
Methodology for Engineering Affective Social
Applications

Derek J. Sollenberger and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{djsollen,singh}@ncsu.edu

Abstract. Affective applications are becoming increasingly mainstream in en-
tertainment and education. Yet, current techniques for building such applications
are limited, and the maintenance and use of affect is in essence handcrafted in
each application. The Koko architecture describes middleware that reduces the
burden of incorporating affect into applications, thereby enabling developers to
concentrate on the functional and creative aspects of their applications. Further,
Koko includes a methodology for creating affective social applications, called
Koko-ASM. Specifically, it incorporates expressive communicative acts, and uses
them to guide the design of an affective social application. With respect to agent-
oriented software engineering, Koko contributes a methodology that incorporates
expressives. The inclusion of expressives, which are largely ignored in conven-
tional approaches, expands the scope of AOSE to affective applications.

1 Introduction
Representing and reasoning about affect is essential for producing believable charac-
ters and empathic interactions with users, both of which are necessary for effective
agent based entertainment and education applications. Leading applications of inter-
est include pedagogical tools [4, 9], military training simulations [6], and educational
games [10].

As evidenced by the above applications, incorporating affect into applications is an
active area of research. The primary focus of the existing research has been modeling
the affective state of a single agent. Our work builds on that foundation but goes further
by incorporating affective computing with multiagent systems (MAS). By focusing our
attention on the communication of affect between agents, we can develop a new class of
applications that are both social and affective. To achieve the fusion of affect with MAS,
two challenges must be overcome. First, we need a medium through which agents can
exchange affective data. Second, we must define a methodology for creating affective
social applications via that medium.

The first challenge is addressed by using Koko [14], a middleware that facilitates
the sharing of affective data. Koko is a multiagent middleware whose agents manage the
affective state of a user. Further, Koko is intended to be used by applications that seek
to recognize emotion in human users. Although it is possible to use Koko in systems

that model emotion in virtual characters, many of its benefits most naturally apply when
human users are involved.

Importantly, Koko enables the development of affective social applications by intro-
ducing the notion of expressive communicative acts into agent-oriented software engi-
neering (AOSE). Using the multiagent environment provided by Koko, agents are able
to communicate affective information through the exchange of expressive messages.
The communication of affective information is naturally represented as an expressive
communicative act, as defined by Searle [12]. However, expressive acts are a novelty in
both AOSE and virtual agent systems, which have traditionally focused on the assertive,
directive, and commissive communicative acts (e.g., the FIPA inform command). Fur-
ther, Koko enables us to create a methodology for engineering affective, social applica-
tions.

Contributions. This paper describes a methodology, Koko-ASM, centered on expres-
sive communicative acts, the first such methodology to our knowledge. Using this
methodology application developers can construct applications that are both social and
affective. As such, the combination of the Koko middleware and this methodology en-
able AOSE to expand into the design and creation of affective social applications.

Paper Organization. The remainder of this paper is arranged as follows. Section 2
reviews appraisal theory affect models. Section 3 provides an overview of the Koko
middleware. Section 4 describes the Koko-ASM methodology. Section 5 demonstrates
its merits via a case study.

2 Background
This section provides a synopsis of two areas that are fundamental to Koko-ASM: (1)
appraisal theory as a foundation for modeling affect and (2) communicative acts and
their relevance to AOSE.

2.1 Appraisal Theory

Smith and Lazarus’ [13] cognitive-motivational-emotive model, the baseline for cur-
rent appraisal models (see Fig. 1), conceptualizes emotion in two stages: appraisal and
coping. Appraisal refers to how an individual interprets or relates to the surrounding
physical and social environment. An appraisal occurs whenever an event changes the
environment as interpreted by the individual. The appraisal evaluates the change with
respect to the individual’s goals, resulting in changes to the individual’s emotional state
as well as physiological responses to the event. Coping is the consequent action of the
individual to reconcile and maintain the environment based on past tendencies, current
emotions, desired emotions, and physiological responses [8].

A situational construal combines the environment (facts about the world) and the
internal state of the user (goals and beliefs) and produces the user’s perception of the
world, which then drives the appraisal and provides an appraisal outcome. This ap-
praisal outcome is made up of multiple facets, but the central facet is Affect or current
emotions. For practical purposes, Affect can be interpreted as a set of discrete states
with an associated intensity. For instance, the result of an appraisal could be that you
are simultaneously happy (at an intensity of α) as well as proud (at an intensity of β).

Environment Goals/Beliefs/
Intentions

Coping Outcome

Appraisal Outcome

 Physiological

Response Affect Action
Tendencies

Appraisal

Coping

Emotion-Focused
Strategies

Problem-Focused
Strategies

Situational
Construal

Fig. 1. Appraisal theory diagram [13]

2.2 Communicative Acts
The philosophers Austin [1] and Searle [12] developed speech act theory founded on
the principle that communication is a form of action. In other words, when an agent
communicates, it alters the state of the world. Communicative acts are grouped based
on their effects on the agent’s internal state or social relationships. Specifically, assertive
acts are intended to inform, directive acts are used to make requests, and expressive acts
allow agents to convey emotion.

Existing agent communication languages and methodologies disregard expressives.
AOSE methodologies specify messages at a high level and therefore are not granular
enough extract the meaning of the messages [2]. On the other hand, agent communica-
tion languages specify messages at the appropriate level of detail, but omit expressives.
Instead, they have focused on other communicative acts, such as assertives and direc-
tives, which can be can be readily incorporated into traditional agent BDI frameworks
[15].

3 Koko
Koko’s purpose is twofold. It serves as both an affect model container and an agent
communication middleware [14]. The affect models that Koko maintains focus on a
section of the appraisal theory process (denoted by the dashed box in Fig. 1) in which
the models absorb information about the agent’s environment and produce an approxi-
mation of the agent’s affective state. Koko then enables that affective information to be
shared among agents via expressive messages. It is important to note that since Koko
is designed to model human users, the environment of the agent extends into the phys-
ical world. To better report on that environment, Koko supports input from a variety of
physical sensors (e.g., GPS devices).

Koko promotes the sharing of affective information at two levels: cross-user or in-
teragent communication and cross-application or intraagent. For a social (multi-agent)

application, Koko enables agents to communicate via expressives. Expressives enable
agents to share their current affective state among other agents within Koko (the for-
mat of an expressive message is outlined in Section 4). Koko also provides a basis for
applications—even those authored by different developers—to share information about
a common user. This is simply not possible with current techniques because each ap-
plication is independent and thereby unaware of other applications being employed by
a user.

Koko

User Agent

Application

Developer Interface Vocabulary

Affect Model
Container Mood Model

External
Sensors

Fig. 2. Koko basic architectural overview

Fig. 2 shows Koko’s basic architecture using arrows to represent data flow. The
following sections summarize a few of Koko’s key components.

User Agent Koko hosts an active computational entity or agent for each user. In par-
ticular, there is one agent per user – the same user may employ multiple Koko-based
applications. Each agent has access to global resources such as sensors and messaging
but operates autonomously with respect to other agents.

Affect Model Container. This container manages one or more affect models for each
user agent. Each application must specify exactly one affect model, which is instantiated
for each user of the application. The container then manages that instance for the user
agent. As Fig. 3 shows, an application’s affect model is specified in terms of the affective
states as well as application and sensor events, which are defined in the application’s
configuration (described in Section 4) at runtime.

1User Agent1 App

Affect
Model

Application
Events

Sensor
Events

Affective
States

1
1

*1

Mood
Model

1
1

Fig. 3. Main Koko entities

Koko follows CARE’s [10] supervised machine learning approach for modeling
affect by populating predictive data structures with affective knowledge. This enables
Koko to support affect models that depend on an application’s domain-specific details,
while allowing Koko as a whole to maintain a domain-independent architecture.

For each affect model, the container takes input from the user’s physical and appli-
cation environment and produces an affect vector. The resulting affect vector contains
a set of elements, where each element corresponds to an affective state. The affective
state is selected from the emotion ontology that is defined and maintained via the devel-
oper interface vocabulary. Using this ontology, each application developer selects the
emotions to be modeled for their particular application. For each selected emotion, the
vector includes a quantitative measurement of the emotion’s intensity. The intensity is
a real number ranging from 0 (no emotion) to 10 (extreme emotion).

Mood Model. Following EMA [7], we take an emotion as the outcome of one or more
specific events and a mood as a longer lasting aggregation of the emotions for a spe-
cific user. An agent’s mood model maintains the user’s mood across all applications
registered to that user.

For simplicity, Koko’s model for mood takes in affect vectors and produces a mood
vector, which includes an entry for each emotion that Koko is modeling for that user.
Each entry represents the aggregate intensity of the emotion from all affect models asso-
ciated with that user. Consequently, if Koko is modeling more than one application for a
given user, the user’s mood is a cross-application measurement of the user’s emotional
state.

Developer Interface Vocabulary Koko provides a vocabulary through which the ap-
plication interacts with Koko. The vocabulary consists of two ontologies, one for de-
scribing affective states and another for describing the environment. The ontologies are
encoded in OWL (Web Ontology Language). If needed, the ontologies are designed to
grow to meet the needs of new applications.

The emotion ontology describes the structure of an affective state and provides a set
of affective states that adhere to that structure. Koko’s emotion ontology captures the
24 emotional states proposed by Elliot [3], including states such as joy, hope, fear, and
disappointment.

The event ontology can be conceptualized in two parts: event definitions and events.
An event definition is used by applications and sensors to inform Koko of the type of
data that they will be sending. The event definition is constructed by selecting terms
from the ontology that apply to the application, resulting in a potentially unique subset
of the original ontology. Using the definition as a template, an application or sensor
generates an event that conforms to the definition. This event then represents the state
of the application at a given moment. When the event arrives at the affect model, it is
decomposed using the agreed upon event definition.

Koko comes preloaded with an event ontology (partially shown in Fig. 4) that sup-
ports common contextual elements such as time, location, and interaction with applica-
tion objects. Consider an example of a user seeing a snake. To describe this for Koko
you would create an event seeing, which involves an object snake. The context is often

Event
Context

Action Agent

Object

PerformedBy

Involves

OccursIn

TypeOf

name
value
time spent

Location

Includes

name
value
completed
start time
end time
energy used
time remaining

Task

Fig. 4. Event ontology example

extremely important. For example, the user’s emotional response could be quite dif-
ferent depending on whether the location was in a zoo or the user’s home. Therefore,
the application developer should identify and describe the appropriate events (including
objects) and context (here, the user’s location).

Runtime API. The runtime API is the interface through which applications commu-
nicate with Koko at runtime. The API can be broken into two discrete units, namely,
event processing and querying. Before we look at each unit individually, it is important
to note that the contents of the described events and affect vectors are dependent on the
application’s initial configuration, which Section 4 discusses.

Application Event Processing. The express purpose of the application-event interface
is to provide Koko with information regarding the application’s environment. During
configuration, a developer defines the application’s environment via the event ontology
specified in the developer interface. Using the ontology, the developer encodes snap-
shots of the application’s environment. At runtime the snapshots capturing the user’s
view of the application environment are passed into Koko for processing. Upon receipt,
Koko stores each event where it is available for retrieval by the appropriate affect model.
This data combined with the additional data provided by external sensors provides the
affect model with a complete picture of the user’s environment.

Application Queries. Applications query for and retrieve two types of vectors from
Koko. The first is an application-specific affect vector and the second is a user-specific
mood vector, both of which are modeled using the developer interface’s emotion ontol-
ogy. The difference between the two vectors is that the entries in the affect vector de-
pend upon the set of emotions chosen by the application when it is configured, whereas
the mood vector’s entries aggregate all emotions modeled for a particular user. As such,
a user’s mood is relevant across all applications. Suppose a user, Alice, reads an email
that makes her angry and the email client’s affect model recognizes this. All of Alice’s
affect enabled applications can benefit from the knowledge that the user is angry even
if they cannot infer that it is from some email. Such mood sharing is natural via Koko
because Koko maintains the user’s mood and can supply it to any application.

4 Methodology

Now that we have laid the architectural foundation we describe Koko-ASM, a method-
ology for configuring a social (multiagent) affective application using Koko. Properly
configuring an application is key because its inputs and outputs are vital to all of the
application interfaces within Koko. In order to perform the configuration, the developer
must gather key pieces of information that are required by Koko. Table 1 systemati-
cally lists Koko-ASM’s steps to create an affective social application. The following
documentation concentrates on Steps 1-4, which are of primary interest to AOSE.

Table 1. Koko-ASM: a methodology for creating an affective, social application

Step Description Artifacts Produced

1 Define the set of possible roles an agent may assume Agent Roles
2 Describe the expressives exchanged between roles Expressive Messages
3 Derive the emotions to be modeled from the expressives Emotions
4 Describe the set of possible application events Application Events
5 Select the sensors to be included in the model Sensor Identifier(s)
6 Select the desired affect model Model Identifier

Step 1 requires the developer to identify the set of roles an agent may assume in the
desired application. Possible roles include TEACHER, STUDENT, PARENT, CHILD, and
COWORKER. A single agent can assume multiple roles and a role can be restricted to
apply to the agent only if certain criteria are met. For example, the role of COWORKER
may only apply if the two agents communicating work for the same company.

Step 2 requires the developer to describe the expressive messages or expressives ex-
changed between various roles [12]. Searle defines expressives as communicative acts
that enable a speaker to express his or her attitudes and emotions towards a proposition.
Examples include statements like “Congratulations on winning the prize!” where the
attitude and emotion is congratulatory and the proposition is winning the prize. For-
mally, we define the structure of an expressive to match that of a communicative act in
general:

〈sender, receiver, type, proposition〉 (1)

The type of the expressive refers to the attitude and emotion of the expressive and the
proposition to its content, including the relevant events. The sender and receiver are
selected from the set of roles defined in Step 1. The developer then formulates the
expressives that can be exchanged among agents assuming those roles. The result is the
set of all valid expressive messages allowed by the application.

Step 3 requires the developer to select a set of emotions to be modeled from the
emotion ontology. The selected emotions are based on the expressives identified in the
previous step. To compute the set of emotions, we evaluate each expressive and select
the most relevant emotions from the ontology for that particular expressive. We add the
selected emotions to the set of emotions required by the application. This process is
repeated for every expressive and the resulting emotion set is the output of this step.

Koko offers support for expressives by providing a well-delineated representation
for affect. Koko can thus exploit a natural match between expressives and affect to help
designers operationalize the expressives they employ in their applications. Our recom-
mended approach to selecting an emotion is to structure Elliot’s set of emotions as a
tree (Fig. 5). Each leaf of the tree represents two emotions, one that carries a positive
connotation and the other a negative connotation. Given an expressive, you start at the
top of the tree and using its type and proposition you filter down through the appropriate
branches until you are left with only the applicable emotions. For example, say that you
have a message with a type of excited and a proposition equal to “I won the game.”
Now using the tree you determine that winning the game is an action the user would
have taken and that excited has a positive connotation, so the applicable emotion must
therefore be pride. In general, the sender and receiver would have different interpreta-
tions. For example, if the recipient of the above message is the agent who lost the game,
then the emotions that are relevant to the recipient would be admiration and reproach
depending on their perception of the winner.

Expressive
Message

Self Others

Events Actions Objects

Attraction
+ like

- dislike

Well-Being
+ joy

- distress

Prospects
+ hope
- fear

Hope Confirmed
+ satisfaction

- dissapointment

Fear Confirmed
+ relief

- fear-confirmed

Self
+ pride
- shame

Others
+ admiration
- reproach

Desirable
+ happy-for
- resentment

Undesirable
+ pity

- gloating

Fig. 5. Expressive message hierarchy

If the proposition of the expressive message is composite or even ambiguous as
to whether or not the type applies to an event, action, or object, then more than one
path of the tree may apply. Such is the case when an agent conveys its user’s mood
via an expressive message. Mood is an aggregation of emotions and therefore does not
have a unique causal attribution. For example, an expressive might convey that a user
is generally happy or sad without being happy or sad at something. Therefore, we do
not select any specific emotion when evaluating a expressive pertaining to mood as the
emotions that comprise the mood are captured when evaluating the other expressives.
In other words, mood is not treated directly upon the reception of an expressive.

Step 4 requires the developer to describe the application events using the event on-
tology. The events described are a combination of the expressives in Step 2 and ad-
ditional details about the application environment. An expressive is modeled as two

application events, one for sending and another for receipt. Each event is modeled as
an action (see Fig. 4) in which the sending of a message is described as an action
performed by the sender that involves the receiver with the expressive in the context.
Similarly, one can envision the receipt of the message as an action performed by the
recipient that involves the sender. The decomposition of a message into two events is
essential because we cannot make the assumption that the receiving agent will read the
message immediately following its receipt and we must accommodate for its autonomy.

The additional details about the application’s environment are also modeled using
the event ontology. The developer can encode the entire application state using the on-
tology, but this may not be practical for large applications. Therefore, the developer
must select the details about the application’s environment that are relevant to the emo-
tions they are attempting to model. For example, the time the user has spent on a current
task will most likely effect their emotional status, whereas the time until the applica-
tion needs to garbage collect its data structures is likely irrelevant. The resulting events
are combined with the events derived from the expressive messages to form the set of
application events that are needed by Koko.

Step 5 and Step 6 both have trivial explanations. Koko maintains a listing of both
the available sensors and affect models, which are accessible by their unique identifiers.
The developer must simply select the appropriate sensor and affect model identifiers.

Based on the artifacts generated by the above methodology we now have sufficient
information to configure the Koko middleware. Upon configuration Koko supports af-
fective interactions among agents (using the expressive messages) as well as enables
applications to query for the affective state of an agent.

5 Evaluation
Using expressives to communicate an agent’s affective state extends traditional AOSE
into the world of affective applications. We evaluate Koko-ASM by conducting a case
study that steps through the methodology and produces a functional affective social
application. The subject of our case study is a social, physical health application with
affective capabilities, called booST. To operate, booST requires a mobile phone running
Google’s Android mobile operating system that is equipped with a GPS sensor.

The purpose of booST is to promote positive physical behavior in young adults
by enhancing a social network with affective capabilities and interactive activities. As
such, booST utilizes the Google OpenSocial platform [11] to provide support for typical
social functions such as maintaining a profile, managing a social circle, and sending and
receiving messages. Where booST departs from traditional social applications is in its
communication and display of its user’s energy levels and emotional status.

Each user is assigned an energy level that is computed using simple heuristics from
data retrieved from the GPS sensor on board the phone. Additionally, each user is as-
signed an emotional status generated from the affect vectors retrieved from Koko. The
emotional status is represented as a real number ranging from 1 (sad) to 10 (happy). A
user’s energy level and emotional status are made available to both the user and mem-
bers of the user’s social circle.

To promote positive physical behavior, booST supports interactive physical activi-
ties among the members of a user’s social circle. The activities are classified as either

Fig. 6. booST buddy list and activities screenshots

competitive or cooperative. Both types of activities use heuristics based on the GPS sen-
sor readings to determine the user’s progress toward achieving the activities goal. The
difference between a competitive activity and a cooperative activity is that in a com-
petitive activity the first user to reach the goal is the winner, whereas in a cooperative
activity both parties must reach the goal in order for them to win.

As described in Section 3, Koko hosts an agent for each booST user. A user’s agent
maintains the affect model that is used to generate the user’s emotional status. Further,
booST provides the agent with data about its environment, which in this case incorpo-
rates the user’s social interactions and his or her participation in the booST activities.
The user agent processes the data and returns the appropriate emotional status. Further,
Koko enables the exchange of affective state between booST agents (representing a so-
cial circle of users). This interaction can been seen in Figure 6 in the emoticons next to
the name of a buddy. The affective data shared among the members of a social circle
provides additional information to the affect model. For instance, if all the members of
a user’s social circle are sad then their state will have an effect on the user’s emotional
status.

5.1 Configuring booST

Table 1 outlines Koko-ASM’s process for creating an affective, social application. We
now demonstrate this process using booST.

Step 1 requires that we identify the set of roles an agent may assume. The booST
application involves only two roles, FRIEND and SELF. An agent A assumes the role of
agent B’s FRIEND if and only if the users represented by agents A and B are members of
each others social circle. The social circle is maintained by booST and can be equated
to the friend list in popular social applications such as Facebook and MySpace.

Step 2 requires that we identify and describe all expressives that occur between the
two roles. Below is an example of what a few such messages would look like depending

on the outcome of a competitive activity within booST. The remaining messages would
be defined in a similar fashion.

〈SELF, FRIEND, happy,“I won the game”〉 (2)
〈FRIEND, SELF, sad,“I lost the game”〉 (3)

〈FRIEND, SELF, happy,“I ran a good race”〉 (4)

Step 3 requires that we select a set of emotions to model from the emotion ontology.
As Section 3 shows, the ontology is based on Elliot’s expansion of the OCC model,
which categorizes emotions based on the user’s reaction to an action, event, or object.
When inspecting each expressive, we find that booST focuses on measuring happiness
and sadness of the user with respect to actions and events. Therefore, we can narrow our
selection to only emotions that meet those criteria. As a result, we select four emotions:
two are focused on the actions of the user (pride and shame) and two on the events
(joy and distress). The booST application uses these emotions to compute the user’s
emotional status by correlating (1) pride and joy with happiness and (2) shame and
distress with sadness.

Step 4 requires that we describe the application events using the event ontology.
Each expressive message yields two events: a sending event and a receiving event. The
remaining events provide additional details about the application’s environment (Ta-
ble 2 shows some examples). Since an event in booST is merely an instantiation of the
event ontology, the event descriptions are trivial. For example, the “Competitive Ex-
ercise Challenge” message can be described as an action that involves another agent.
When an event occurs at runtime, the context associated with its occurrence would spec-
ify attributes such as the time of day, challenge information, and the user’s energy level
as calculated by the application.

Table 2. Representative booST events

Event Description

1 View my energy level and emotional state
2 View my friend’s energy level and emotional state
3 Send or receive “Cooperative Exercise Challenge” message
4 Send or receive “Competitive Exercise Challenge” message
5 Complete or fail a cooperative activity
6 Complete or fail a competitive activity

Step 5 requires that we select the sensors to be included in the model. As we have
already noted booST requires a single sensor: a GPS. The first time a sensor is used a
plugin must be created and registered with Koko. The GPS plugin converts latitude and
longitude vectors into distance covered over a specified time period. This data is then
maintained by Koko and made available for consumption both by the application and
the affect model.

Step 6 is trivial as booST employs an affect model that is provided by Koko. In
particular, booST employs the model that implements decision trees as its underlying
data structure.

Using the artifacts generated by the methodology we now have obtained sufficient
information to configure the Koko middleware. Upon configuration, Koko maintains an
agent for each booST user. The agent is responsible for modeling the affective state
of the user as well as communicating that state to other agents within the user’s social
circle. With Koko supporting the affective aspects of booST, application developers
are free to focus on other aspects of the application. For instance, they may focus on
developing the creative aspects of the game, such as how to alter gameplay based on the
user’s affective state.

6 Discussion

An important contribution of Koko and Koko-ASM is the incorporation of expressive
communicative acts. These acts, though well-known in the philosophy of language,
are a novelty both in agent-oriented software engineering and in virtual agent systems.
The incorporation of expressives enable agents to interpret the difference between an
expression of feelings and a statement of fact, thus enabling agents to better model their
users and their environment.

Existing Methodologies. Existing AOSE methodologies specify messages at a level that
does not describe the contents of the message and therefore are not granular enough to
support expressives [2]. Koko-ASM is restricted to applications that are both affective
and social, thus its applicability has a much narrower scope than existing methodolo-
gies. These distinctions are simply the result of a difference in focus. It is quite pos-
sible, given the narrow scope of Koko-ASM, that it could be integrated with broader
methodologies in order to leverage their existing processes and tools. For example,
many methodologies [2, 16] have detailed processes by which they help developers
identify all possible messages that are exchanged among agents. Koko-ASM would
benefit by integrating those processes, thereby making it easier to identify the expres-
sive messages.

Virtual Agents. Koko and, in particular, Koko-ASM have focused on human-to-human
social interactions. This does not inherently limit the methodology only to such inter-
actions. We have begun to explore the application of our methodology on human-to-
virtual agent interactions. Using this modified version of Koko-ASM we envision a
scenario where the virtual agents will have access to the user’s affective state via Koko.
Applications that leverage this technique could manipulate a virtual agent’s interactions
with a user, based on the user’s affective state.

Enhanced Social Networking. Human interactions rely upon social intelligence [5].
Social intelligence keys not only on words written or spoken, but also on emotional
cues provided by the sender. Koko provides a means to build social applications that
can naturally convey such emotional cues, which existing online social networking tools
mostly disregard. For example, an advanced version of booST could use affective data
to create an avatar of the sender and have that avatar exhibit emotions consistent with
the sender’s affective state.

Future Work. Koko and Koko-ASM open up promising areas for future research. As an
architecture, it is important that Koko fits in with existing architectures such as game
engines. We have described some efforts in a companion paper [14]. Association with
other architectures would not only facilitate additional applications but would lead to
refinements of the present methodology, which we defer to future research. Further,
we are actively working on formalizing the notion of expressive communication with
respect to agent communication languages.

References

1. J. L. Austin. How to Do Things with Words. Oxford University Press, London, 1962.
2. S. A. Deloach, M. F. Wood, and C. H. Sparkman. Multiagent Systems Engineering. Journal

of Software Engineering and Knowledge Engineering, 11(3):231–258, 2001.
3. C. Elliott. The Affective Reasoner: A Process Model of Emotions in a Multi-agent System.

PhD, Northwestern University, 1992.
4. C. Elliott, J. Rickel, and J. Lester. Lifelike pedagogical agents and affective computing: An

exploratory synthesis. In Artificial Intelligence Today, LNAI, 1600:195–212, 1999.
5. D. Goleman. Social Intelligence: The New Science of Human Relationships. Bantam Books,

New York, 2006.
6. J. Gratch and S. Marsella. Fight the way you train: The role and limits of emotions in training

for combat. Brown Journal of World Affairs, Vol X (1):63–76, Summer/Fall 2003.
7. J. Gratch and S. Marsella. A domain-independent framework for modeling emotion. Journal

of Cognitive Systems Research, 5(4):269–306, Dec 2004.
8. R. S. Lazarus. Emotion and Adaptation. Oxford University Press, New York, 1991.
9. S. Marsella, W. L. Johnson, and C. LaBore. Interactive pedagogical drama. In International

Conference on Autonomous Agents, pages 301–308, 2000.
10. S. McQuiggan and J. Lester. Modeling and evaluating empathy in embodied companion

agents. International Journal of Human-Computer Studies, 65(4), April 2007.
11. OpenSocial Foundation. Opensocial APIs, http://www.opensocial.org, 2009.
12. J. R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University

Press, Cambridge, UK, 1970.
13. C. Smith and R. Lazarus. Emotion and adaptation. In L. A. Pervin and O. P. John, editors,

Handbook of Personality: Theory and Research, pages 609–637. New York, Guilford Press,
1990.

14. D. J. Sollenberger and M. P. Singh. Architecture for Affective Social Games. In Proceed-
ings of First International Workshop on Agents for Games and Simulations, LNAI. In Press.
Berlin, Springer, 2009.

15. R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the formal semantics of speech-
act based communication in an agent-oriented programming language. Journal of Artificial
Intelligence Research, 29:221–267, 2007.

16. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Methodology,
12(3):317–370, July 2003.

