes behavior every
ten timesteps, and γ = 0.8. The damping profile models the service who turns
bad once its reputation is built. Its behavior is defined as xt = 1 when t ≤ T ,
and xt = 0 otherwise, where T is the total number of timesteps. Additionally, a
discount factor φ is used when we calculate posterior distribution in Equation 7,
which becomes P (xi|D) = mi+φαi

mi+φαi+li+φβi
. The discount factor is a common idea

in trust and reputation systems. The estimate reflects the overall behavior if it
is high; otherwise, the estimate depends more on the recent behavior. The study
of the effect of the discount factor can be found in [13]. Here we set φ = 0.6.

Figure 5 shows how our trust values track the actual behavior of the random
walk service with 0% and 40% missing data. The result shows our approach
captures the dynamism of the random walk service, although the missing data
does slow down the convergence. Figure 6 shows the similar result of tracking
damping service.
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Fig. 6. Tracking a damping service for different percentages of missing data

5 Conclusion

This paper present a trust-aware service selection model in service-oriented envi-
ronments. The model is built on a Bayesian network to capture the relationships
between services. The trust information, which can be integrated with our pre-
vious trust model, is learned sequentially from both direct observations and
indirect evidence in terms of QoS properties. The main feature of this model is
it can deal with incomplete observations, which is as a result of the fact that
the underlying services behind service composition may not be observable. Con-
sumers maintain its own knowledge of the environment locally and exchange
information each other. Our model rewards services with good QoS metrics and
punishes those with bad metrics in the way that consumers will be reluctant to
interact with services with low reputation.

Our future work is to refine and enhance an existing QoS ontology from [1]
to fit it into our approach. This ontology will be able to capture SLAs as well as
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the requirements of consumers and advertisements from services regarding SLAs.
Both domain-independent and domain-specific QoS properties can be defined in
our ontology. Thus, we can further evaluate the QoS properties by comparing the
QoS metrics and SLAs, and the sociability of referrers by our trust framework.
Knowing the sociability can yield more accurate trust information from referrals.
We will study how referrals improve the convergence of trust estimation. We will
also apply multiattribute utility theory for decision-making, based on the trust
information. Finally, the EM-based parameter estimation in our model can be
upgraded to Structural EM [14], which can not only learn the trust information
but also the graph structure. The learned structure can be used as a suggestion
of service composition.
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