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Abstract. A proper definition of protocols and protocol refinement is crucial to
designing multiagent systems. Rigidly defined protocols can require significant
rework for even minor changes. Loosely defined protocols canrequire significant
reasoning capabilities within each agent. Protocol definitions based on commit-
ments is a middle ground.
We formalize a model of protocols consisting of agent roles,propositions, and
commitments. We define protocol refinement between a superprotocol and a sub-
protocol by mapping superprotocol elements to corresponding subprotocol ele-
ments. Mapping protocol commitments depends on a novel operation called serial
composition. We demonstrate protocol refinement.

1 Introduction

We focus our attention on service engagements between businesses and customers (B2B
and B2C) over the Internet. In current practice, such engagements are defined rigidly
and purely in operational terms. Consequently, the software components of the busi-
ness partners are tightly coupled with each other, and depend closely on the engage-
ment specification. Thus the business partners interoperate, but just barely. Even small
changes in one partner’s components must be propagated to others, even when such
changes are not consequential to the business being conducted. Alternatively, in current
practice, humans carry out the necessary engagements manually with concomitant loss
in productivity.

In such an environment, if there were no mechanisms to structure inter-agent com-
munication, agent implementations would need to handle a wide variety of communica-
tion making agent implementations complex with sophisticated reasoning capabilities
as each interaction would be unique and customized. It wouldbe difficult to predicta
priori whether two agents could interoperate.

Protocols, as we understand them, provide a happy middle between rigid automation
and flexible manual execution. Using protocols as a mechanism to structured communi-
cation, agent implementations can be less sophisticated. Protocol designers design and
analyze protocols for desirable properties. Agents can publicly declare the protocols in
which they can participate making it easier to find agents with whom to interoperate.

Protocols are a way to standardize communication patterns so agents can be used in
many different multiagent interactions. Consider the simple protocolPayconsisting of a
single action where a payer pays a payee. And consider protocol OrderPayShipwhere a
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buyer and a seller agree to a price for a particular good, the buyer pays the seller and the
seller ships the good to the buyer. The payer and payee roles in Payshould correspond
to the buyer and seller roles inOrderPayShip. The payment inPayshould correspond
to the payment inOrderPayShip. Therefore, we expectOrderPayShiprefinesPay.

Suppose protocolPayByInt(pay by intermediary) is introduced where the payer first
pays a middleman, who in turn pays the payee. Since bothPayandPayByIntsend a pay-
ment from the payer to the payee, we expectPayByIntrefinesPay. Similar arguments
imply PayByCheck, PayByCredit, and others also refinePay. If PayByIntbecomes pop-
ular, we would like to construct a new protocolOrderPayByIntShip, which is just like
OrderPayShip, except payments are made usingPayByIntrather thanPay.

This diagram shows the expected refinement relationships between various proto-
cols.
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We are working to implement refinement checking via the MCMASmodel checking
[2] to handle complex protocols like those found in real service engagements.

Contributions

The main contributions of this paper are a definition of a refinement relation between
two protocols, the notion of covering commitments, and the definition of serial compo-
sition of commitments. It describes why commitment-based protocols are more flexible
than traditional computer protocols using the idea of multiple states of completion.

Organization

Section 2 introduces our running examples. Section 3 describes background material
on commitments. Section 4 describes our intuitions and framework for protocol re-
finement, covering commitments, and serial composition of commitments. Section 5
briefly describes our intentions for implementing refinement checking with the MC-
MAS model checker. Section 6 demonstrates refinement on an example. Section 7 eval-
uates our approach. Section 8 describes other works and our future directions.

2 Examples

We introduce four running examples.Pay andPayByIntare basic payment protocols
while OrderPayShipandOrderPayByIntShipare order protocols involving payments.
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2.1 Pay

Payis a basic payment protocol between a payer and a payee. If thepayer chooses to do
so, it commits to pay the payee by action promise. Then, at some later point, it sends a
single payment directly to the payee. This sequence diagramdescribes the interaction.

Payer Payee
promise //

pay //

2.2 PayByInt

In protocolPayByInt(pay by intermediary), if the payer chooses to do so, it commits
to pay the payee with promise. It then pays by sending a payment indirectly to the
payee. The payer first pays a middleman, who in turn pays the payee. We assume the
middleman commits to performpayM if payer performspayP. This sequence diagram
shows a typical interaction, but sequence diagrams document only one message run.
Other runs may also be valid. In this case, it is acceptable for the middleman to be
generous and executepayMbeforepayP.

Payer MM Payee
promise //

payP //
payM //

2.3 OrderPayShip

In OrderPayShipa buyer orders goods from a seller. The buyer requests a pricequote
for a good from the seller. The seller sends the price quote along with its commitment
to ship the good if the buyer orders. The buyer can accept the offer by ordering and
making its commitment to pay for the good if it orders. The seller can ship first, or the
buyer can pay first.

Buyer Seller
reqQuote //
sendQuoteoo

order //
pay //
shipoo
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2.4 OrderPayByIntShip

ProtocolOrderPayByIntShipis similar toOrderPayShipexcept the payer usesPayByInt
for payment. This introduces a new middleman role.

Buyer MM Seller
reqQuote //
sendQuoteoo

order //
payB //

payM //
shipoo

3 Background

3.1 Commitments

Commitments are a formal and concise method of describing how agent roles commit
to perform future actions. We extend previous commitment definitions [5] in two ways.
First, we allow both debtors and creditors to be sets of roles. This handles situations
where a chain of debtors and intermediaries must all act to fulfill a commitment, and
where a chain of creditors and intermediaries all need to know whether a commitment
is satisfied. Second, we implement prior uses ofdelegateandassignwith a single, new
transfer operation.

Definition 1. A commitment is an object

C{debtors},{creditors}(ant, csq) (1)

where debtors and creditors are sets of roles, ant is the antecedent, and csq is the
consequent. When a commitment is active, the debtors areconditionallycommitted to
the creditors. Once ant becomes true, the debtors areunconditionallycommitted to
make csq true at some point in the future.

The valid operations on commitments are
– create, performed only by debtors, creates a new commitment and makes it active.
– When the antecedent becomes true, the commitment is implicitly converted to an

unconditional commitment.
– When the consequent becomes true, the commitment is implicitly satisfied and no

longer active. Typically the consequent become true only after the antecedent be-
comes true, but this is not required.

– transfer, performed by either debtors or creditors, ends the currentcommitment
and marks it as transferred to another commitment and no longer active.

– release, performed only by creditors, releases the debtors from their commitment.
The commitment is released and no longer active.

– cancel, performed only by debtors, cancels the debtors’ commitment. The commit-
ment is violated and no longer active.
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A commitment is always in one of these states.
– inact: the initial state;
– cond: aftercreate with ant false, csq false, and no other operations;
– uncond: aftercreate with ant true, csq false, and no other operations;
– sat: aftercreate and csq true;
– xfer: aftercreate andtransfer;
– rel: after create andrelease; and
– can: aftercreate andcancel.

A commitment in statesat, xfer, rel, or canis said to beresolved.
For unconditional commitments, the debtors are committed to eventually makecsq

true. If the debtors fail, responsibility can beseveral(each debtor is responsible for just
its portion),joint (each debtor is fully responsible for the entire commitment), or joint
and several(the creditors hold one debtor fully responsible, who then pursues other
debtors). We useseveralresponsibility.

We note that contracts are built from multiple commitments;each party commits to
perform the actions for which it is responsible. So while contracts are created by both
debtors and creditors, commitments are created only by debtors.

Before a commitment’screate(stateinact), the commitment has no force. A created
commitment (statecond) is conditionally committed. Unconditional commitments must
eventually resolve to statesat, xfer, rel, or can. It is possible for the consequent to
become true before the antecedent. While unusual, debtors have the option to act before
being required to do so. Debtors are discouraged fromcancel, but circumstances may
require it, with consequences handled outside the current mechanisms.

In Pay, we represent the payer’s commitment to paying the payee as

CPayer,Payee(promise, pay)

In PayByInt, we represent the payer’s and middleman’s combined commitment as

C{Payer,MM},Payee(promise, payP ∧ payM )

Previous commitment descriptions allow debtors todelegate, or creditors toassign,
a commitment to another role. Both terminate the existing commitment and create a new
commitment with modified roles. We model these operations asa transfer operation
which terminates the existing commitment plus a separatecreateof a new commitment.

delegate(Ci, debt
′) = transfer(Ci) ∧ create(Cd′)

assign(Ci, cred
′) = transfer(Ci) ∧ create(Cc′)

whereCi = Cdebt,cred(ant, csq),Cd′ = Cdebt’,cred(ant, csq) andCc′ = Cdebt,cred’(ant, csq).
Sincedelegateandassignhave essentially the same effect,transfer captures the essence
of both and somewhat simplifies the definition of commitments.

3.2 Unconditional Commitments Must Resolve

We require debtors must eventually resolve all their unconditional commitments, even
if that iscancel.



6 Scott N. Gerard and Munindar P. Singh

Model checkers have fairness constraints which eliminate unfair paths from con-
sideration. Fairness constraints are typically used to eliminate unfair scheduler paths.
We use fairness constraints to eliminate paths where agentsnever resolve their uncon-
ditional commitments. This is a constraint on agent implementations, not a constraint
on the protocol itself.

4 Framework

4.1 Protocol Basics

A protocol specification language needs to describe all participating agent roles, the
actions they can perform, and any constraints (guards) on their actions. Agents send
message actionsto each other. Message actions are an agent-level concept. Below we
decompose message actions into an unordered set ofbasic actions.

We model protocols using CTL. We consider runs of basic actions which generate
state runs as is traditional for model checking. An action run is modeled as

s0
a0 // s1

a1 // s2
a2 // . . .

When we compare points in time and actions, “si < aj < sk” meansi ≤ j < k. When
we compare two actions, “ai < aj” meansi < j.

While support for looping protocols is desirable, we simplify the initial problem
and do not consider them here. We hope to extend our work to cover looping protocols
later.

4.2 Messages and Guards

Both message actions and basic actions can have guard conditions. An action is enabled
for execution only when its guard is true.

Some protocols must constrain message orders. For example,(1) when one message
provides a value required by another message, or (2) due to regulatory requirements
(you must show a valid ID before boarding an airplane). An action’s guard is written

guard < action

which meansactioncan occur in a state only ifguard is true in that state. The action is
not required to execute when the guard is true. Guardsg1 < action andg2 < action

can be combined intog1 ∧ g2 < action.
Guards for message actions have been used elsewhere including MCMAS. We also

introduce guards for basic actions since the protocol designer may need to constrain the
ordering of basic actions in subprotocols. The designer canspecify multiple guards for
an action. The complete guard condition for a basic action includes any guards for the
basic action as well as any guards for its containing messageaction. We expect tooling
to combine all designer-specified guards into a single guardexpression.

Example: A protocol designer might require

reqQuote ∧ sendQuote < order
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4.3 Multiple Stages of Completion

Commitments evolve through four stages; proposition evolve through only two. The
occurrence of aprop = value basic action divides time into two stages: before and
after the basic action.

A commitment evolves through four stages: (1) before creation (inactive), (2) con-
ditionally committed (cond), (3) unconditionally committed (uncond), and (4) resolved.

inact// create
cond // ant

uncond// csqresolved //

Commitments increase protocol flexibility, because guardscan specify “partially per-
formed” actions. A protocol can make progress sooner if an action’s guard specifies one
of the first three stages.

Example: Using propositionship, OrderPayShipcan guardpaybased only on the
two stages ofship. The decision is “all” (shipped) or “nothing” (notshipped).

ship< pay (2)

Using commitments, the protocol can guardpaybased on any of the four commitment
stages. A guard can enablepayas soon as the debtor has committed to makeshiptrue.

create(CSeller,Buyer(pay, ship)) < pay (3)

A protocol framework that includes commitments is inherently more flexible than
traditional computer protocol frameworks. Where traditional protocol frameworks op-
erate on an all-or-nothing basis with just two stages of completion, agent-based frame-
works can operate based on four stages of completion (commitments have four stages
of completion). Basing a decision on a completed action provides essentially no risk to
a creditor. But commitments allow more flexible enactments because creditors can also
base their decisions on the promises of the debtors which arepartial or intermediate
stages of completion. While creditors assume more risk in doing so, they assume less
risk than acting without debtor promises.

4.4 Every Sub-run is a Super-run

According to the Liskov substitution principle [1], ifφ(p) is a property provable about
objects p of type P, thenφ(q) should be true for objects q of type Q when Q is a subtype
of P. We apply this principle to protocols. Ifφ(x) holds for a superprotocol, then it must
also hold for its subprotocols. For example, letφ(x) be the property that actionorder
precedes actionpay. φ(p) will be true of some runs, but not of other runs.

Subprotocols must satisfy every superprotocol propertyφ(x), but they can satisfy
additional propertiesψ(x). Every subprotocol run must satisfy bothφ(x) andψ(x), so
there are fewer subprotocol runs than superprotocol runs becauseψ(x) eliminates some
runsφ(x) does not.

Definition 2 (Protocol Refinement).Every subprotocol basic action run must be a
superprotocol basic action run.
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Our definition of protocol refinement does not imply that agents that can participate
in a superprotocol can necessarily participate in a subprotocol unchanged. Agents work
with message actions, but our definition for run comparison is based on basic actions. In
our model, agents may need to be modified to participate in subprotocols. For example,
an agent capable of participating in a basic payment protocol may need to change to
handle payments via check or credit card.

4.5 Time Expansion

Basic actions which are concurrent at a high-level of abstraction (superprotocol) may
not be concurrent at a lower-level of abstraction (subprotocol). When a superprotocol’s
message action is refined in the subprotocol, its basic actions can spread out over time
(no longer concurrent).

Decomposing a message action into multiple basic actions requires splitting action
intervals and creating additional time points in the run (expanding time).

4.6 Decomposition

A message action may have multiple effects. To better understand and characterize
a message action, we decompose each message action into an unordered set of one
or morebasic actions. Each basic action has well-defined semantics and is useful for
analyzing and understanding the meanings of message actions.

We consider two different kinds of basic actions. Setting the value of a proposition to
true or false is a propositional basic action. Each of the commitment operationscreate,
transfer, release, andcancelare commitment basic actions.

Example: The seller’s message actionsendQuotein OrderPayShipdecomposes into
two basic actions. It sets the propositionalsendQuotefluent to true to record the fact
that it responded to the buyer. And it creates a commitment that the seller will ship if
the goods are ordered.

See the discussion for diffusion below for the exact guard conditions.

4.7 Mapping

Since superprotocols represent a higher-level abstractions than subprotocols, the dif-
ferences in levels must be addressed. There is often no one-to-one correspondence be-
tween superprotocol and subprotocol elements. Protocol elements must be mapped be-
tween the two protocols to compare them. Since subprotocolstypically contain more
detail than superprotocols, we map every single superprotocol element (role, proposi-
tion or commitment) to an expression of one or more corresponding subprotocol ele-
ments. Subprotocols may contains sub-elements that do not correspond with any super-
element.

Example: anopenAccountbasic action in a high-level, banking superprotocol, might
decompose to multiple basic actions in a low-level subprotocol: checkIdentity, check-
Credit, createAccount, andnotifyCustomer.

Example: thepay basic action inPay maps to thepayPandpayM expression in
PayByInt.
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While it would be desirable for the mapping between superprotocols and subproto-
cols to be automatically determined, there can be multiple,distinct mappings between
some protocol pairs. In the mapping betweenPayandPayByInt, one mapping groups
the Middleman with the Payer, making the Middleman work on behalf of the Payer.
Another mapping groups the Middleman with the Payee, makingthe Middleman work
on behalf of the Payee. Both interpretations are valid.

Every super-basic-action is mapped to an expression of sub-basic-actions. There
is one mapping function for each super-basic-action. The mapping function for basic
propositions is a boolean expression of sub-basic-propositions. The mapping function
for super-basic-commitments is a serial composition of sub-basic-commitments.

super 7→ mapsuper(sub1, sub2, . . . )

4.8 Projection

Let SubOnly be the set of basic actions that occur only in the subprotocol (basic actions
not in the superprotocol and not in a mapping expression). Ignore all SubOnly basic
actions in the subprotocol during run comparison.

This means we compare all basic actions in the superprotocolwith just the matching
basic actions in the subprotocol. The subprotocol is free toinclude additional basic
actions that are unknown to the superprotocol.

4.9 Diffusion

Consider the case where a super-basic-actionp maps to two sub-basic-actionsp 7→
q1∧q2. Forp to occur at the same time point in both sub-run and super-run,pmust occur
at the same time as thelastof q1 andq2. For conjunction, the other sub-actions can occur
at anyearlier and possibly non-adjacent points in the run. In the case wherep 7→ q1∨q2,
thenpmust occur at the same time point as thefirst of q1 or q2. For disjunction, the other
sub-actions can occur at anylater and possibly non-adjacent points in the run.

Example: inOrderPayShip, the buyer’s order action is composed of the two basic
actions of setting anorder proposition and creating a commitment. In refinements of
OrderPayShipthese two basic actions can occur at different points in time.

When a sub-action guard is true, we require the corresponding super-action guard to
also be true. Otherwise, the subprotocol could perform the sub-action while the super-
protocol can not perform its corresponding super-action. The model checker tests this
using formula

AG(sub.guard→ super.guard) (4)

We represent the diffusion condition as a guard condition. Since runs are serialized
basic actions, we do not need to consider multiple basic actions occurring simultane-
ously.

If super 7→ sub1∧ · · · ∧ subi, the super-basic-action’s guard must be true when the
last of the sub-basic-action’s guard is true.

subi.effguard = subi.baguard ∧ [subi.maguard ∨ ¬(
∧

j 6=i

subi.occurred)]
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The sub-basic-action’s effective guard is built from two pieces. Any guard specifically
applied to the sub-basic-action (subi.baguard) must always be true for the basic action
to fire. Also, the message action guard must be true, or this must not be the last sub-
basic-action. This effective guard is checked with equation 4.

If super 7→ sub1∨ · · · ∧ subi, the super-basic-action’s guard must be true when the
first of the sub-basic-action’s guards is true.

subi.effguard = subi.baguard ∧ [subi.maguard ∧ (
∧

i

¬subi.occurred)]

The super-basic-action’s effective guard is again built from two pieces. Any guard
specifically applied to the sub-basic-action (subi.baguard) must always be true for the
basic action to fire. Also, the message action guard must be true when no sub-basic-
actions have fired. This effective guard can be checked with equation 4.

Example:pay 7→ payP ∧ payM generates the effective guards

payP .effguard = true ∧ [(create(CpayM ) ∧ promised) ∨ ¬payM ]

payM .effguard = true ∧ [(create(CpayM ) ∧ promised) ∨ ¬payP ]

Since neitherpayP norpayM have specific basic action guards (baguard = true), the
message action guard iscreate andpromised, and they each require the other basic
action must not have fired.

4.10 Run Comparison

Figure 1 illustrates the steps required for refinement. Compare one super message action
run and one sub message action run, as follows.
1. Begin with the superprotocol’s and subprotocol’s message action runs.
2. Decompose each run of message actions to a run of basic actions.
3. Map every super-basic-action to its expression as sub basic actions.
4. Serialize the basic actions sets in any order consistent with the basic action guards.
5. Ignore (project out) SubOnly basic actions in the sub run.
6. Diffuse basic actions.
7. Find any ordering of basic actions in both sub and super runs that satisfy all the

ordering constraints.
8. If the two state runs are the same, the runs match.

4.11 Commitment Strength

We need a way to compare two commitments, in particular, to compare a commitment
in the subprotocol with a commitment in the superprotocol.

Definition 3 (Commitment Strength). A commitmentCS is stronger than a commit-
mentCW , writtenCS ≥ CW , iff

CW .debt ⊆ CS .debt (5)

CW .cred ⊆ CS .cred (6)

CW .ant ⊢ CS .ant (7)

CS .csq ⊢ CW .csq (8)
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super message action model
decompose

// super basic action model

map

��
super mapped basic action model

sub projected basic action model

compare

OO

sub message action model
decompose

// sub-basic-action model

project

OO

Fig. 1. Relationships between models

where⊆ is subset and⊢ is derives.

Equations (5) and (6) allow additional roles in the subprotocol to be involved as
both debtors and creditors. Equations (7) and (8) are based on the following diagram.

CW .ant

��

// CW .csq

CS .ant // CS .csq

OO

If CS is stronger thanCW , then both side implications are true by equations (7) and (8).
If CS is satisfied, then the bottom implication is true. ThenCW , the top implication,
will be true.

Theorem 1. Commitment strength is reflexive and transitive.

Proof. Reflexive and transitivity are immediate from the definition.

Example:C(order∨freeCoupon, ship) ≥ C(order, ship) since the stronger com-
mitment commits at least whenorder is true. It also commits whenfreeCoupon is
true.

Example:C(order, ship∧expressDelivery) ≥ C(order, ship) since the stronger
commitment commits to the additional consequentexpressDelivery.

4.12 Covering

When a commitmentCsub in a subprotocol is stronger than a commitmentCsuper in a
superprotocol we say the sub-commitment “covers” the super-commitment. We require
every super-commitment must be covered by some sub-commitment. This guarantees
that the super-commitment is satisfied whenever the sub-commitment is satisfied.

A single subprotocol commitment clearly covers an identical superprotocol commit-
ment. A sub-commitment with more debtors, more creditors, aweaker antecedent, or a
stronger consequent covers a super-commitment. However, this is not always enough.
We allow serial composition of commitments as another way tocover commitments.
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4.13 Intermediaries

Whereas two roles may communicate directly with each other using a single message
action in a protocol at a high-level of abstraction, there isa natural tendency for message
communication to pass through multiple intermediary rolesas that protocol is refined
to lower-levels of abstraction. Protocol refinement must properly handle intermediaries.
One super-proposition could map to an expression of multiple sub-propositions, each
controlled by different roles (intermediaries). One super-commitment could be fulfilled
through multiple intermediaries. Super-elements must be able to span intermediaries.

Example: thepay action inPaybecomes the two distinctpayPandpayM actions
in the subprotocolPayByInt. These two actions must be in different message actions in
PayByInt, because they are performed by different roles.

Example: commitments can chain through multiple intermediaries. WhenPayByInt
refinesPay, the single commitment from the payer to the payee inPaydoes not appear
explicitly in PayByInt. Rather, the subprotocolPayByInthas two separate commitments
that form a chain passing through the middleman. That chain commits the payer to pay
the payee.

4.14 Serial Composition

We also need a mechanism for commitments to span intermediaries. Previous commit-
ment formulations [6] included the idea of commitment chaining, but we formalize this
in a new way as “serial composition” of commitments. Serial composition computes a
result commitment from a chain of commitments.

Definition 4 (Serial Composition).Two commitmentsCA andCB are combined into
a resultant commitmentC⊕ = CA ⊕ CB if the operation is well-defined

CA.ant ∧ CA.csq ⊢ CB.ant (9)

ThenC⊕ is defined as

C⊕.debt := CA.debt ∪ CB.debt (10)

C⊕.cred := CA.cred ∪ CB.cred (11)

create(C⊕) := create(CA) ∧ create(CB) (12)

C⊕.ant := CA.ant (13)

C⊕.csq := CA.csq ∧ CB.ant ∧ CB .csq (14)

transfer(C⊕) := transfer(CA) ∨ transfer(CB) (15)

release(C⊕) := release(CA) ∨ release(CB) (16)

cancel(C⊕) := cancel(CA) ∨ cancel(CB) (17)

C⊕ is a new commitment object whose attributes are defined in terms of the at-
tributes ofCA andCB. C⊕ does not provide any information beyond that given inCA

andCB, but it expresses it in the form of a new commitment.
In C⊕, represents that the debtor group is committed to the creditor group to bring

about consequentCA.csq ∧ CB.ant ∧ CB.csq when just antecedentCA.ant is true.
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Debtors areseverallyresponsible forC⊕, so that debtors do not become responsible for
more than their input commitments.

Our well-defined condition (equation 9) generalizes the chain rule in [6].
Longer chains of commitments can be composed if each operation is well-defined.

We always evaluate⊕ left-to-right.

C12...n = ((C1 ⊕ C2)⊕ . . . )⊕ Cn

As an example, consider the two commitments inPayByInt.

C1 = CPayer,Payee(promised, paidP)

C2 = CMM,Payer(paidP, paidM)

C12 = C{Payer,MM},{Payer,Payee}(promised, paidP∧ paidM)

which can illustrated as a chain of commitment edges connecting nodes of propositions.

promise
C1 //

GF ED

C12

��

promise
payP

C2 //
promise

payP
payM

Theorem 2. Serial composition is not commutative and not associative.

Usually, serial composition creates stronger commitments.CA⊕CB is stronger than
CA alone because, even though both have the same antecedent (CA.ant), in general,
CA⊕CB has a stronger consequent (CA.csq∧CB .ant∧CB.csq) with more conjuncts.
However, the next theorem shows this is not always the case.

Operator⊕ obeys the following idempotent-like property.

Theorem 3. Extending a serial composition with a commitment already part of the
chain, does not create a stronger commitment.

C1 ⊕ · · · ⊕ Ck ⊕ · · · ⊕ Cn ⊕ Ck (18)

= C1 ⊕ · · · ⊕ Ck ⊕ · · · ⊕ Cn (19)

Proof. (C1 ⊕ · · · ⊕Cn)⊕Ck is well-defined becauseCk.ant is already part of the left-
hand side of equation 9. By simple inspection, conditions (10-17) are the same for both
sides. Expression 18 is identical to, not stronger than, expression 19.

A commitment can usefully be added to a commitment chain onlyonce; doing so
does not create a stronger serial composition. Repeating any part of a loop does not
create a stronger serial composition. Givenn commitments, the number of distinct serial
compositions is bounded above by2n.
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superprotocol
++XXXXX

preprocessor // model checker

subprotocol
& mappings

44hhhhhhh

Fig. 2. Processing Steps

5 Processing

Figure 2 shows an overview of our proposed processing. The protocol specifications for
the superprotocol and subprotocol are read from files. Note the subprotocol contains
one or more mappings between the protocols. These files are read by a preprocessor
and are used to generate an MCMAS ISPL model. The ISPL model isinput to the
MCMAS model checker which checks all the formulae. If all theformula are true, the
subprotocol refines the superprotocol.

The preprocessor generates the following checking formulae

AG(sub.guard→ super.guard) (20)

AG(Csuper .state = uncond→ AF(Csuper .state 6= uncond)) (21)

AG(CA.ant ∧ CA.csq → CB.ant) (22)

AG(Csuper .ant→ Csub.ant) (23)

AG(Csub.csq → Csuper.csq) (24)

Equation 20 ensures the super-run can perform super-basic-actions whenever the
sub-run can perform corresponding sub-basic-actions. While MCMAS fairness con-
straints eliminate runs where unconditionally committed sub-commitments fails to re-
solve, equation 21 ensures unconditionally committed super-commitments must re-
solve. Equation 22 parallels equation 9 ensuring serial compositions are well-defined.
Equations 23-24 parallel equations 13-14 ensuring sub-commitments cover super-commitments.

6 PayByInt Refines Pay

6.1 Pay

Space precludes a detailed description of our proposed protocol specification language,
so we simply state the protocol specifications with a few notes. Line (1) names and
defines the commitment. Lines (2)-(6) describe the Payer role. There are two message
actions:promiseandpay, and both are sent by Payer to Payee. The unordered set of
basic actions are listed between{ and}. Line (4) defines the guard forpayaspromised
and the creation of the commitment. Payee sends no messages in this protocol.
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Algorithm 1 PayProtocol
1: Cpay = CPayer,Payee(promised, paid)
2: role Payer{
3: promise= Payer→ Payee{promised, create(Cpay)}
4: promised∧ create(Cpay) < pay
5: pay= Payer→ Payee{paid}
6: }
7: role Payee{
8: }

Algorithm 2 PayByIntProtocol
1: CpayP = CPayer,Payee(promised, paidP)}
2: CpayM = CMM,Payer(paidP, paidM)
3: role Payer{
4: promise= Payer→ Payee{promised, create(CpayP )}
5: promised∧ create(CpayM) < payP
6: payP= Payer→ MM{paidP}
7: }
8: role MM {
9: init = {create(CpayM)}

10: payM= MM → Payee{paidM}
11: }
12: role Payee{
13: }
14: map M1: Pay 7→ PayByInt{
15: Payer 7→ {Payer,MM}
16: Payee 7→ {Payee}
17: promised 7→ promised

18: paid 7→ paidP ∧ paidM

19: Cpay 7→ CpayP ⊕ CpayM

20: }
21: map M2: Pay 7→ PayByInt{
22: Payer 7→ {Payer}
23: Payee 7→ {MM,Payee}
24: promised 7→ promised

25: paid 7→ paidP ∧ paidM

26: Cpay 7→ CpayP ⊕ CpayM

27: }
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6.2 PayByInt

Initially (9), Middleman commits to Payer to pass along any payment it receives. This
protocol does not address how this commitment came to be created. Payer can not pay
Middleman until this commitment has been created (5). Sincethere is no guard on
payM, Middleman is free to pay early; but the decision is part of Middleman’s agent
implementation.

6.3 Refinement Test

We now sketchPayByIntrefinesPay. We test refinement by comparing basic action
runs. This following diagram shows superprotocolPayon the top half and subprotocol
PayByInton the bottom half. The message action runs are shown on the very top and
very bottom for easy reference, but the heart of the diagram is the two basic action runs
in the middle. Each position in a basic action run is a set of basic actions.

One ofPayByInt’s message action runs its basic action run is

Paymsg : promise pay

Paybasic :

{

promised

create(Cpay)

}

{paid}

PayByIntbasic : {create(CpayM )}

{

promised

create(Cpay)

}

{paidP} {paidM}

PayByIntmsg : init promise payP payM

Erase the message action boundaries and serialize the sets of basic actions to individual
basic actions. The basic actions within a set can be serialized in any order that does not
violate the basic action guards.

time : 0 1 2 3 4
Pay : promised create(Cpay) paid

PayByInt: create(CpayM ) promised create(CpayP ) paidP paidM

PayByIntrefinesPayunder two mappings. Here, we demonstrate only the mapping
M1 in lines 14-20 where Payer and Middleman form a coalition.M1 shows the inter-
protocol mappings withPay’s elements are on the left andPayByInt’s elements are on
the right. Note serial composition of the two commitments inPayByIntis required to
cover the commitment inPay(line 19).

Lines 15-16 map a single super-role to one or more sub-roles.Line 17 maps a single
super-proposition to a single sub-proposition and both occur at time 1 in the run. Line 18
maps the single super-propositionpaid to a conjunction of sub-propositions. The super-
proposition’s occurrence must align with the latest sub-proposition’s occurrence (time
4).

Finally, we must compute the serial composition in Line 19. From equation 9, we
verify promised∧paidP ⊢ paidP so the composition is well-defined. Equations 10-17
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define the composition

C⊕.debt := {Payer,MM} (25)

C⊕.cred := {Payer, Payee} (26)

create(C⊕) := create(CpayP ) ∧ create(CpayM ) (27)

C⊕.ant := promised (28)

C⊕.csq := paidP ∧ paidM (29)

transfer(C⊕) := transfer(CpayP ) ∨ transfer(CpayM ) (30)

release(C⊕) := release(CpayP ) ∨ release(CpayM ) (31)

cancel(C⊕) := cancel(CpayP ) ∨ cancel(CpayM ) (32)

Then we verify the sub-commitmentC⊕ covers the super-commitment (C⊕ ≥ Cpay)
using equations 5-8.

Therefore, the run is a valid sub-run and is a valid super-run, which is consistent
with Definition 2. We have only demonstrated a single run here. A full refinement
demonstration requires demonstrating all sub-runs. Modelchecking is required to check
all the runs for large protocols.

7 Evaluation

We are writing a proprocessor to generate input for the MCMASmodel checker from a
protocol descriptions. Model checking protocols should use a fraction of the states sup-
ported by current model checking technology, so we should not experience performance
or scale problems.

We don’t currently support protocols with loops. While loop-free protocols are suf-
ficient for many situations, we hope to remove this limitation in the future.

7.1 Reusable Protocol Library

Protocol design requires substantial effort. Users would like to reuse previously de-
signed protocols rather than having to design their own protocols from scratch. We
envision a library of reusable protocols.

Any reasonable definition of refinement should be reflexive and transitive. Transi-
tivity helps to structure such a library. When searching thelibrary, whole subtrees can
be eliminated from further consideration by one refinement failure.

8 Discussion

A protocol framework that includes commitments is inherently more flexible than tra-
ditional computer protocol frameworks. Where traditionalprotocol frameworks operate
on an all-or-nothing basis with just two stages of completion, agent-based frameworks
can operate based on a commitment’s four stages of completion. Commitments allow
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more flexible enactments because creditors can base their decisions on the promises the
debtors which are partial stages of completion.

De Silva [4] propose interaction protocols for open systemsbased on Petri nets.
They enable actions based on past and future preconditions.While their past precondi-
tions are similar to our guards based on propositions, our guards based on conditional or
unconditional commitments are more rigorously formalizedthan their future precondi-
tions. They have no notion of protocol refinement and treat each protocol independently
of every other.

Singh [6] states rules similar to those those proposed here for commitment strength.
Our equation 9 is slightly stronger than their chain rule, they do not directly state a
rule for stronger consequents, and they do not directly state a rule similar to serial
composition.

Mallya & Singh [3] propose a definition of protocol refinement(there called sub-
sumption) that compares the order of state pairs. But, we have found if superprotocol
states map to overlapping ranges of equivalent subprotocolstates, their definition can
return false positives. Our procedure does not allow this possibility.
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