
Multiagent System for Dynamic Web Services Selection

E. Michael Maximilien
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120
maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695
singh@ncsu.edu

ABSTRACT
Service Oriented Architectures (SOAs) promise to enable
the creation of business applications from independently de-
veloped and deployed services—roughly, software compo-
nents that encapsulate and provide business functionality
through standardized interfaces. A key advantage of SOAs
is that they enable services to be dynamically selected and
integrated at runtime, thus enabling system flexibility and
adaptiveness—autonomic attributes that are key for mod-
ern business needs. However, current techniques provide no
support for actually making rational selections, which are
key to accomplishing autonomic behavior.

We develop a multiagent framework based on an ontology
for QoS and a new model of trust. The ontology provides a
basis for providers to advertise their offerings, for consumers
to express their preferences, and for ratings of services to
be gathered and shared. The ratings are essential, because
they give an empirical basis for the selection of services. The
ratings are quality-specific and are obtained via automatic
monitoring or, if appropriate, user input.

The agents thus form an ecosystem in which they help
each other. We empirically evaluate the resulting system
via simulation. Our results show that the agents are able to
dynamically adjust their trust assignments and thus contin-
ually select the best available services for their consumers’
needs.

Keywords
Autonomic Computing, Multiagent Systems, Quality of Ser-
vice, Reputation, Trust, Semantic Web Services, Service Se-
lection

1. INTRODUCTION
The SOA vision is that, first, providers will offer sev-

eral (potentially competing) services and, second, prospec-
tive users of services will dynamically choose the best offer-
ings for their own purposes. For example, you might choose
the best hotel booking service or the best bookseller, where
you alone decide what is best for you. Likewise, you might
choose the best component services (such as logging, back-
ing up, and so on) to construct and deploy an application
that meets your needs.

However, current approaches only partially address the
SOA vision. They enable services to be described and listed
in public registries (analogous to telephone directories). But
they provide no means of selecting among multiple services
that appear to perform the same function. In other words,

you are forced to make an ad hoc decision about which of
the many hotel booking services or booksellers to use. Be-
cause tens of thousands of specialized and not widely known
services are involved, a practical approach cannot merely
pre-select a few famous companies such as Amazon.com,
but must apply at a much larger scale. Further, when we
consider not only business services but also component ser-
vices, the choices can become quite subtle because the same
provider may offer multiple alternatives.

The thesis of this paper is that service selection can be
rationally carried out only on an empirical basis—that is,
how a given service has behaved, not only how it was adver-
tised. Given the large number of services, users must share
information about their experiences—in effect, multiplying
the benefit of their empirical evaluations by sharing them.
Traditional, proprietary reputation systems (such as those
maintained by eBay) and proprietary recommender systems
(such as those maintained by Amazon.com) are not suitable
for services. In particular, they do not allow a customizable
schema in terms of the qualities of interest to different users,
interject themselves into each transaction, and own the data
that is gathered.

What is needed is a means to allow service consumers to
share quality opinions, which presuppose an agreed upon
set of QoS definitions. Using these quality opinions, service
consumers can derive the reputation of service implementa-
tions on these qualities. By knowing its quality needs for an
application, a service consumer can derive a trust value for
each available service implementation. Thus, selecting the
best service implementation simply corresponds to selecting
the most trusted implementation. We can automate the ser-
vice selection task with software agents acting on behalf of
service consumers.

1.1 Contribution
An important characteristic of automatic selection by us-

ing trust in open environments, such as the Web, is that
trust should be self-adjusting. That is, service implementa-
tions that behave incorrectly should (in essence) be purged
from the system by virtue of not being selected. Poor ser-
vice implementations should accumulate a low reputation.
Conversely, when a once awry service implementation starts
to behave correctly, we would like the agents to increasingly
consider it for selection. This dynamic and self-adjusting
consideration of trust for selection matches the goals of au-
tonomic computing [9].

Self-adjusting trust. The autonomic characteristic of a
multiagent system whereby the levels of trust between

the interacting parties are dynamically established and
adjusted to reflect recent interactions.

We develop a multiagent framework that uses an ontol-
ogy for QoS to support self-adjusting trust. The ontology
gives a means for providers to advertise their offerings, for
consumers to express their preferences, and for ratings of
services to be gathered and shared. The ratings yield an
empirical basis for the trust placed in different implemen-
tations. Moreover, the agents thus form an ecosystem in
which they help each other identify the best implementa-
tions. Poorly performing implementations can be avoided.
The converse challenge is to introduce new services or re-
vive services that behaved poorly but are now functioning
well again. To this end, this paper introduces what we term
explorer agents. The explorer agents provide a means to
monitor different service implementations, especially those
that are new or currently out of favor. They allow consumers
to select implementations that are predicted to perform well
along the qualities of interest to them, even if there is inad-
equate positive experience with such implementations.

Our evaluation shows that the agents are able to dynam-
ically adjust their trust assignments and thus continually
select the best available services for their consumers’ needs.

1.2 Organization
The remaining of the paper is as follows. Section 2 gives

an overview of our trust model and how it is used to solve
the service selection problem. Section 3 briefly discusses the
technical framework including highlighting previous results.
Section 4 gives a detail empirical evaluation showing the
emergence of self-adjusting trust. Section 5 highlights var-
ious related work in the field and Section 6 concludes and
gives some directions for future work.

2. BACKGROUND
We developed an agent-based approach for service selec-

tion that includes a flexible notion of trust based on rep-
utation. The agents transparently attach to existing ser-
vices and enable their dynamic selection. We introduce a
comprehensive ontology (roughly, a taxonomy with some
additional features) for qualities of services [11]. This on-
tology includes the well-known computing qualities such as
throughput and latency, but provides hooks to include any
application-specific or even idiosyncratic qualities that users
may need, such as shipping delay. Our agent-based frame-
work enables users to share information about any of the
qualities. We developed algorithms by which user prefer-
ences regarding which qualities they consider more or less
important can be applied (using the reputation data) to
help each user select services that best meet his needs. The
framework also has the ability to continually monitor ser-
vices so that services that begin to perform poorly (relative
to a particular user’s preferences) are de-selected and those
that begin to perform well are re-selected.

We now give an overview of how we model the service se-
lection problem, our QoS-based trust model, and show how
our model can be used as a solution to the service selection
problem.

2.1 Service Selection
We model each Web service s = (ι, i) as a pair, where

ι ∈ Υ is the interface and i ∈ Iι is an implementation of the

service. Υ represents the set of all URIs and Iι ⊆ Υ is the
set of all service implementations of interface ι. For each
service s we associate an application domain d ∈ ∆ where
∆ is the set of all application domains. An example of an
application domain is Math representing Web services for
mathematical calculations; another domain is Finance with
services such as loan and stock quote.

With each application domain d we associate qualities
Q ∈ Φd representing nonfunctional attributes common to
the Web services in the application domain d. Φ is the set
of all qualities. For each quality Q and service s we let

Q̂s = {q1, . . . , qn} be the set of collected opinions, on qual-
ity Q. These opinions corresponds to n selection of service
s.

We assume without loss of generality that for each selec-
tion of service s we obtain quality opinions (from the selec-
tion agent) for each quality in the domain d of s. We can
now formulate the service selection problem.

Definition 1 (Service Selection). Let P be the set
of all providers with implementations for interface ι. Our
problem is to select the service implementation i ∈ Iι of
service s from all service providers p ∈ P such that:

i = arg max
i∈Iι

{trust(i, Φd)} (1)

Where trust() : Iι × Φ 7→ R is a service trust function.

2.2 QoS Preferences and Advertisements
Each service consumer c ∈ C, where C is the set of all

consumers, will have service quality needs that are specific to
its application. For instance, the consumer of a StockQuote
service used to give quick security quotes on financial Web
sites has different quality needs than a consumer of this same
quote service but within a brokerage application used to buy
and sell securities. The latter’s need for fast response time,
high availability, and accuracy are critical to the brokerage
application’s success.

In order to accurately select services for consumers we
first need a means to represent the consumer’s needs for
each quality exposed by the service.

Definition 2 (Consumer Quality Preference). A
consumer’s preference for a quality Q ∈ Φ is given by π =
(πmin, πpref , πmax), where πmin is the minimum value ac-
ceptable for the quality, πmax the maximum acceptable, and
πpref is the preferred value for quality Q all from the per-
spective of the consumer. We require πmin ≤ πpref ≤ πmax.

A consumer’s preferences for a service s is a collection
of quality preferences, one for each quality needed by the
consumer.

Since service providers may offer different services with
specific targeted consumers, we also need a means to rep-
resent the providers’ advertisements for each quality in the
set of qualities exposed by a service.

Definition 3 (Provider Quality Advertisement).
A quality advertisement α is a proclamation by a provider
for a particular quality Q ∈ Φd. More specifically, we de-
note α = (αmin, αtypical , αmax), where αmin is the minimum
advertised value for the quality, αmax the maximum, and
αtypical is the typical value promised for the quality Q by the
provider. We require αmin ≤ αtypical ≤ αmax.

A provider’s service advertisements for a service imple-
mentation is a collection of quality advertisements, one for
each quality applicable to the service.

2.3 Trust Model
To provide a solution to Equation 1 we need a trust()

function that uses the collected quality values while taking
into account the quality preferences of the consumer and the
advertisements of the provider. The resulting trust value for
a service implementation would enable us to rank different
service implementations according to how well they meet
the consumer’s quality needs.

Let us assume that the collected quality opinions values
are normally distributed with minimum, maximum, mean,
and variance which are inferred from domain experts and
attached to the QoS ontology. We can then assume that the

collected values Q̂, for each quality Q, can be normalized
as Z statistics values [20, p. 173]. This enables us to mean-
ingfully compare qualities and aggregate them into a single
value.

With this assumption, we start by defining an aggregation
of the collected quality values for a quality Q that represents
the general opinions of all agents that have selected the given
service implementation.

Definition 4 (Service Quality Reputation). We de-

note the reputation R
(i)
Q of a service implementation, with

respect to quality Q, as the aggregation of the quality opin-
ions (i.e., quality values) for the service implementation i of
service s over some time interval. Specifically,

R
(i)
Q =

1

n

n∑

k=1

qkδ−t(qk) (2)

where n is the number of collected quality values, Q̂i =
{qk}n

k=1 is the set of quality values collected from service
agents as they selected the service implementation i, δ ∈ R
is the quality Q’s dampening factor, and t() : Φ 7→ Z+ is
the time for which the quality value q was collected. t(q) = 1
for the most recent collected value and t(q) > 1 for all other
values.

With R
(i)
Q we have a representation of the general opin-

ion on how well service implementation i performs for a
quality Q. We now need a means to derive the trust value
that a prospective consumer of service s should assign to
each service implementation i of interface ι using the qual-
ity reputations for implementation i, the consumer’s quality
preferences, and the quality advertisements of provider p of
implementation i.

Since the quality advertisements and preferences are de-
fined as points on the quality line of Q, we can calculate
the moment of these points with respect to the πpref of
the consumer preferences. In essence, the closer the ad-
vertised values and reputation are to the preferred value,
the greater the degree of match (and of the resulting trust).
Generally, Equation 3 shows the second moment of a vector
~x = 〈x1, x2, . . . , xn〉 about some point a.

moment(~x, a) =
1

n− 1

n∑
i=1

(a− xi)
2 (3)

We formulate the consumer’s trust assignment for an im-
plementation using Equation 3. However, since we want to

match service implementations whose advertisements match
the needs of a service consumer, we start by defining a
matching operator between quality preferences and adver-
tisements.

Definition 5 (Preference Matching Operator .).
For each Q ∈ Φd let αQ = (αmin, αtypical , αmax) is the ad-
vertisement of provider p of service implementation i for
quality Q and πQ = (πmin, πpref , πmax) be the consumer’s
preferences for quality Q.

We define the preference matching operator . for Q as:

π . α =

(πmax ≤ αmax) ∧ (πpref ≥ αmin)∧
(πpref ≤ αmax) if dir(Q) =↑, and

(πmin ≤ ϕmin) ∧ (πpref ≤ αmin)∧
(πpref ≥ αmax) when dir(Q) =↓

Where dir(Q) : Φ 7→ {↑, ↓} is associated with each quality
Q, such that dir(Q) =↑ indicates that the quality Q is direc-
tionally increasing which means that higher values for Q are
generally preferred by service consumers. And dir(Q) =↓
indicates that lower values are generally preferred.

Using the . operator we can derive the trust function of
Definition 1 as follows.

Definition 6 (Service Trust Function). Let Qmin =
min(αmin, πmin) and Qmax = max(αmax, πmax).

Let ~Qi = 〈Qmin, αtypical , πpref , Qmax, R
(i)
Q 〉.

qTrust(~Qi, πpref) = moment(~Qi, πpref)
− 1

2

where moment(~Qi, πpref) 6= 0

serviceTrust(i) =
∑

Q∈Φd,
π.Qα

qTrust(Qi, πpref)

trust(ip, Φd) = serviceTrust(ip)

Where ip ∈ Iι is an implementation of service s by provider
p.

3. FRAMEWORK
To evaluate our trust model and hypothesis of self-adjusting

trust, we created a framework that augments a typical SOA
with agents. The principal idea is to install software agents
between service consumers and each service that they con-
sume. These consumer service agents expose the same in-
terface as the service. However, they augment the service
interface with agent-specific methods. An example of such
a method is setWsPolicy() which allows consumers to com-
municate their QoS preferences. By exposing the same in-
terface as the service these agents are able to transparently
and dynamically select the actual service implementation
by considering the service consumer’s quality needs. The
consumer communicates its needs via the augmented agent
interface. Service method invocations are done via the ser-
vice agent who in turn monitors and forwards all calls to the
selected service.

A high-level view of the architecture; the details and run-
time operation are described at length in [11]. Briefly, an
SOA application makes use of some service which has many
implementations by different providers. Instead of selecting
the implementation directly, the application uses a service

agent which exposes the same interface as the service and
selects, on the consumer’s behalf, the implementation which
best matches the consumer’s policy.

In addition, the service agents participate in common agen-
cies where they share their quality opinions on the selected
service implementations. An agency is simply a rendezvous
node on the network where quality opinions are shared and
aggregated.

The agents share a conceptualization of quality in the
form of an ontology. The ontology is partitioned into three
parts. The upper QoS ontology contains basic definitions
for all qualities, including modeling relationships between
qualities. The middle QoS ontology extends the upper on-
tology and defines qualities that are applicable across differ-
ent domains. Lower QoS ontologies are defined for specific
domains by extending qualities in the middle ontology or
creating new ones from the upper ontology. Service agent
behaviors for quality monitoring can also be attached to
the ontology and dynamically bootstrapped in the agents.
Maximilien and Singh [11] give an overview of the upper and
middle QoS ontology as well as discussing examples of lower
ontology qualities and example usages of the framework.

We implemented this architecture in the Web Service Agent
Framework (WSAF) and used simulation experiments on
simple services as an initial evaluation [12]. The initial re-
sults showed that the service agents are able to accurately
select service implementations according to the consumer’s
preferences and adjust the selection as service implemen-
tations’ quality degrade. In Section 4, we evaluate an ap-
proach to enable the service agents to adjust their service
selection when a well-behaved service implementation starts
degrading its exposed qualities and then again provides good
qualities (or vice versa).

4. EMPIRICAL EVALUATION
Our empirical evaluation consists of a series of simula-

tions tailored to show the emergence of self-adjusting trust.
The simulations results reveal how, empirically, our trust
model yields a system that autonomically adjusts the level
of trust for the service implementations depending on their
past quality behaviors. Previous experiments showed that as
service qualities drop, the consumers’ agents select other ser-
vice implementations and eventually converge to the ‘best’
service implementations [12]. In the current experiment we
expand on the previous one by adding explorer agents. The
simulations reveal the importance of the explorer agents in
the agent community and also how recent quality informa-
tion can be captured and be benefited from.

4.1 Setup Summary
Briefly, we created three sets of a simple mathematical

integer sorting service with one method to sort an array of
integers. Each set contains five identical service implementa-
tions. Each implementation exposes the qualities: Method-
FaultRate, PercentAvailability, and MethodResponseTime.
The qualities represent the average fault-rate of service meth-
ods, the average service availability (as a percentage), and
the average response-time of the service’s method. In addi-
tion the implementations of each set have identical quality
advertisements. We created three groups of five consumers;
each group has quality preferences biasing the members to
one of the set of service implementations. We named the
groups of consumers: Careful, Mellow, and Rushed ; indicat-

ing their general preferences biased for the three qualities.
We ran various simulations attaching a service agent to

each consumer and collected the agent’s selections. The ser-
vice implementations in each group are numbered 0, . . . , 4
as are the service consumers. In some of the simulations,
we artificially forced all service implementations of a group,
except the last one (numbered 4), to have its quality de-
grade. We term this doping the implementations. Our re-
sults show that the service agent is able to find and select
the clean service implementation in a group after some num-
ber of iterations to build the necessary reputation of service
implementations.

For this experiment we run simulations with a similar
setup of service implementations and consumer service agents
as in the previous experiment; however, for each simulation
we:

• Added explorer agents. These are consumer service
agents deployed for a specific service interface that pe-
riodically run an exploring task on the service imple-
mentations. These agents’ primary purpose is to ex-
plore the community of services regardless of a ser-
vice’s trustworthiness. That is, these agents would
select a service implementation whose quality repu-
tation has dropped to a point where it is no longer se-
lected by regular consumer agents, even though more
recently its quality characteristics may have improved.
The explorer agents do not discriminate and have no
preset quality preferences. They select the available
service implementations in a round-robin fashion. For
each implementation, they execute the same explor-
ing task. They monitor the selected service for all of
its advertised qualities and participate in appropriate
agencies for these qualities. The net effect is that if a
service implementation quality has improved, the ex-
plorer agents will help it gain positive reputation. The
primary controlling factor for an explorer agent is how
frequently it performs its exploring tasks. We name
this parameter the execution frequency of the explorer
agent. Another controlling factor is the number of ex-
plorer agents as a ratio of the total number of agents
in the community.

• Varied the service doping policy. As in the previ-
ous simulations we artificially control the qualities of
certain service implementations with a quality doping
mechanism. This allows us to have knowledge (as an
oracle) to which service implementation should be se-
lected by a service agent at any given time during the
simulation. To show the effect of the explorer agents,
we also control the duration of the doping. We intro-
duce two new doping parameters: Stop doping after
and Restart doping after. They specify, as their names
suggest, when doping of the service is to stop and to be
restarted—enabling service implementations to have
periods of correct and incorrect service qualities.

To show the emergence of self-adjusting trust, we conduct
seven simulations, varying the number of explorer agents
and their execution frequency. We also simultaneously vary
the above doping parameters to enable us to better predict
and measure the effects of the explorer agents.

Tables 1 shows an overview of the simulations with re-
gard to the explorer agents and related parameters. The

columns show the simulation number, the number of iter-
ations, whether the service implementations are doped or
not, the number of explorer agents, the explorer agents ra-
tio to the total number of agents in the simulation, and the
explorer agents’ execution frequency.

Table 1: Simulations’ explorer agents parameters.

Sim. Iter. Is doped? No. Ratio Exe freq. (ms)

1.0, 1.1 15 No 0 0.0 NA
1.2 15 Yes 3 0.2 4500
1.3 10 Yes 3 0.2 6000
1.4 10 Yes 3 0.2 5000

1.5, 1.6 10 Yes 3 0.2 4500

Table 2: Simulations’ doping policy parameters.

Sim. Doping Stop doping Restart doping

1.0 NA NA NA
1.1, 1.2 Full doping Never Never

1.3, 1.4, 1.5 Full doping After 6 Never
1.6 Full doping After 6 After 15

Table 2 shows the doping policy variation for each sim-
ulation. The Doping column indicates the overall service
doping policy used. Full doping refers to the same service
doping policy as in the previous experiment [12] and with
changes summarized in Table 3. The Stop doping column
indicates the number of service selections after which service
doping is stopped. The Restart doping column indicates the
number of service selections after which service doping is
resumed after being stopped.

Table 3: Full-doping. Doped quality names and any
other additional doping parameters. Doping affects
all service implementations except for the last one
in each set.
Doped quality name Parameters

FaultRate Random periodic, p = 3
PercentAvail Random periodic, p = 4
InvokeTime Random delay, 10 ms < d < 20 ms

4.2 Results
We now further describe each simulation and its expected

results. For each simulation we also show the results ob-
tained in the form of service selection graphs. The simula-
tions are designed to progressively show the impact of the
explorer agents on the system as well as the emergence of
self-adjusting trust.

Sim 1.0, 1.1, and 1.2: Base line. These simulations es-
tablish the base line service selection with and without
explorer agents. As in the previous experiment we ex-
pect each group of consumers to eventually converge
to the sole clean service implementation [12]. Our ex-
pected results for both simulations, with and without
explorer agents, should be similar to Figure 1 (from
previous experiment).

Service selection (full doping)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 1: Selection with full doping.

Service selection (full dopings & no explorer agents)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 2: Full service doping and no explorer agents
(Simulation 1.0).

Service selection (full dopings and 3 explorer agents)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 3: Full doping and three explorer agents
(Simulation 1.2).

Figures 2 and 3 show the results obtained for sim-
ulations 1.0 and 1.2. Simulation 1.1, where doping
is stopped after six selections has analogous results.
These are in agreement with our expectations. The
consumer service agents, after a period of trying all
service implementations in the same pool, eventually
find the sole clean service implementation and con-
verge to it. This comes about when no explorer agents
are present and the doping lasts the entire simula-
tion (Figure 2) and also when the doping stops. This
occurs because the consumer agents never select any
of the newly well-behaved service implementations—
which accumulated a low reputation already and are
never considered.

In Figure 3, even though there are explorer agents
present, since the doping never stops, the sole clean
service implementation remains the best alternative
for selection during the entire simulation.

Sim 1.3, 1.4, and 1.5: Explorer agents. There are two
principal goals for simulations 1.3 to 1.5. First, show
that when we stop doping the service implementations
pool, the use of explorer agents (EAgents) will eventu-
ally cause the consumer agents to reselect services that
were avoided when they were doped. Second, get some
understanding of the impact of the explorer agents’
execution frequency on the reselection of these newly
cleaned service implementations.

Figures 4 and 5 show the service selection results with
three explorer agents and execution frequency reduced
progressively from 6000, and 4500 ms (the result for
5000 ms is similar). The first thing to notice is that
in each case, the consumer agents first converge to the
sole clean service implementation (as in simulations 1.0
and 1.1). Then as the stop doping takes effect—the
service implementations start to have good qualities—
the effect of the explorer agents takes hold and the
service implementations start to be selected randomly
again. This is the emergence of self-adjusting trust—as
these service implementations behave correctly (they
are not doped) they are reconsidered for selection.

We also notice that with higher execution frequency,
after the service doping is stopped, the newly well-
behaved service implementations are more often se-
lected than with lower execution frequency. This can
be noticed by comparing Figure 5 with Figure 4 in the
part of the graph where reselection is occurring. We
conjecture that this is due to faster positive reputation
accumulation for the well-behaved service implemen-
tations due to frequent explorer agent selections.

Sim 1.6: EAgents with doping restart policy. In this
simulation, we use the best setup from Simulations 1.3
to 1.5, but in addition we use a doping restart policy.
That is, we simulate service implementations behaving
incorrectly again. The restart is set up to occur after
the 15th selection. We expect the consumer agents to
begin again converging to the sole clean service imple-
mentation.

Figure 6 shows the results of this simulation. As ex-
pected, the consumer agents first converge to the sole
service implementation. Then as the doping stops

Service selection (stop doping after 6 and 3 explorer agents with
6000 ms

execution frequency)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 4: Full service doping stopped after six and
three explorer agents with 6000 ms execution fre-
quency (Simulation 1.3).

Service selection (stop doping after 6 and 3 explorer agents with
4500 ms

execution frequency)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 5: Full service doping stopped after six and
three explorer agents with 4500 ms execution fre-
quency (Simulation 1.5).

they start selecting other service implementations—
since the explorer agents help these service implemen-
tations rebuild their quality reputation and thus their
trustworthiness. As the services doping restart, the
consumer agents again gradually converge to the sole
clean service implementation. This result is in agree-
ment with the emergence of self-adjusting trust.

5. RELATED WORK
We divide the works related to ours into two broad cat-

egories: QoS-based service selection and trust and trust-
worthiness. For each category we discuss the ones that are
closest to ours, highlighting similarities and differences.

5.1 QoS-Based Service Selection
Service selection approaches fall into two primary cate-

gories: design-time and runtime. In design-time selection,
the application designer or architect use service registries
coupled with service descriptions to select and test binding
to a service. Nonfunctional characteristics are considered

during trial and error tests of the selected services. Newer
techniques using richer semantic descriptions of services can
help in the discovery of service interfaces. OWL-S [16] is an
example of a rich service ontology used for semantic service
discovery.

In runtime service selection, which is of greater relevance
to our work, the service interface is already discovered, but
the service implementations must be discovered, selected,
and bound to, based on nonfunctional service attributes.
Work in this area encompasses QoS requirements, models
and metrics, and middleware. The W3C QoS Requirements
for Web Services [19] gives an overview of the requirements.
The QoS UML profiles described in [1] and [3] are examples
of QoS models. Various brokering and middleware architec-
tures [15, 13, 14, 17, 21, 24] have been proposed for using
QoS in Web services.

Other researchers have also proposed using QoS for ser-
vice selection [13, 17, 7]. However, whereas these works
address some form of service selection, they do not address
it adequately for open environments, such as using trust and
reputation and a decentralized multiagent architecture as we
are proposing. Wohlstadter et al. [21] propose a policy lan-
guage for advertising the QoS needs of clients and to allow
the middleware to match servers and clients. However, their
work lacks a complete conceptualization of nonfunctional at-
tributes for Web services. Further, their matchmaking tech-
niques is not geared to enable dynamic evolution of the QoS
exposed by the services. In other words, it does not exhibit
autonomic characteristics.

Casati et al. [2] present a dynamic service selection using a
data mining approach on the service conversation logs. They
assume that conversation logs are collected for each business
process execution and that service consumers specify quality
goals that can be measured from the logs. Using data mining
they provide a middleware that can dynamically analyze the
logs of various conversations and determine the services best
matching the service consumer’s goals. Though similar in
intent, our approach differs in two respects. First, in our
architecture, we use a multiagent system with an agreed
upon QoS ontology, whereas Casati et al. use a centralized
middleware and their definitions of qualities is derived from
conversation logs. Second, our selection is based on the trust
value assigned to a service implementation, which itself is
based of a combination of the reputation of the consumer’s
quality needs. Casati et al.’s selection is based on a service
ranking which is derived from the decision trees constructed
from the conversation logs.

5.2 Trust and Trustworthiness
The literature on trust in the context of Web systems and

Web services has been growing lately. The literature closest
to our work is summarized in [5]. Though a bit dated, most
of the techniques described are applicable to our framework.
It is well-known that no security techniques can apply in
a purely open environment where identities can be readily
created and discarded. In such cases, the best we can do is
to use social approaches based on open reputation manage-
ment. Yu and Singh have examined the robustness of such
approaches under certain threats [22].

Other relevant trust approaches are the Pretty Good Pri-
vacy (PGP) Web of Trust and the Platform for Internet
Content Selection (PICS) [18]. However, these works are
mainly in the realm of creating trust systems and platforms

Service selection (3 explorer agents, stop doping after 6, and
restart after 15)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Execution sequence (normalized)

S
er

vi
ce

 n
u

m
b

er

Rushed Mellow Careful

Figure 6: Three explorer agents with full service
doping stopped after six selections and restarted af-
ter 15 (Simulation 1.6).

for human users and human-facing applications. Our goal
is to create trust where human involvement is limited or
completely absent.

Work on reputation systems is also closely related to our
work. Our proposed reputation calculation extends that of
Zacharia and Maes [23] and applies it in the world of Web
services by making considerations of QoS explicit. Huynh
et al. [6] calculate interaction trust as a reputation value
but their approach is limited when applied to service se-
lection (they do not consider nonfunctional characteristics
of services) and they also have limited prospect to creating
a system that is autonomic. Giorgini et al. [4] present an
agent-based social and individual trust model. Their model
is mainly in the realm of requirements engineering and gath-
ering; however, the resulting model is a step in the right
direction to achieving a formal agent-based trust model and
could be used to completement our own. Kalepu et al. [7]
extend our own approach to consider variance in collected
ratings values and it is also specific to reputation for quali-
ties that are subjectively rated.

Kashyap [8] argues that trust models for information sys-
tems and service composition must have a verification pro-
cess. He gives a partial taxonomy of trust that includes
transitive trust (endorsements), reputation (indirect trust),
and a priori beliefs. Kashyap sketches how a composed
trust quality value can be computed from the various trust
notions. We differ primarily with this work in that we com-
pute an aggregate trust value from QoS but agree with the
fact that a complete model for trust must be multidimen-
sional.

6. CONCLUSIONS
The autonomic characteristic of self-adjusting trust is cru-

cial in open systems. We showed how explorer agents enable
our trust model and multiagent system to exhibit this char-
acteristic. In this manner, we can enable the benefits of
autonomic computing for a wide range of settings.

Further aspects of the emergence of self-adjusting trust
remain to be studied. These include, for instance, under-
standing the density of explorer agents needed to achieve a
certain level of self-adjusting trust in the presence of ser-

vices advertising some qualities. Since explorer agents con-
sume precious resources, an analytical model of their behav-
ior in the community with respect to the resulting perceived
level of self-adjusting trust would be valuable. Such a model
would depend upon a characterization of the variability in
practice in the behavior of service implementations.

The full exploitation of explorer agents may require the
emergence of new standards. Specifically, explorer agents
would not automatically be able to use services that require
a consumer’s private data or require payments. Agents that
can perform such tests would be difficult to set up and spe-
cialized agencies may emerge to evaluate expensive services
on the behalf of prospective consumers. However, if such
services expose an exploration interface that enables explo-
ration and evaluation of their offerings but without requiring
payment, they would facilitate explorer agents. An explo-
ration interface would be useful to a provider, because it
would yield greater exposure to their offerings. An associ-
ated aspect is that the consumers will have to trust that the
behavior obtained during exploration is representative of the
behavior to be expected during the actual interaction.

Finally, a direction for our work is to improve the trust
model to take into account provider’s trustworthiness. Providers
can be trusted by consumers a priori using implicit trust as
well as indirect and transitive trust such as endorsements
from trusted third parties [10].

7. REFERENCES
[1] J. Ø. Aagedal, M. A. de Miguel, E. Fafournoux, M. S.

Lund, and K. Stolen. UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics
and Mechanisms. TR 2004-06-01, OMG, June 2004.

[2] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan.
Probabilistic, Contex-Sensitive, and Goal-Oriented
Service Selection. In Proc. of 2nd Intl Conf. on
Service Oriented Computing (ICSOC), pp. 316–321,
Nov. 2004.

[3] V. Cortellessa and A. Pompei. Towards a UML Profile
for QoS: A Contribution in the Reliability Domain. In
Proc. of the 4th Intl Workshop on Software and
Performance, pp. 197–206, 2004.

[4] P. Giorgini, F. Massacci, J. Mylopoulos, and
N. Zannone. Modeling Social and Individual Trust in
Requirements Engineering Methodologies. In Proc. 3rd
Intl Conf. on Trust Management, Lecture Notes on
Computer Science. Springer Verlag, 2005.

[5] T. Grandison and M. Sloman. A Survey of Trust in
Internet Application. IEEE Communications Surveys
& Tutorials, 3(4):2–16, 2000.

[6] D. Huynh, N. R. Jennings, and N. R. Shadbolt.
Developing an Integrated Trust and Reputation Model
for Open Multi-Agent Systems. In Proc. of 7th Intl
Workshop on Trust in Agent Societies, pp. 66–74, July
2004.

[7] S. Kalepu, S. Krishnaswamy, and S. W. Loke. Verity:
A QoS Metric for Selecting Web Services and
Providers. In Proc. of the 4th Intl Conf. on Web
Information Systems Engineering Workshops
(WISEW’03), pp. 131–139, Dec. 2003.

[8] V. Kashyap. Trust, But Verify: Emergence, Trust, and
Quality in Intelligent Systems. IEEE Intelligent
Systems, 19(5):85–87, Sept. 2004.

[9] J. O. Kephart and D. M. Chess. The Vision of
Autonomic Computing. IEEE Computer, 36(1):41–50,
Jan. 2003.

[10] E. M. Maximilien and M. P. Singh. Reputation and
Endorsement for Web Services. SIGecom Exchanges,
3(1):24–31, Dec. 2001.

[11] E. M. Maximilien and M. P. Singh. A Framework and
Ontology for Dynamic Web Services Selection. IEEE
Internet Computing, 8(5):84–93, Sept. 2004.

[12] E. M. Maximilien and M. P. Singh. Toward
Autonomic Web Services Trust and Selection. In
Proc. of 2nd Intl Conf. on Service Oriented
Computing (ICSOC), pp. 212–221, Nov. 2004.

[13] S. Ran. A Framework for Discovering Web Services
with Desired Quality of Service Attributes. In L.-J.
Zhang, editor, Proc. of the Intl Conf. on Web
Services, pp. 208–213, Las Vegas, June 2003

[14] S. Ran. A Model for Web Services Discovery with
QoS. SIGecom Exchanges, 4(1):1–10, 2003.

[15] A. Sheth, J. Cardoso, J. Miller, and K. Kochut. QoS
for Service-Oriented Middleware. In Proc. of the 6th
World Multiconference on Sytemics, Cybernetics, and
Informatics (SCI02), vol. 8, pp. 528–534, July 2002.

[16] K. Sycara, M. Paolucci, A. Ankolekar, and
N. Srinivasan. Automated Discovery, Interaction, and
Composition of Semantic Web Services. Journal on
Web Semantics, 1(1):27–46, Sept. 2003.

[17] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and
J. Schiller. A Concept for QoS Integration in Web
Services. In Proc. of the 4th Intl Conf. on Web
Information Systems Engineering Workshops
(WISEW’03), pp. 149–155, Dec. 2003.

[18] W3C. Platform for Internet Content Selection (PICS),
1998. Recommendation.

[19] W3C. QoS for Web Services: Requirements and
Possible Approaches, Nov. 2003. Note.

[20] D. D. Wackerly, W. M. III, and R. L. Scheaffer.
Mathematical Statistics with Applications. Duxbury,
Pacific Grove, 6th ed., 2002.

[21] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and
P. Devanbu. GlueQoS: Middleware to Sweeten
Quality-of-Service Policy Interactions. In Proc. of 26th
Intl Conf. on Software Engineering (ICSE 2004),
pp. 189–199, Edinburgh, May 2004.

[22] B. Yu and M. P. Singh. An Evidential Model of
Distributed Reputation Management. In Proc. of
Autonomous Agents and Multi Agent Systems
(AAMAS), pp. 294–301, 2002.

[23] G. Zacharia and P. Maes. Trust Management Through
Reputation Mechanisms. Applied Artificial
Intelligence, 14:881–907, 2000.

[24] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE
Transactions on Software Engineering, 30(5):311–327,
May 2004.

