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Abstract. We consider the programming of multiagent systems from an archi-
tectural perspective. Our perspective emphasizes the autonomy and heterogeneity
of agents, the components of multiagent systems, and focuses on how to specify
their interconnections in terms of high-level protocols. In this manner, we show
how to treat the programming of a multiagent system as an architectural endeavor,
leaving aside the programming of individual agents who might feature in a mul-
tiagent system as a secondary concern.

1 Introduction

This paper presents a new way of thinking about the programming of multiagent sys-
tems. Most existing approaches either seek to apply traditional software engineering or
to apply traditional artificial intelligence metaphors and abstractions. In contrast, this
paper takes a uniquely multiagent systems perspective. It focuses on how to describe
the interactions among agents in a manner that facilitates their loose coupling, and thus
naturally respects their autonomy and heterogeneity.

Like traditional software engineering approaches, this paper gives primacy to in-
terfaces and contracts. But unlike traditional approaches, it formulates these at a high
level. Like traditional artificial intelligence approaches, it considers high-level abstrac-
tions that need not make sense in all applications and specifically are not pursued in
traditional software engineering. Unlike traditional artificial intelligence, it gives promi-
nence to social and organizational abstractions as opposed to cognitive ones, and offers
a way to judge the compliance of agents.

Before we talk about what constitutes a multiagent architecture, it is helpful to con-
sider how architecture fits into software engineering and how we understand it here.
An architecture is motivated by requirements of the stakeholders of the systems that
instantiate it as well as by the environment in which it is instantiated [1]. Traditional
engineering draws an important distinction between functional and nonfunctional re-
quirements. The former deal with functionality that is somehow relevant to the problem
domain—for example, a sorting service would differ from a matrix inversion service on
functional grounds. The latter deal with aspects of how that functionality is delivered—
for example, with what latency, throughput, and availability. The associated idea in
traditional engineering is that all approaches would meet the functional requirements
but architectures would largely vary based on the nonfunctional requirements that they
support [2].



However, the above distinction—although a useful one—is far from perfect. It is
not always clear, as is well known, how to distinguish functional from nonfunctional
requirements. For example, if we are relying upon a numerical computation service to
determine how much to decelerate an automobile so it avoids a collision, the apparently
nonfunctional requirement of latency is very much functionally critical.

More importantly, when we think of a multiagent system in the broad sense, it is
not at all clear whose requirements we are dealing with. A traditional software sys-
tem would usually have multiple stakeholders: some users, some user advocates, some
administrators, some developers (including, for us, designers, implementers, and main-
tainers). The developers are a bit of an outlier in this list in that they are not users of
the system but they do impose requirements such as the maintainability of a system,
which arguably an end user has no direct interest in—at least within a usage episode.
However, when end users have an interest in having a system keep up with evolving
requirements, maintainability becomes key to them as well. Regardless, the various
stakeholders negotiate (perhaps in absentia via the developers) to determine and pri-
oritize system requirements. The ultimate product—the system—is a tightly integrated
whole that ought to meet its (suitably negotiated) requirements.

In sharp contrast with a traditional software system, it is generally not appropriate
to think of a multiagent system as being designed in its totality to serve one integrated
set of requirements. This is because in a typical multiagent system, the stakeholders
are autonomous entities and do not necessarily serve the interests of a common enter-
prise. Many of the stakeholders are projected into the designed system as autonomous
entities, that is, as agents. These agents are generally heterogeneous, meaning that they
not only exhibit diverse designs and implementations but also instantiate apparently
idiosyncratic decision policies.

It is worth emphasizing this point further. We are concerned with the programming
of multiagent systems that not only involve multiple autonomous stakeholders, but also
keep those stakeholders isolated from one another in the sense that the stakeholders
may potentially hold divergent stakes in the different components. Service-oriented
applications—banking, auctions, flight reservation, e-business in general, e-health, for-
eign exchange transactions, and so on—are prime examples of such systems; so are
normative systems and virtual organizations. There are indeed multiagent systems, es-
pecially in cooperative applications involving distributed sensing, teamwork, and so on,
that resemble a tightly integrated whole in the sense described above. For such appli-
cations, the system is decomposed into multiple agents because of some feature of the
environment, such as the distributed nature of the information to be obtained or actions
to be performed [3], or simply to facilitate a separation of concerns among different ac-
tive modules [4]. Such applications do not emphasize the autonomous nature of agents
and thus are not of primary concern here. In the following, the term multiagent systems
refers exclusively to systems with multiple stakeholders, at least some of whom are
isolated.

For the above reasons, traditional software architectures and their concomitant de-
sign methodologies are not readily applicable to the design and implementation of mul-
tiagent systems. Our present interest is to consider the aspects of multiagent systems
that are unique to multiagent systems in the realm of software engineering [5]. For



this reason, we claim that any approach that focuses on traditional programming arti-
facts works at too low a level to be of great value. In the same vein, any approach that
focuses on building an integrated solution is generally inapplicable for multiagent sys-
tems. In contrast to integration, we seek approaches that emphasize the interoperation
of autonomous and heterogeneous components.

Consequently, we advocate an approach for programming multiagent systems that
does not look within individual agents at all. Instead, this approach talks about the in-
teractions among agents. The interactions could themselves be captured through fiat
in the worst case, through design-time negotiation among some of the stakeholders, or
through runtime negotiation among the participating agents (based ultimately on some
design-time negotiation at least to nail down the language employed within the negoti-
ation). Our primary focus here is on the middle category above although the concepts
we promote can work in the other categories as well.

2 Architecture in General

Let us begin with a brief study of an architecture in conceptual terms. Understood ab-
stractly, an architecture is a description of how a system is organized. This consists
primarily of the ingredients of the system, that is, its components and the interconnec-
tions it supports among the components. An architectural style is an abstraction over an
architecture. A style identifies the following:

– (Architectural) Constraints on components and interconnections.
– Patterns on components and interconnections.

An architectural style yields a description language (possibly, also a graphical notation)
in which we can present the architectures of a family of related systems and also the
architecture of a particular system.

An open architecture is one whose components can change dynamically. Therefore,
the openness of an architecture arises from its specifying the interconnections cleanly.
In other words, the physical components of the architecture all but disappear; in their
stead, the logical traces of the components remain. We define protocols as the kinds of
interconnections that arise in open information environments.

2.1 Criteria for Judging Interconnections

The purpose of the interconnections is to support the interoperation of the components
that they connect. How may we judge different kinds of interconnections? Our assess-
ment should depend upon the level of interoperation that the interconnections support.

In particular, given our motivation for multiagent systems in Section 1, we identify
the following criteria.

– Loose coupling: support heterogeneity and enables independent updates to the com-
ponents.

– Flexibility: support autonomy, enabling participants to extract all the value they can
extract by exploiting opportunities and handling exceptions.



– Encapsulation: promote modularity, thereby enabling independent concerns to be
modeled independently, thus facilitating requirements tracing, verification, and main-
tainability.

– Compositionality: promote reuse of components across different environments and
contexts of usage, thereby improving developer productivity.

We take the view that two or more components interoperate when each meets the
expectations that each of the others places on it. An important idea—due to David
Parnas from the early days of software architecture—is that interoperation is about each
component satisfying the assumptions of the others [6]. Parnas specifically points out
that interoperation is neither about control flow nor about data flow.

Unfortunately—and oddly enough—most if not all, subsequent software engineer-
ing research considers only control or data flow. As we explained in the foregoing, such
approaches emphasize low-level abstractions that are ill-suited for multiagent systems.
However, considering expectations abstractly and properly opens up additional chal-
lenges. Specifically,

– How may we characterize the expectations of components regarding each other
except via data and control flow?

– How may we verify or ensure that the expectations of a component are being met
by the others?

2.2 Protocols, Generally

The main idea is that a protocol encapsulates the interactions allowed among the com-
ponents. In this sense, a protocol serves two purposes. On the one hand, a protocol con-
nects components via a conceptual interface. On the other hand, a protocol separates
components by providing clean partitions among the components viewed as logical en-
tities. As a result, wherever we can identify protocols, we can (1) make interactions
explicit and (2) identify markets for components. That is, protocols yield standards and
their implementations yield products.

Let us consider protocols in the most general sense, including domains other than
software, such as computer networking or even power systems. In networking, conven-
tional protocols such as IEEE 802.11g and the Internet Protocol meet the above criteria.
They determine what each component may expect of the others. They help identify mar-
kets such as of wireless access points and routers. In power systems, example protocols
specify the voltage and frequency an electrical component can expect from a power
source and the ranges of acceptable impedances it must operate within.

3 Proposed Approach

What are some key requirements for an architecture geared toward multiagent systems?
Clearly, the components are agents, modeled to be autonomous (independent in their
decision making) and heterogeneous (independently designed and constructed). Fur-
ther, the environment of a multiagent system provides support for



– Communication: inherently asynchronous.
– Perceptions.
– Actions.

For Information Technology environments, we can treat all of the above as communi-
cations. The key general requirement for a multiagent system is that its stakeholders
require the agents to interoperate. The specifics of interoperation would vary with the
domain. In our approach, these would be captured via the messages and their meanings
that characterize the interactions among the members of the desired multiagent system.

3.1 Specifying Multiagent System Protocols

In light of the above criteria, we can approach the problem of specifying multiagent
system protocols in the following main ways. Following traditional methodologies, we
can take a procedural stance, which would specify the how of the desired interaction.
Examples of these approaches that are well-known even in current practice include
finite state machines and Petri nets. In general, the procedural approaches over-specify
the desired interactions, thus limiting flexibility and coupling the components more
tightly than is necessary.

Alternatively, we can take a declarative stance, which would specify the what of
the desired interaction, meaning what it seeks to accomplish. Examples of declarative
approaches are those based on the various forms of logic: predicate, modal, temporal,
and such. A logic-based approach is not necessarily higher level than the procedural
approaches. What matters primarily or even solely is what the conceptual model is that
the formalization seeks to capture. We advocate declarative approaches based on high-
level conceptual abstractions that promote loose coupling and flexibility.

Our proposed approach can be summarized as agent communication done right.
Communication in general and agent communication in particular can be understood as
involving at least the following main aspects of language.

– Syntax: documents to be exchanged as messages. We can imagine these documents
as being rendered in a standardized notation such as a vocabulary based on XML.

– Semantics: formal meaning of each message. We propose that at least for busi-
ness applications, this desired meaning may be best expressed using abstractions
based on the notion of commitments [7]. For other situations involving multiagent
systems, the meaning could potentially be expressed via other suitable constructs
in a like manner. However, even in nonbusiness settings, the commitments among
agents can be valuable. In particular, the type of commitment known as dialectical
may be suitable for applications involving the exchange of information or argu-
ments, such as negotiation [8].

Our approach places considerable weight on the idea of minimizing operational
constraints. Our motivation for this is to enhance the features listed in Section 2.1,
specifically loose coupling, which promotes autonomy and heterogeneity. From our
experience in formalizing various domains, it is worth remarking—and it would prove
surprising to many—that few operational constraints are truly needed to capture the
essential requirements of an application.



3.2 Ensuring Interoperation via Traditional Representations

Traditional software engineering approaches apply only at the level of control and data
flow among the components. Usually the concomitant flows are specified procedurally,
although they can be captured declaratively. Regardless, as we argued in Section 2.1,
control and data flows prove to be a poor notion of interoperation for multiagent sys-
tems. However, it is important to recognize that traditional approaches can support
interoperation, albeit at a low level. Further, they carry a concomitant notion of compli-
ance as well.

In contrast, the traditional agent-oriented approaches—based as they are on tradi-
tional artificial intelligence concepts—place onerous demands on the agents. Because
these approaches emphasize the cognitive concepts such as beliefs, goals, desires, or
intentions, they presuppose that the agents be able to interoperate at the cognitive level.
In other words, the traditional agent-oriented approaches require that the cognitive state
of an agent be

– Externally determinable, which is impossible without violating the heterogeneity
of the agents.

– In constant mutual agreement, which is impossible without violating autonomy and
asynchrony.

Consequently, we claim that these approaches offer no viable notion of interoperation
(or of compliance [9]). In this manner, they reflect a step backwards from the traditional
software engineering approaches.

For the above reasons, the BDI approaches are not suitable for architecture. They (1)
violate heterogeneity by presuming knowledge of agent internals; (2) prevent alignment
in settings involving asynchrony; (3) tightly couple the agents with each other; and (4)
lead to strong assumptions such as sincerity in communication that prove invalid in
open settings.

3.3 Interoperation via Commitments

Commitments yield a notion of compliance expressly suited for multiagent systems.
Agent compliance amounts to the agent not violating any of its commitments towards
others. A protocol specified in terms of commitments does not dictate specific oper-
ationalizations in terms of when an agent should send or expect to receive particular
messages; as long as the agent discharges its commitments, it can act as it pleases [10].

We introduce some notation and elementary reasoning rules for commitments.

– The expression C(debtor, creditor, antecedent, consequent) represents a commit-
ment; it means that debtor is committed to the creditor for the consequent if the
antecedent is brought about. For example, C(EBook, Alice, $12,BNW) means that
EBook is committed to Alice for the book BNW (for Brave New World) in return
for a payment of $12.

– C(debtor, creditor,>, consequent) represent an unconditional commitment. For
example, C(EBook,Alice,>, BNW) means that EBook is committed to Alice for
the book BNW.



– DETACH: C(x, y, r, u)∧ r → C(x, y,>, u): if the antecedent holds, then the debtor
become unconditionally committed to the consequent. For example (reading ⇒ as
logical consequence), C(EBook, Alice, $12, BNW)∧$12 ⇒ C(EBook, Alice,>, BNW).

– DISCHARGE: u → ¬C(x, y, r, u): if the consequent holds, the commitment is dis-
charged—it does not hold any longer—no matter if it is conditional or not. For ex-
ample, both of the following hold. BNW ⇒ ¬C(EBook,Alice, $12, BNW). And,
BNW ⇒ ¬C(EBook, Alice,>, BNW)

The flexibility of a (complying) agent is limited by the need to interoperate with
others. To fully exploit the flexibility afforded by commitments, we must necessarily
formalize interoperability in terms of commitments. For if we continued to rely upon
the notions of interoperability as formalized for components—in terms of a component
being able to simply send and receive messages as assumed by others—we would be
introducing operational constraints on the communication among agents, thus limiting
their flexibility.

To motivate our definition of interoperation in terms of commitments, we observe
that there are two primary sources of asymmetry in a multiagent system. On the one
hand, communications are inherently directed with the direction of causality usually
being treated as flowing from the sender to a receiver (but see Baldoni et al. [11] for a
more general, alternative view). On the other hand, commitments are directed with the
direction of expectation being from the creditor of a commitment to its debtor.

Accordingly, we propose a notion of interoperation that we term (commitment)
alignment [12]. Alignment, as we define it, is fundamentally asymmetric. The intu-
ition it expresses is that whenever a creditor computes (that is, infers) a commitment,
the presumed debtor also computes the same commitment. The formalization of this
definition involves some subtlety, especially on the notion of what we mean by when-
ever. Specifically, we capture the intuition that at the moments or system snapshots at
which we judge the alignment or otherwise of any two agents, we make sure that the
agents have received the same relevant information. Thus all messages sent must have
been received, and each agent ought to have shared any information it has received that
is materially relevant to the commitments in which it participates. In particular, a cred-
itor should propagate information about partial or total detachments, which strengthen
a commitment. And, a debtor should propagate information about partial or total dis-
charges, which weaken or dissolve a commitment.

In this manner, our approach can achieve alignment even in the face of asynchrony—
meaning unbounded message delays but messaging that is order-preserving for each
pair of sender and receiver. The approach works as follows. When a debtor autonomously
creates a commitment, it sends a corresponding message, which eventually lands at the
creditor. Here the debtor is committed before the creditor learns of the debtor being
committed, so alignment is preserved. When a creditor detaches a commitment, thereby
strengthening it, a message corresponding to the detach eventually arrives at the debtor.
Here the debtor is committed when it receives the detach message.

The foregoing motivates a treatment of quiescence wherein we only consider well-
formed points in executions where each message has landed. When a debtor or creditor
learns that a commitment is discharged or detached, respectively, it must immediately



notify the other (integrity, which ensures no quiescence until the information has prop-
agated).

In broad terms, our ongoing research program calls for the development of what we
term CSOA, a commitment-based service-oriented architecture [13]. CSOA is focused
on the notion of a service engagement. When thought of in business terms, a service en-
gagement involves multiple business partners carrying out extensive, subtle interactions
in order to deliver value to each other. Business services are to be contrasted with tech-
nical services such as on Web or the Grid, which emphasize lower level questions of
connectivity and messaging without regard to the business content of the interactions.

Fig. 1. Proposed architecture schematic, conceptually

Figure 1 shows how we imagine the layers of our architecture in conceptual terms.
For a given application, the domain model describes the roles involved and the vocab-
ulary, including the business documents that agents adopting the role would exchange.
The commitments layer understands the documents in terms of their business contents.
The agent communication layer deals with the primitive commitment operations such
as Create, Delegate, and so on, and other communication primitives such as Request,
Declare, and so on; the primitives in this layer would be more or less standard. Finally,
the CSOA layer deals with composite service engagement patterns built from the prim-
itive commitment operations. For example, a book-selling application would involve at
least the roles Buyer and Seller . An Offer for some book from the Seller could be
mapped to a commitment from the Seller to the Buyer , similar to the one above from
EBook to Alice. A CSOA pattern for the book-selling application could encode refunds
from the Seller .

4 Programming Multiagent Systems

Based on the foregoing, we can now introduce a conceptually straightforward way in
which to program a multiagent system.

4.1 Step 1: Specify the Communications

We define a protocol and specify it as follows.



– Specify roles to describe abstracted versions of the agents who will participate in
the multiagent system at runtime.

– Specify messages as the surface communications among various pairs of roles.
– Specify the meanings of each message declaratively in terms of commitments and

other relevant propositions.
– Specify any additional constraints on the messages such as the conventions of the

relative orders among the messages, and how information carried in one message
flows to another message in the protocol.

The above commitment-based specification approach is reasonable for the following
reasons. Based on the notion of commitments, we can unambiguously determine if a
particular enactment satisfies the specified protocol or not. We can also determine if any
of the agents is noncompliant. Further, if needed, we can refine and compose protocols
to produce protocols that better address our stakeholder requirements.

4.2 Step 2: Instantiate the System

The next step in this methodology is to instantiate and configure a multiagent system
so as to be able to enact its computations. To instantiate and enact a multiagent system,
identify agents to play roles in the protocol that characterizes the multiagent system.
We refer to a unique protocol because when there are multiple protocols, they can be
considered for this discussion as having been composed into a single definitive pro-
tocol. In practice, we do not require the creation of a monolithic composed protocol.
The instantiation of a multiagent system could proceed one of three ways in terms of
the agents who are involved. These agents could be any combination of (1) preexisting
agents proceeding on their own initiative; (2) newly instantiated agents based on preex-
isting code-bases; and (3) custom-designed agents to suit the needs of the stakeholders
who contribute them to the multiagent system. Different stakeholders could follow any
of the above approaches in constructing the agents they field in the given system. In any
case, each agent would apply the decision-making policies of the stakeholder whom it
represents computationally within the multiagent system.

4.3 Enactment and Enforcement

The agents collectively enact this programming model by individually applying their
policies to determine what messages to send each other. As explained above, the mean-
ing of each message specifies how it corresponds to operations on commitments.

The above approach can be readily realized in runtime tools, which can be thought
of as commitment middleware [14]. The middleware we envisage would offer primitives
encapsulated as programming abstractions by which each agent can

– Communicate with other agents.
– Maintain the commitments in which it features as debtor or creditor.
– Propagate the information necessary to maintain alignment among the agents.
– Verify the compliance of debtors with commitments where it is the creditor.



Such a middleware would enable writing programs directly in terms of commit-
ments. Instead of an agent effecting communication with others through such low-level
primitives as send and receive, the agent would perform commitment operations.

Our commitment-based architecture does not require that there be a central author-
ity to enforce commitments. In general, in settings with autonomous agents, no agent
can be sufficiently powerful to force another agent to act in a certain manner. Enforce-
ment in such settings realistically amounts to arbitration and applying penalties where
appropriate.

A commitment is made in a certain context, which defines the rules of encounter
for the agents who feature in it [13]. We model the context as an agent in its own
right. Viewed in this light, the context can perform several important functions, not
necessarily all of them in the same setting. The context can be a monitor for tracking
commitments, which assumes it observes all communications. Alternatively, the context
may serve as arbiter for any disputes between the contracted parties.

In some settings, the context may also act as a sanctioner who penalizes agents who
violate their commitments. The context may cause a new penalty commitment (with the
same debtor as the violated commitment) to come into force. Ultimately, there is little
the context can do, except possibly to eject a malfeasant agent from the interaction.
The context may observe the violation itself or may learn of it from the creditor, who
would have escalated the commitment to the context. For example, a buyer on eBay
(the marketplace) may escalate a dispute with a seller to eBay (the corporate entity,
serving as the context). The protocol for escalating and dispute resolutions may be
considered as part of a larger Sphere of Commitment [15]. However, often, penalties
are left unspecified. For example, a buyer’s agent may simply notify the buyer that the
seller has violated some commitment, at which point the buyer may take up the matter
with eBay. A more common approach is to use reputation as a form of social censure
for malfeasant agents. In well-structured settings such as eBay, which might support a
notion of reputation, there is also the option of ejecting a malfeasant agent.

Fig. 2. Proposed architecture schematic, operationally

Figure 2 illustrates a way to operationalize our architecture in schematic terms. A
commitment middleware resides above messaging and makes sure that agents maintain
their alignment by exchanging relevant information. The agents function within a suit-



ably powerful sphere of commitment which, as explained above, potentially ensures
they comply with their commitments.

4.4 Summary of Benefits

We highlight the benefits of our approach according to the criteria presented in Sec-
tion 2.1. Formalizing interoperability in terms of commitment alignment promotes a
looser coupling among agents than is possible with traditional approaches. In partic-
ular, many of the message ordering constraints that are typically taken for granted in
real-life applications, for example, that the accept or the reject of an offer must follow
the offer, are no longer necessary. In effect, when we loosely couple agents, they can
update their commitments independently of each other.

Commitments support a high-level notion of compliance, and thus support flexible
enactment. In earlier work on commitments, the flexibility afforded by commitments
could not be fully exploited as concerns of concurrency obscured the picture somewhat.
With interoperation formalized in terms of commitments, agents can fully exploit this
flexibility.

Encapsulation and compositionality have to do with the efficient software engineer-
ing of protocols [16]. In essence, each protocol is a discrete artifact, independent from
requirements and from other protocols. A protocol may thus be made available in a
repository, and depending on a particular application’s requirements, composed with
other protocols and instantiated.

5 Discussion: Conclusions and Future Work

First, we observe that existing multiagent systems engineering approaches, in attempt-
ing to develop practical systems, adopt traditional software engineering ideas whole-
sale. In this manner, they tend to neglect the key features that characterize multiagent
systems, specifically, the autonomy and the heterogeneity of their participants.

Second, when existing approaches recognize the high-level nature of the descrip-
tions of agents and their interactions, they seek to differentiate themselves from tradi-
tional software engineering by introducing concepts from traditional artificial intelli-
gence, specifically, concepts such as beliefs, goals (or desires), and intentions. In this
manner, they continue to poorly accommodate the asynchrony, autonomy, and hetero-
geneity that characterize real-life multiagent systems.

We advocate an approach in which high-level concepts yield interconnections that
support multiagent system applications. These concepts are centered on commitments
and help model the interactive nature of multiagent systems directly. A key challenge is
that we realize such concepts correctly in order to achieve interoperation.

The key to building large-scale multiagent systems lies in adequately formalizing
agent communication, not the internal decision making of agents. Whether an agent is
capable of reasoning about beliefs or whether the agent is specified as an automaton
is neither relevant nor discernible to another agent. A desirable development would
be if both agent communication and reasoning could be specified in terms of high-level
abstractions, and the runtime infrastructure would directly support the abstractions. This



would obviate the need to translate between different levels of abstraction, as advocated
in model-driven approaches, and would truly usher in the age of agent-oriented software
engineering. For this, we would have to formally relate agent reasoning with agent
communications. This challenge is beginning to be addressed in the recent literature
[17, 18].

Considerations of multiagent systems require fresh approaches in requirements mod-
eling. Instead of classifying requirements simply as functional or nonfunctional, one
also needs to consider whether the requirement is contractual—implying a commitment
between two of the stakeholders—or noncontractual. A requirement could be functional
and contractual (for example, EBook’s offer entails such a commitment), or nonfunc-
tional and contractual (for example, the requirement that the book be delivered using
priority service), and so on. Indeed, as pertains to multiagent systems, the contractual
dimension seems to be more significant than the functional one.

In business engagements, the context plays an important role—it instills some mea-
sure of confidence in compliance by the interacting parties. In commitments of a per-
sonal nature, the context may be implicit. Further, there may not be any explicitly spec-
ified penalty commitments. For example, if Rob commits to picking up Alice from the
airport, but does not show up on time, Alice may cancel her dinner engagement with
him or she may simply note Rob to be unreliable. The point to be taken here is that
commitments are valuable because they enable reasoning about compliance; their value
does not derive from their being enforced or not. Neither penalty nor arbitration are
semantically integral to commitments.

5.1 A Remark on Notation

Architectural approaches inherently lead to ways to describe systems. Thus they natu-
rally lead and should lead to notations. Notation, although important, remains secondary
to the concepts. When we describe an architecture, what matter most are the concepts
using which we do so. It is more important to develop a suitable metamodel than to
specify a detailed notation that lacks an appropriate metamodel.

We notice a tendency in agent-oriented software engineering where, in attempt-
ing to develop practical systems, researchers adopt traditional notations wholesale as
well. There is indeed value in adopting traditional notations, but only where such no-
tations apply. The field of multiagent systems exists—and research into the subfield of
programming multiagent systems is a worthwhile endeavor—only because traditional
approaches are known to be inadequate for a variety of practical information systems,
especially large-scale open, distributed systems. In other words, existing notations are
not complete for these purposes. Therefore, a worthwhile contribution of multiagent
system research is to invent suitable notations backed up by expressive metamodels.

5.2 Directions

CSOA is an architecture style that treats business (not technical) services as agents,
and includes patterns for service engagements. Along the lines of CSOA, we have re-
cently begun to develop a business modeling language [17]. This language is based
on a metamodel that provides first-class status to business partners and their respective



commitments, expressing their contracts. It also includes support for some CSOA pat-
terns such as for delegating commitments that are core to the precise, yet high-level
specification of a service engagement.

Upcoming research includes a study of ways in which to express a multiagent sys-
tem in terms of the business relationships among agents as conglomerates of commit-
ments, and formal methods to verify the computations realized with respect to business
models.
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