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Abstract. A proper definition of protocols and protocol refinement igaal to
designing multiagent systems. Rigidly defined protocols emuire significant
rework for even minor changes. Loosely defined protocolsreguire significant
reasoning capabilities within each agent. Protocol dédimit based on commit-
ments is a middle ground.

We formalize a model of protocols consisting of agent rof@spositions, and
commitments. We define protocol refinement between a sugeqol and a sub-
protocol by mapping superprotocol elements to correspandubprotocol ele-
ments. Mapping protocol commitments depends on a novehtiparcalled serial
composition. We demonstrate protocol refinement.

1 Introduction

We focus our attention on service engagements betweendsssis and customers (B2B
and B2C) over the Internet. In current practice, such engamges are defined rigidly
and purely in operational terms. Consequently, the soBvemmponents of the busi-
ness partners are tightly coupled with each other, and dkepksely on the engage-
ment specification. Thus the business partners interapédyat just barely. Even small
changes in one partner’'s components must be propagateti¢ospeven when such
changes are not consequential to the business being cexdAdternatively, in current
practice, humans carry out the necessary engagements liyamitta concomitant loss
in productivity.

In such an environment, if there were no mechanisms to strei@ter-agent com-
munication, agent implementations would need to handlela wériety of communica-
tion making agent implementations complex with sophistidaeasoning capabilities
as each interaction would be unique and customized. It woeldifficult to predicta
priori whether two agents could interoperate.

Protocols, as we understand them, provide a happy middiesleetrigid automation
and flexible manual execution. Using protocols as a mechatwistructured communi-
cation, agent implementations can be less sophisticatethd®| designers design and
analyze protocols for desirable properties. Agents cattiglylileclare the protocols in
which they can participate making it easier to find agenth witom to interoperate.

Protocols are a way to standardize communication patteragents can be used in
many different multiagent interactions. Consider the denguotocolPayconsisting of a
single action where a payer pays a payee. And consider mid@vderPayShipgvhere a
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buyer and a seller agree to a price for a particular good, tiyetpays the seller and the
seller ships the good to the buyer. The payer and payee rokRssyishould correspond
to the buyer and seller roles @@rderPayShipThe payment ifPay should correspond
to the payment ifDrderPayShipTherefore, we expe@rderPayShipefinesPay.

Suppose protocdtayByInt(pay by intermediary) is introduced where the payer first
pays a middleman, who in turn pays the payee. SincePayandPayBylntsend a pay-
ment from the payer to the payee, we expeayByIntrefinesPay. Similar arguments
imply PayByCheckPayByCreditand others also refireay. If PayBylntbecomes pop-
ular, we would like to construct a new protoddtderPayByIntShipwhich is just like
OrderPayShipexcept payments are made usPayByIntrather tharPay.

This diagram shows the expected refinement relationshifpgele® various proto-
cols.

Pay
b
PayByCheck  PayByCredit  PayBylnt OrderPayShip

T A
OrderPayBylIntShip

We are working to implement refinement checking via the MCMA&lel checking
[2] to handle complex protocols like those found in real gsgmengagements.

Contributions

The main contributions of this paper are a definition of a ezfient relation between
two protocols, the notion of covering commitments, and tenition of serial compo-
sition of commitments. It describes why commitment-bagetiqrols are more flexible
than traditional computer protocols using the idea of rpldtstates of completion.

Organization

Section 2 introduces our running examples. Section 3 de=tfdackground material
on commitments. Section 4 describes our intuitions and éwank for protocol re-
finement, covering commitments, and serial compositionashimitments. Section 5
briefly describes our intentions for implementing refinememecking with the MC-
MAS model checker. Section 6 demonstrates refinement onange. Section 7 eval-
uates our approach. Section 8 describes other works anditwrefdirections.

2 Examples

We introduce four running exampleBay and PayByIntare basic payment protocols
while OrderPayShimndOrderPayByIntShi@re order protocols involving payments.
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2.1 Pay

Payis a basic payment protocol between a payer and a payee.[détler chooses to do
S0, it commits to pay the payee by action promise. Then, aedater point, it sends a
single payment directly to the payee. This sequence diagesuribes the interaction.

Payer Payee
promise

pay
_—

2.2 PayByint

In protocolPayByInt(pay by intermediary), if the payer chooses to do so, it cotsmi
to pay the payee with promise. It then pays by sending a payimdiectly to the
payee. The payer first pays a middleman, who in turn pays thiegpaVe assume the
middleman commits to perforpayM if payer performgayP. This sequence diagram
shows a typical interaction, but sequence diagrams docuioréy one message run.
Other runs may also be valid. In this case, it is acceptahlehf® middleman to be
generous and execupayM beforepayP.

Payer MM Payee
prmlnise

payP
payM

2.3 OrderPayShip

In OrderPayShipa buyer orders goods from a seller. The buyer requests a quict

for a good from the seller. The seller sends the price quategalith its commitment
to ship the good if the buyer orders. The buyer can accept fflee loy ordering and
making its commitment to pay for the good if it orders. Thdesatan ship first, or the
buyer can pay first.

Buyer Seller

reqQuote
sendQuote
order
pay
ship
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2.4 OrderPayByIntShip

ProtocolOrderPayByIntShifs similar toOrderPayShigxcept the payer us€ayByint
for payment. This introduces a new middleman role.

Buyer MM Seller

reqQuote

sendQuote

orger

payB
payM

3 Background

3.1 Commitments

Commitments are a formal and concise method of describimgdygent roles commit
to perform future actions. We extend previous commitmefibd®ns [5] in two ways.
First, we allow both debtors and creditors to be sets of raléés handles situations
where a chain of debtors and intermediaries must all actlfdl fu commitment, and
where a chain of creditors and intermediaries all need tawbether a commitment
is satisfied. Second, we implement prior usede&gateandassignwith a single, new
transfer operation.

Definition 1. A commitment is an object

C{debtorg»,{creditors} (am; qu) (1)

where debtors and creditors are sets of roles, ant is the cautent, and csq is the
consequent. When a commitment is active, the debtorscargitionallycommitted to
the creditors. Once ant becomes true, the debtorsusreonditionallycommitted to
make csq true at some point in the future.

The valid operations on commitments are

— create, performed only by debtors, creates a new commitment andsribictive.

— When the antecedent becomes true, the commitment is itlypdichverted to an
unconditional commitment.

— When the consequent becomes true, the commitment is thy@atisfied and no
longer active. Typically the consequent become true onér #tie antecedent be-
comes true, but this is not required.

— transfer, performed by either debtors or creditors, ends the cur@rhmitment
and marks it as transferred to another commitment and nodoagtive.

— release, performed only by creditors, releases the debtors frorr tmmmitment.
The commitment is released and no longer active.

— cancel, performed only by debtors, cancels the debtors’ commitniére commit-
ment is violated and no longer active.
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A commitment is always in one of these states.
— inact: the initial state;
— cond: aftercreate with ant false, csq false, and no other operations;
— uncond: aftercreate with ant true, csq false, and no other operations;
— sat: aftercreate and csq true;
— xfer: aftercreate andtransfer;
— rel: after create andrelease; and
— can: aftercreate andcancel.

A commitment in stateat, xfer, rel, or canis said to beesolved

For unconditional commitments, the debtors are commitbezl/entually makesq
true. If the debtors fail, responsibility can beveral(each debtor is responsible for just
its portion),joint (each debtor is fully responsible for the entire commitmenitjoint
and severalthe creditors hold one debtor fully responsible, who thenspes other
debtors). We usseveralresponsibility.

We note that contracts are built from multiple commitmestgh party commits to
perform the actions for which it is responsible. So while tracts are created by both
debtors and creditors, commitments are created only byodebt

Before a commitmentsreate(stateinact), the commitment has no force. A created
commitment (stateond) is conditionally committed. Unconditional commitmentash
eventually resolve to stateat xfer, rel, or can It is possible for the consequent to
become true before the antecedent. While unusual, det#westhe option to act before
being required to do so. Debtors are discouraged ftamce| but circumstances may
require it, with consequences handled outside the currenhanisms.

In Pay, we represent the payer's commitment to paying the payee as

CrayerPayed Promise pay)

In PayByInt we represent the payer’s and middleman’s combined comenitias

C{Payer,MM},Payee{promisepayP A payM)

Previous commitment descriptions allow debtordétegate or creditors taassign
a commitmentto another role. Both terminate the existingmitment and create a new
commitment with modified roles. We model these operationa taansfer operation
which terminates the existing commitment plus a separa@teof a new commitment.

delegatéC;, debt’) = transfer(C;) A create(Cyr)
assign(C;, cred’) = transfer(C;) A create(C.)

whereC; = Cgeptered(@nt csg), Co» = Cebr,cred(@nt csg) andC.r = Cgebterea(@nt csg).
Sincedelegateandassignhave essentially the same effeécansfer captures the essence
of both and somewhat simplifies the definition of commitments

3.2 Unconditional Commitments Must Resolve

We require debtors must eventually resolve all their uné@osrthl commitments, even
if that is cancel
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Model checkers have fairness constraints which eliminataiupaths from con-
sideration. Fairness constraints are typically used tmiakte unfair scheduler paths.
We use fairness constraints to eliminate paths where agewnts resolve their uncon-
ditional commitments. This is a constraint on agent impletagons, not a constraint
on the protocol itself.

4 Framework

4.1 Protocol Basics

A protocol specification language needs to describe aligipating agent roles, the
actions they can perform, and any constraints (guards) ein #ttions. Agents send
message action® each other. Message actions are an agent-level conaglpty Bve
decompose message actions into an unordered betsaf actions

We model protocols using CTL. We consider runs of basic astiwhich generate
state runs as is traditional for model checking. An actiamisumodeled as

ago ay a2
S0 S1 S9

When we compare points in time and actions, £ a; < s;,” means:; < j < k. When
we compare two actionsg; < a;” means: < j.

While support for looping protocols is desirable, we sirfypthe initial problem
and do not consider them here. We hope to extend our work terdowping protocols
later.

4.2 Messages and Guards

Both message actions and basic actions can have guardioasdin action is enabled
for execution only when its guard is true.

Some protocols must constrain message orders. For exafhpléhen one message
provides a value required by another message, or (2) duggtdatery requirements
(you must show a valid ID before boarding an airplane). Arosics guard is written

guard < action

which meansctioncan occur in a state only uardis true in that state. The action is
not required to execute when the guard is true. Guards action andgs < action
can be combined intg; A g2 < action.

Guards for message actions have been used elsewhere ieMAIMAS. We also
introduce guards for basic actions since the protocol desithay need to constrain the
ordering of basic actions in subprotocols. The designetspaeify multiple guards for
an action. The complete guard condition for a basic actichugtes any guards for the
basic action as well as any guards for its containing mesaetin. We expect tooling
to combine all designer-specified guards into a single gegpdession.

Example: A protocol designer might require

reqQuote A sendQuote < order
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4.3 Multiple Stages of Completion

Commitments evolve through four stages; proposition evahrough only two. The
occurrence of arop = value basic action divides time into two stages: before and
after the basic action.

A commitment evolves through four stages: (1) before cogafinactive), (2) con-
ditionally committed (cond), (3) unconditionally comneitt (uncond), and (4) resolved.

inact cond uncond CS&GSOZUEd

create ant

Commitments increase protocol flexibility, because guaats specify “partially per-
formed” actions. A protocol can make progress sooner if @ioas guard specifies one
of the first three stages.

Example: Using propositioship, OrderPayShipan guardbay based only on the
two stages oship The decision is “all” §hipped) or “nothing” (notshipped).

ship < pay (2

Using commitments, the protocol can gugay based on any of the four commitment
stages. A guard can enalgayas soon as the debtor has committed to nsdkptrue.

create CselierBuyer(Pay, ship)) < pay 3)

A protocol framework that includes commitments is inhelentore flexible than
traditional computer protocol frameworks. Where traditibprotocol frameworks op-
erate on an all-or-nothing basis with just two stages of detign, agent-based frame-
works can operate based on four stages of completion (camenits have four stages
of completion). Basing a decision on a completed actionipes/essentially no risk to
a creditor. But commitments allow more flexible enactmetsause creditors can also
base their decisions on the promises of the debtors whiclpantél or intermediate
stages of completion. While creditors assume more risk ingleo, they assume less
risk than acting without debtor promises.

4.4 Every Sub-run is a Super-run

According to the Liskov substitution principle [1], if(p) is a property provable about
objects p of type P, thep(¢) should be true for objects q of type Q when Q is a subtype
of P. We apply this principle to protocols.dfz) holds for a superprotocol, then it must
also hold for its subprotocols. For example, détr) be the property that actiasrder
precedes actiopay. ¢(p) will be true of some runs, but not of other runs.

Subprotocols must satisfy every superprotocol propetty), but they can satisfy
additional propertieg(z). Every subprotocol run must satisfy batlw) andy(z), so
there are fewer subprotocol runs than superprotocol rucals®) (x) eliminates some
runs¢(x) does not.

Definition 2 (Protocol Refinement).Every subprotocol basic action run must be a
superprotocol basic action run.
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Our definition of protocol refinement does not imply that agehat can participate
in a superprotocol can necessarily participate in a subpabtunchanged. Agents work
with message actions, but our definition for run comparisdreised on basic actions. In
our model, agents may need to be modified to participate ipretibcols. For example,
an agent capable of participating in a basic payment protoey need to change to
handle payments via check or credit card.

4.5 Time Expansion

Basic actions which are concurrent at a high-level of abstra (superprotocol) may
not be concurrent at a lower-level of abstraction (subproffo When a superprotocol’s
message action is refined in the subprotocol, its basicrectian spread out over time
(no longer concurrent).

Decomposing a message action into multiple basic actiansnes splitting action
intervals and creating additional time points in the rurp@xding time).

4.6 Decomposition

A message action may have multiple effects. To better utalgisand characterize
a message actigrwe decompose each message action into an unordered seé of on
or morebasic actionsEach basic action has well-defined semantics and is usaful f
analyzing and understanding the meanings of message s.ction

We consider two differentkinds of basic actions. Settiremhlue of a proposition to
true or false is a propositional basic action. Each of therodment operationsreate,
transfer, release andcancelare commitment basic actions.

Example: The seller's message actsmmdQuotén OrderPayShiglecomposes into
two basic actions. It sets the propositiosahdQuotdluent to true to record the fact
that it responded to the buyer. And it creates a commitmaeattttie seller will ship if
the goods are ordered.

See the discussion for diffusion below for the exact guarti@mns.

4.7 Mapping

Since superprotocols represent a higher-level abstratioan subprotocols, the dif-
ferences in levels must be addressed. There is often noosaret correspondence be-
tween superprotocol and subprotocol elements. Protoeoiehts must be mapped be-
tween the two protocols to compare them. Since subprotdgpisally contain more
detail than superprotocols, we map every single superpoblement (role, proposi-
tion or commitment) to an expression of one or more corredpansubprotocol ele-
ments. Subprotocols may contains sub-elements that deoneispond with any super-
element.

Example: aropenAccounibasic action in a high-level, banking superprotocol, might
decompose to multiple basic actions in a low-level subpmitaheckldentitycheck-
Credit, createAccountandnotifyCustomer

Example: thepay basic action inPay maps to thepayP and payM expression in
PayByInt
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While it would be desirable for the mapping between supequals and subproto-
cols to be automatically determined, there can be multigiktinct mappings between
some protocol pairs. In the mapping betwd#ay and PayByInt one mapping groups
the Middleman with the Payer, making the Middleman work ohdieof the Payer.
Another mapping groups the Middleman with the Payee, matkiagViddleman work
on behalf of the Payee. Both interpretations are valid.

Every super-basic-action is mapped to an expression obsaskz-actions. There
is one mapping function for each super-basic-action. Thppimg function for basic
propositions is a boolean expression of sub-basic-préipasi The mapping function
for super-basic-commitments is a serial composition oflsasic-commitments.

Super — mapsyper (Subi, subs, .. .)

4.8 Projection

Let SubOnly be the set of basic actions that occur only in tigeotocol (basic actions
not in the superprotocol and not in a mapping expressiomporig all SubOnly basic
actions in the subprotocol during run comparison.

This means we compare all basic actions in the superprotatiojust the matching
basic actions in the subprotocol. The subprotocol is fread¢tude additional basic
actions that are unknown to the superprotocol.

4.9 Diffusion

Consider the case where a super-basic-agtionaps to two sub-basic-actiops—
q1\q2. Forp to occur at the same time point in both sub-run and superpmmst occur
at the same time as thest of ¢; andg-. For conjunction, the other sub-actions can occur
at anyearlier and possibly non-adjacent points in the run. In the caseeyher ¢; V2,
thenp must occur at the same time point asfing of ¢; or ¢». For disjunction, the other
sub-actions can occur at alater and possibly non-adjacent points in the run.

Example: inOrderPayShipthe buyer’s order action is composed of the two basic
actions of setting alrder proposition and creating a commitment. In refinements of
OrderPayShipthese two basic actions can occur at different points in.time

When a sub-action guard is true, we require the correspgradiper-action guard to
also be true. Otherwise, the subprotocol could perform theaction while the super-
protocol can not perform its corresponding super-actidre odel checker tests this
using formula

AG(sub.guard — super.guard) 4)

We represent the diffusion condition as a guard conditi@amcé&runs are serialized
basic actions, we do not need to consider multiple basiorstdbccurring simultane-
ously.

If super — suby A --- A sub;, the super-basic-action’s guard must be true when the
last of the sub-basic-action’s guard is true.

sub;.ef fguard = sub;.baguard A [sub;. maguard V —|(/\ sub;.occurred))
i
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The sub-basic-action’s effective guard is built from tweges. Any guard specifically
applied to the sub-basic-actiosud;.baguard) must always be true for the basic action
to fire. Also, the message action guard must be true, or thist mot be the last sub-
basic-action. This effective guard is checked with equmedio

If super — suby V- -- A sub;, the super-basic-action’s guard must be true when the
first of the sub-basic-action’s guards is true.

sub;.ef fguard = sub;.baguard A [sub;.maguard N (/\ —sub;.occurred)]

K2

The super-basic-action’s effective guard is again buiinfrtwo pieces. Any guard
specifically applied to the sub-basic-actien¥;.baguard) must always be true for the
basic action to fire. Also, the message action guard mustugevihen no sub-basic-
actions have fired. This effective guard can be checked wjttaton 4.

Examplepay — payp A payys generates the effective guards

payp.ef fguard = true A [(create(Cpaynr) A promised) V —payM]
paynr-ef fguard = true A [(create(Cpayar) A promised) V —payP)

Since neithepayp norpayy, have specific basic action guards uard = true), the
message action guard ¢seate and promised, and they each require the other basic
action must not have fired.

4.10 Run Comparison

Figure lillustrates the steps required for refinement. Canapne super message action
run and one sub message action run, as follows.

Begin with the superprotocol’'s and subprotocol’s messagion runs.
Decompose each run of message actions to a run of basioscti

Map every super-basic-action to its expression as sub aetsons.

Serialize the basic actions sets in any order consistigntie basic action guards.
Ignore (project out) SubOnly basic actions in the sub run.

Diffuse basic actions.

Find any ordering of basic actions in both sub and supes that satisfy all the
ordering constraints.

8. If the two state runs are the same, the runs match.

NoorwNE

4.11 Commitment Strength

We need a way to compare two commitments, in particular, topare a commitment
in the subprotocol with a commitment in the superprotocol.

Definition 3 (Commitment Strength). A commitmen€g is stronger than a commit-
mentCy, writtenCg > Cyy, iff

Cy.debt C Cg.debt (5)
Cw.cred C Cg.cred (6)
Cw.ant F Cg.ant (7

Cs.csq - Cyr.csq (8)
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super message action model——— super basic action model

decompose
Jro
super mapped basic action model
Tcompm-e
sub projected basic action model
Tpmjm

sub message action modgl—> sub-basic-action model

ecompose

Fig. 1. Relationships between models

whereC is subset and is derives.

Equations (5) and (6) allow additional roles in the subpcotdo be involved as
both debtors and creditors. Equations (7) and (8) are baséuedfollowing diagram.

Cw.ant — Cyy.csq

L]

Cs.ant — Cg.csq

If Cg is stronger thai€yy, then both side implications are true by equations (7) ahd (8
If Cg is satisfied, then the bottom implication is true. Th&g, the top implication,
will be true.

Theorem 1. Commitment strength is reflexive and transitive.
Proof. Reflexive and transitivity are immediate from the definition

ExampleC(orderV freeCoupon, ship) > C(order, ship) since the stronger com-
mitment commits at least whemder is true. It also commits whefireeCoupon is
true.

Example:C(order, ship A expressDelivery) > C(order, ship) since the stronger
commitment commits to the additional consequentress Delivery.

4.12 Covering

When a commitment,,, in a subprotocol is stronger than a commitmeég},., in a
superprotocol we say the sub-commitment “covers” the saparmitment. We require
every super-commitment must be covered by some sub-conamitrithis guarantees
that the super-commitment is satisfied whenever the subygonent is satisfied.

A single subprotocol commitment clearly covers an idethg8oaerprotocol commit-
ment. A sub-commitment with more debtors, more creditosgaker antecedent, or a
stronger consequent covers a super-commitment. Howéigiistnot always enough.
We allow serial composition of commitments as another wagotger commitments.
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4.13 Intermediaries

Whereas two roles may communicate directly with each otkargua single message
action in a protocol at a high-level of abstraction, ther@igtural tendency for message
communication to pass through multiple intermediary r@sghat protocol is refined
to lower-levels of abstraction. Protocol refinement musperly handle intermediaries.
One super-proposition could map to an expression of malspb-propositions, each
controlled by different roles (intermediaries). One supemmitment could be fulfilled
through multiple intermediaries. Super-elements mustdbe ® span intermediaries.

Example: thepay action inPay becomes the two distingtayP and payM actions
in the subprotocdPayByInt These two actions must be in different message actions in
PayByInt because they are performed by different roles.

Example: commitments can chain through multiple interragds. WherPayBylInt
refinesPay, the single commitment from the payer to the payeBagdoes not appear
explicitly in PayByInt Rather, the subprotocBhyBylnthas two separate commitments
that form a chain passing through the middleman. That chaimaits the payer to pay
the payee.

4.14 Serial Composition

We also need a mechanism for commitments to span interniesli&revious commit-
ment formulations [6] included the idea of commitment clivagnbut we formalize this

in a new way as “serial composition” of commitments. Ser@hposition computes a
result commitment from a chain of commitments.

Definition 4 (Serial Composition). Two commitment§ 4, andCp are combined into
a resultant commitmertt;, = C4 @ Cj if the operation is well-defined

Cy.ant AN Cy.csq b Cg.ant 9)
ThenCg is defined as
Cg.debt := C4.debt U Cp.debt (10)
Cg.cred := Cy.cred U Cp.cred (112)
create(Cg ) := create(C4) A create(Cp) (12)
Cg.ant := Cy.ant (13)
Cg.csq:= Ca.csq A Cp.ant A Cp.csq (14)
transfer(Cg ) := transfer(C,) V transfer(Cp) (15)
release(Cq ) := release(C,4) V release(Cp) (16)
cancel(Cg) := cancel(C4) Vv cancel (Cp) a7)

Cg is a new commitment object whose attributes are defined mgef the at-
tributes ofC4 andCp. Cgq, does not provide any information beyond that giver€in
andCp, but it expresses it in the form of a new commitment.

In Cg, represents that the debtor group is committed to the anedibup to bring
about consequerti 4.csq A Cp.ant A Cg.csq when just antecedertt,.ant is true.
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Debtors areseverallyresponsible foCg,, so that debtors do not become responsible for
more than their input commitments.
Our well-defined condition (equation 9) generalizes therchale in [6].

Longer chains of commitments can be composed if each opariatiwell-defined.
We always evaluate left-to-right.

Cioon = ((C1 ©® Cg) D... ) ®C,
As an example, consider the two commitmentRayByInt

Cl = CPaye;Payeﬂ(promisedpaidp)
C2 - CMM,Payet(paidR paidM)
Ci2 = C{Payer,MM},{Payer,Paye]e(promisedpaidp/\ paidM)

which can illustrated as a chain of commitment edges comgerebdes of propositions.

C12
: ),
: promise
promise o p[)OarS;Dse e payP
payM

Theorem 2. Serial composition is not commutative and not associative.

Usually, serial composition creates stronger commitmentsp C g is stronger than
C4 alone because, even though both have the same antec€demtd), in general,
C4 @ Cp has a stronger consequefity.csq A C.ant A Cp.csq) with more conjuncts.
However, the next theorem shows this is not always the case.

Operatorp obeys the following idempotent-like property.

Theorem 3. Extending a serial composition with a commitment alreadst p& the
chain, does not create a stronger commitment.

Go-0CGo--aC,aC (18)
=Cd - ®wC---aC, (19)

Proof. (C; @ --- & C,,) & Cy, is well-defined becausg;..ant is already part of the left-
hand side of equation 9. By simple inspection, conditiofis1Z) are the same for both
sides. Expression 18 is identical to, not stronger than;esgion 19.

A commitment can usefully be added to a commitment chain onlye; doing so
does not create a stronger serial composition. Repeatingpart of a loop does not
create a stronger serial composition. Givecommitments, the number of distinct serial
compositions is bounded above Y.
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superprotocol
preprocessor—-— model checker

subprotocol
& mappings

Fig. 2. Processing Steps

5 Processing

Figure 2 shows an overview of our proposed processing. Tt pol specifications for
the superprotocol and subprotocol are read from files. Nwestibprotocol contains
one or more mappings between the protocols. These files adelne a preprocessor
and are used to generate an MCMAS ISPL model. The ISPL modepig to the
MCMAS model checker which checks all the formulae. If all tbemula are true, the
subprotocol refines the superprotocol.

The preprocessor generates the following checking forenula

AG(sub.guard — super.guard) (20)
AG(Cyyper-state = uncond — AF(Cgyper.state # uncond)) (21)
AG(Cy.ant A Cx.csq — Cp.ant) (22)
AG(Cyyper.ant — Cgyp.ant) (23)

AG(Coup.csq = Couper.csq) (24)

Equation 20 ensures the super-run can perform super-basmns whenever the
sub-run can perform corresponding sub-basic-actionsIaAMCMAS fairness con-
straints eliminate runs where unconditionally committat-sommitments fails to re-
solve, equation 21 ensures unconditionally committed isapmmitments must re-
solve. Equation 22 parallels equation 9 ensuring serialpasitions are well-defined.
Equations 23-24 parallel equations 13-14 ensuring subagitmments cover super-commitments.

6 PayByint Refines Pay

6.1 Pay

Space precludes a detailed description of our proposedgobspecification language,

so we simply state the protocol specifications with a few soténe (1) names and
defines the commitment. Lines (2)-(6) describe the Payer fidiere are two message
actions:promiseandpay, and both are sent by Payer to Payee. The unordered set of
basic actions are listed betwegand}. Line (4) defines the guard faayaspromised

and the creation of the commitment. Payee sends no messeitps protocol.
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Algorithm 1 PayProtocol

=

. Cpay = Cpayer.Payed promisedpaid)

role Payer{

promise= Payer— Payed promisedcreate(Cpay) }
promisedA create(Cpay) < pay

pay = Payer— Paye€ paid}

role Payee{

— —

Algorithm 2 PayByIntProtocol

1: Cpaypr = Cpayerpayed promisedpaidP) }

2: Cpay]u = CMM,paye.(paidP, paldM)

3: role Payer{

4 promise= Payer— Payedpromisedcreate(Cpaypr)}
5 promisedA create(Cpaynr) < payP

6: payP = Payer— MM{paidP}
7

8

9

: role MM {
init = {create(Cpaynr)}
10: payM= MM — Paye€paidM}
11: }
12: role Payeeg{

14: map M1: Pay— PayByInt{
15: Payer — {Payer, MM}
16: Payee — {Payee}

17: promised — promised
18: paid — paidP N paid M
19: Cpay — Cpayr ® Cpaynr
20: }

21: map M2: Pay— PayByInt{
22: Payer — {Payer}
23:  Payee — {MM, Payee}

24: promised — promised
25: paid — paidP N paid M
26: Cpay — Cpayr @ Cpaynmr

27: }
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6.2 PayByint

Initially (9), Middleman commits to Payer to pass along aayment it receives. This
protocol does not address how this commitment came to béecke®ayer can not pay
Middleman until this commitment has been created (5). Stheee is no guard on
payM, Middleman is free to pay early; but the decision is part ofltdeman’s agent
implementation.

6.3 Refinement Test

We now sketchPayBylntrefinesPay. We test refinement by comparing basic action
runs. This following diagram shows superprotoPalyon the top half and subprotocol
PayByInton the bottom half. The message action runs are shown on th¢ogand
very bottom for easy reference, but the heart of the diagsatima two basic action runs
in the middle. Each position in a basic action run is a set sfdxactions.

One ofPayBylInts message action runs its basic action run is

Paymsg : promise pay
. promised .
Paybasic : paid
create(cpay) {paid}
PayBylIntbasic : {create(Cpaynr)} Cfggglcsed) {paidP} {paid M}
pay
PayByIntmsg : it promise payP  payM

Erase the message action boundaries and serialize thd befsi@actions to individual
basic actions. The basic actions within a set can be sexthlizany order that does not
violate the basic action guards.

time : 0 1 2 3 4
Pay: promised create(Cpay) paid
PayByiInt: create(Cpqynr) promised create(Cpqyp) paidP paid M

PayByIntrefinesPayunder two mappings. Here, we demonstrate only the mapping
M1 in lines 14-20 where Payer and Middleman form a coalitidi. shows the inter-
protocol mappings witliPays elements are on the left afayBylnts elements are on
the right. Note serial composition of the two commitment$ayByIntis required to
cover the commitment iRay (line 19).

Lines 15-16 map a single super-role to one or more sub-rbiee.17 maps a single
super-proposition to a single sub-proposition and botluoattime 1 in the run. Line 18
maps the single super-propositipaid to a conjunction of sub-propositions. The super-
proposition’s occurrence must align with the latest subppssition’s occurrence (time
4).

Finally, we must compute the serial composition in Line 1k equation 9, we
verify promised Apaid P - paid P so the composition is well-defined. Equations 10-17
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define the composition

Cg.debt := {Payer, MM} (25)
Cg.cred := {Payer, Payee} (26)
creatgCgq) := create(Cpayp) A create(Cpaynr) (27)
Cg.ant := promised (28)
Cg.csq := paidP A paidM (29)
transfer(Cg ) := transfer(Cpqyp) V transfer(Cpayar) (30)
releaséCg) := releaséC,,, p) V releaséC,,, 1) (31)
cance(Cg) := cancelC,q,p) Vv cancelCpaynr) (32)

Then we verify the sub-commitmeft; covers the super-commitmer@4 > C,,)
using equations 5-8.

Therefore, the run is a valid sub-run and is a valid super-wirich is consistent
with Definition 2. We have only demonstrated a single run hérdull refinement
demonstration requires demonstrating all sub-runs. Moldetking is required to check
all the runs for large protocols.

7 Evaluation

We are writing a proprocessor to generate input for the MCM#@&lel checker from a
protocol descriptions. Model checking protocols shoulel agraction of the states sup-
ported by current model checking technology, so we shouléxyperience performance
or scale problems.

We don't currently support protocols with loops. While lebpe protocols are suf-
ficient for many situations, we hope to remove this limitatio the future.

7.1 Reusable Protocol Library

Protocol design requires substantial effort. Users woike to reuse previously de-
signed protocols rather than having to design their ownquals from scratch. We
envision a library of reusable protocols.

Any reasonable definition of refinement should be reflexivé @mansitive. Transi-
tivity helps to structure such a library. When searchingltbeary, whole subtrees can
be eliminated from further consideration by one refinemaitafe.

8 Discussion

A protocol framework that includes commitments is inhekentore flexible than tra-
ditional computer protocol frameworks. Where traditiopedtocol frameworks operate
on an all-or-nothing basis with just two stages of completagent-based frameworks
can operate based on a commitment’s four stages of compl&immmitments allow
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more flexible enactments because creditors can base thuisiates on the promises the
debtors which are partial stages of completion.

De Silva [4] propose interaction protocols for open systdrased on Petri nets.
They enable actions based on past and future preconditidmite their past precondi-
tions are similar to our guards based on propositions, oardgibased on conditional or
unconditional commitments are more rigorously formaligteah their future precondi-
tions. They have no notion of protocol refinement and trealh gaotocol independently
of every other.

Singh [6] states rules similar to those those proposed loei@mmitment strength.
Our equation 9 is slightly stronger than their chain rulesytldo not directly state a
rule for stronger consequents, and they do not directlyestatule similar to serial
composition.

Mallya & Singh [3] propose a definition of protocol refinemétitere called sub-
sumption) that compares the order of state pairs. But, we fawnd if superprotocol
states map to overlapping ranges of equivalent subprogtatds, their definition can
return false positives. Our procedure does not allow thisjimlity.
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