Architecture for Affective Social Games

Derek J. Sollenberger and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

Phone: 1-717-860-1809
Fax: 1-919-515-7896
{djsollen, singh}@ncsu.edu

Abstract. The importance of affect in delivering engaging experiences in en-
tertainment and education is well recognized. We introduce the Koko architec-
ture, which describes a service-oriented middleware that reduces the burden of
incorporating affect into games and other entertainment applications. Koko pro-
vides a representation for affect, thereby enabling developers to concentrate on
the functional and creative aspects of their applications. The Koko architecture
makes three key contributions: (1) improving developer productivity by creating a
reusable and extensible environment; (2) yielding an enhanced user experience by
enabling independently developed applications to collaborate and provide a more
coherent user experience than currently possible; (3) enabling affective commu-
nication in multiplayer and social games.

1 Introduction

Games that incorporate reasoning about their player’s affective state are gaining increas-
ing attention. Such games have been prototyped in military training [6] and educational
[11] settings. However, current techniques for building affect-aware applications are
limited, and the maintenance and use of affect is in essence handcrafted in each appli-
cation.

We take as our point of departure the results of modeling affect based on appraisal
theory. A fundamental concept of appraisal theory is that the environment of an agent
is essential to determining the agent’s affective state. As such, appraisal theory yields
models of affect that are tied to a particular domain with a defined context. Therefore,
each new problem domain requires a new affect model instance. A current and com-
mon practice has been to copy and edit a previous application (and, occasionally, to
build from scratch) to meet the specifications of a new domain. This approach may be
reasonable for research proofs-of-concept, but is not suitable for developing production
applications.

Additionally, in order to more accurately predict the user’s affective state, many
affective applications use physical sensors to provide additional information about the
user and the user’s environment. The number and variety of sensors continues to in-
crease and they are now available via a variety of public services (e.g., weather and
time services) and personal commercial devices (e.g., galvanic skin response units).

Current approaches require each affective application to interface with these sensors
directly. This is not only tedious, but also nontrivial as the application must be adjusted
whenever the set of available sensors changes.

To address these challenges we propose a service-oriented architecture, called Koko,
that compliments existing gaming engines by enabling the prediction of a gamer’s af-
fective state. When compared to existing approaches the benefits of our architecture are
an increase in developer productivity, an enhanced user experience, and the enabling
of affective social applications. Koko is not another model of emotions but a middle-
ware from which existing (and future) models of affect can operate within. It provides
the means for both game developers and affect model designers to construct their re-
spective software independently, while giving them access to new features that were
previously impossible. Further, Koko is intended to be used by affective models and
applications that seek to recognize emotion in a human user. Whereas it is possible to
use Koko to model the emotions of nonplaying characters, many benefits, such as using
physical sensors, most naturally apply when human users are involved.

The Koko architecture is realized as a service-oriented middleware which runs inde-
pendently from the game engine. The primary reason for this separation becomes more
apparent when we discuss the social and multiplayer aspects of Koko. Such an approach
is consistent with existing techniques for multiplayer access to a central game server.

1.1 Contributions

Any software architecture is motivated by improvements in features such as modular-
ity and maintainability: you can typically achieve the same functionality through more
complex or less elegant means [16]. Of course, an improved architecture facilitates
accessing new functionality: in our case, the sharing of affective information and the
design of social applications. Koko concentrates on providing three core benefits to af-
fective game developers. In the remainder of this section, we elaborate on these benefits.

Developer Productivity. Koko separates the responsibility of developing an application
from that of creating and maintaining the affect model. In Koko, the application logic
and the affect model are treated as separate entities. By creating this separation, we can
in many cases completely shield each entity from the other and provide standardized
interfaces between them.

Additionally, Koko avoids code duplication by identifying and separating modules
for accessing affect models and various sensors, and then absorbs those modules into
the middleware. For example, by extracting the interfaces for physical sensors into the
middleware, Koko enables each sensor to be leveraged through a common interface.
Further, since the sensors are independent of the affect models and applications, a sensor
that is used by one model or application can be used by any other model or application
without the need for additional code.

Quality of User Experience. Abstracting affect models into Koko serendipitously serves
another important purpose. It enables an enhanced user experience by providing data to
both the application and its affect model that was previously unattainable, resulting in
richer applications and more comprehensive models.

With current techniques it is simply not possible for separate applications to share
affective information for their common users. This is because each application is inde-
pendent of and thereby unaware of other applications in use by that user. By contrast,
Koko-based applications can share common affective data through Koko. This reduces
each application’s overhead of initializing the user’s affective state for each session, as
well as providing insight into a user’s affective state that would normally be outside the
application’s scope.

Such cross-application sharing of a user’s affective information improves the value
of each application. As a use case, consider a student using both an education and an
entertainment application. The education application can proceed with easier or harder
questions depending on the user’s affective state even if the user’s state were to be
changed by participation in some unrelated game.

Affective Social Applications. In addition to enabling cross-application sharing of af-
fective data, the Koko architecture enables cross-user sharing of affective data. The con-
cept of cross-user sharing fits naturally into the realm of social and multiplayer games.
Through Koko, a user if authorized may view the affective state of other members in
their social circle or multiplayer party. Further, that information can potentially be used
to better model the inquiring user’s affective state.

1.2 Paper Organization

The remainder of this paper is arranged as follows. The background section reviews
appraisal theory models. The architecture section then provides detailed description of
the components that compose Koko. Finally, the evaluation section demonstrates the
merits of the Koko architecture.

2 Background

Smith and Lazarus’ [18] cognitive-motivational-emotive model, the baseline for current
appraisal models (see Figure 1), conceptualizes emotion in two stages: appraisal and
coping. Appraisal refers to how an individual interprets or relates to the surrounding
physical and social environment. An appraisal occurs whenever an event changes the
environment as interpreted by the individual. The appraisal evaluates the change with
respect to the individual’s goals, resulting in changes to the individual’s emotional state
as well as physiological responses to the event. Coping is the consequent action of the
individual to reconcile and maintain the environment based on past tendencies, current
emotions, desired emotions, and physiological responses [8].

Koko focuses on a section of the appraisal theory process (denoted by the dashed
box), because Koko is intended to model emotions in human subjects. As a result, the
other sections of the process are either difficult to model or outside Koko’s control. For
instance, the coping section of the process is outside Koko’s control as it is an action
that must be taken by the user.

A situational construal combines the environment (facts about the world) and the
internal state of the user (goals and beliefs) and produces the user’s perception of the
world, which then drives the appraisal and provides an appraisal outcome. This ap-
praisal outcome is made up of multiple facets, but the central facet is “Affect” or current

Situational
Construal

| |
I Appraisal '

Goals/Beliefs/
Intentions

PO -~
; '
. .

Environment

’ Physiological ‘| ’ Affect ‘ 5 Action ‘
1 Tel
|

iAppraisaI Outcome

Response ndencies

Problem-Focused Coping Outcome Emotion-Focused
Strategies Ping Strategies

Fig. 1. Appraisal Theory Diagram [18]

emotions. For practical purposes, “Affect” can be interpreted as a set of discrete states
with an associated intensity. For instance, the result of an appraisal could be that you
are happy with an intensity of « as well as proud with an intensity of 5. Unfortunately,
selecting the set of states to use within a model is not an easy task as there is no one
agreed upon set of states that covers the entire affective space.

Next, we look at three existing appraisal theory approaches for modeling emotion.
The first is a classic approach which provides the foundation for the set of affective
states used within Koko. The final two are contemporary approaches to modeling emo-
tion with the primary distinction among them being that EMA focuses on modeling
emotions of nonplaying characters whereas CARE concentrates on measuring human
emotional states.

OCC. Ortony, Clore, and Collins [14] introduced the so-called OCC model, which con-
sists of 22 types of emotions that result from a subject’s reaction to an event, action, or
object. The OCC model is effectively realized computationally, thus enabling simula-
tions and real-time computations. Further, the OCC’s set of emotions have turned out
to cover a broad portion of the affective space. Elliot [2] expanded the set of emotions
provided by the OCC to a total of 24 emotions. Koko employs this set of 24 emotions
as its baseline affective states.

EMA. The EMotion and Adaptation (EMA) model leverages SOAR [12] to extend
Smith and Lazarus’ model for applications involving nonplaying characters [7]. EMA
monitors a character’s environment and triggers an appraisal when an event occurs.
It then draws a set of conclusions or appraisal frames, which reflect the character’s
perception of the event. EMA then assigns emotions and emotional intensities to each
appraisal frame, and passes it to the coping mechanism, which decides the best actions
to take based on the character’s goals [5].

CARE. The Companion-Assisted Reactive Empathizer (CARE) supports an on-screen
character that expresses empathy with a user based on the affective state of the user

[10]. The user’s affective state is retrieved in real-time from a pre-configured static
affect model, which maps the application’s current context to one of six affective states.
The character’s empathic response is based on these states.

CARE populates its affective model offline. First, a user interacts with the appli-
cation in a controlled setting where the user’s activity is recorded along with periodic
responses from the user or a third party about the user’s current affective state. Second,
the recorded data is compiled into a predictive data structure, such as a decision tree,
which is then loaded into the application. Third, using this preconfigured model the
application can thus predict the user’s affective state during actual usage.

3 Architecture

Existing affective applications tend to be monolithic where the affective model, ex-
ternal sensors, and application logic are all tightly coupled. As in any other software
engineering endeavor, monolithic designs yield poor reusability and maintainability.
Similar observations have led to other advances in software architecture [16].

External

Sensors H Application
Koko
______________________________ [g g R F g gy
1 Developer Interface Vocabulary i
\ }
Sensor User Affect
Manager Manager Repository
t A Y
User Agent Mood
v {, Vector
Affect Model f
Event Repository —»| Container Affect
Vector
| Mood Model

Fig. 2. Koko architectural overview

Figure 2 shows Koko’s general architecture using arrows to represent data flow. The
following portion of this section provide details on each of Koko’s major components.
Then after the groundwork of the architecture has been explained we elaborate on the
formal interface definitions for the remainder of the section.

3.1 Main Components and their Usage

Koko hosts an active computational entity or agent for each user. In particular, there is
one agent per human, who may use multiple Koko-based applications. Each agent has
access to global resources such as sensors and messaging but operates autonomously
with respect to other agents.

The Affect Model Container This container manages the affect model(s) for each
agent. Each application specifies exactly one affect model, whose instance is then man-
aged by the container. As Figure 3 shows, an application’s affect model is specified in
terms of the affective states as well as application and sensor events, which are defined
in the application’s configuration (described below) at runtime.

User H—Y Agent H—- App Application
1

1 Events

1 1
Affective
Mood Affect States

Model Model e —

Sensor

Events
&

Fig. 3. Main Koko entities

Configuring the affect model at runtime enables us to maintain a domain-independent
architecture with domain-dependent affect model instances. Further, in cases such as
CARE, we can construct domain-independent models (generic data structures) and pro-
vide the domain context at runtime (object instances). This is the approach Koko has
taken by constructing a set of generic affect models that it provides to applications.
These affect models follow CARE’s supervised machine learning approach of modeling
affect by populating predictive data structures with affective knowledge. These affect
models are built, executed, and maintained by the container using the Weka toolkit [20].
The two standard affect models that Koko provides use Naive Bayes and decision trees
as their underlying data structures.

To accommodate models with drastically different representations and mechanisms,
Koko encapsulates them via a simple interface. The interface takes input from the user’s
physical and application environment and produces an affect vector. The resulting affect
vector contains a set of elements, where each element corresponds to an affective state.
The affective state is selected from an ontology that is defined and maintained via the
developer interface vocabulary. Using this ontology, each application developer selects
the emotions to be modeled for their particular application. For each selected emotion,
the vector includes a quantitative measurement of the emotion’s intensity. The intensity
is a real number ranging from 0 (no emotion) to 10 (extreme emotion).

Mood Model Following EMA, we take an emotion as the outcome of one or more
specific events and a mood as a longer lasting aggregation of the emotions for a spe-
cific user. An agent’s mood model maintains the user’s mood across all applications
registered to that user.

Koko’s model for mood is simplistic as it takes in affect vectors and produces a
mood vector, which includes an entry for each emotion that Koko is modeling for that
user. Each entry represents the aggregate intensity of the emotion from all affect models
associated with that user. Consequently, if Koko is modeling more than one application

for a given user, then the user’s mood is a cross-application measurement of the user’s
emotional state.

To ensure that a user’s mood is up to date with respect to recent events, we introduce
a mood decay formula [15] as a way to reduce the contribution of past events. This
formula reduces the effect that a given emotion has on the user’s mood over time. We
further augment our mood model with the concept of mood intensity from the work of
Dias and Paiva [1]. The mood intensity sums all positive and negative emotions that
make up the user’s current mood, which is used to determine the degree to which a
positive or negative emotion impacts a user. For example, if a user has a positive mood
intensity then a slightly negative event may be perceived as neutral, but if the event were
to recur the mood intensity would continue to degrade, thereby amplifying the effect of
the negative event on the user’s mood over time.

Affect Repository The affect repository is the gateway through which all affective
data flows through the system. The repository stores both affect vectors (application
specific) and mood vectors (user specific). These vectors are made available to both
external applications as well as the affect and mood models of the agents. This does not
mean all information is available to a requester, as Koko implements security policies
for each user (see user manager). An entity can request information from the repository
but the only vectors returned are those they have the permission to access.

The vectors within the repository can be retrieved in one of two ways. The first re-
trieval method is through a direct synchronous query that is similar to an SQL SELECT
statement. The second method enables the requester to register a listener which is no-
tified when data is inserted into the repository that matches the restrictions provided
by the listener. This second method allows for entities to have an efficient means of
receiving updates without proactively querying and placing an unnecessary burden on
the repository.

Event Repository The event repository is nearly identical to the affect repository with
respect to storage, retrieval, and security. Instead of storing vectors of emotion, the
event repository stores information about the user’s environment. This environmental
information is comprised of two parts: information supplied by the application and
information supplied by sensors. In either case, the format of the data varies across
applications and sensors as no two applications or sensors can be expected to have
the same environment. To support such flexibility we characterize the data in discrete
units called events, which are defined on a per application or sensor basis. Every event
belongs to an ontology whose structure is defined in the developer interface.

Sensor Manager Information about a user’s physical state (e.g., heart rate and perspi-
ration) as well as information about the environment (e.g., ambient light, temperature,
and noise) can be valuable in estimating the user’s emotional state. Obtaining that data
is a programming challenge because it involves dealing with a variety of potentially
arcane sensors. Accordingly, Koko provides a unified interface for such sensors in the
form of the sensor manager. This yields key advantages. First, a single sensor can be
made available to more than one application. Second, sensors can be upgraded trans-

parently to the application and affect model. Third, the overhead of adding sensors is
amortized over multiple applications.

The sensor manager requires a plugin for each type of sensor. The plugin is respon-
sible for gathering the sensor’s output and processing it. During the processing stage the
raw output of the sensor is translated into a sensor event whose elements belong to the
event ontology in the developer interface vocabulary. This standardized sensor event is
then provided as input to the appropriate affect models.

User Manager The user manager keeps track of the agents within Koko and maintains
the system’s security policies. The user manager also stores some information provided
by the user on behalf of the agent. This includes information such as which other agents
have access to this agent’s affective data and which aspects of that data they are eligible
to see. It is the user manager’s responsibility to aggregate that information with the
system’s security policies and provide the resulting security restrictions to the sensor
manager and the affect repository. Privacy policies are crucial for such applications, but
their details lie outside the scope of this paper.

Developer Interface Vocabulary Koko provides a vocabulary through which the ap-
plication developer interacts with Koko. The vocabulary consists of two ontologies, one
for describing affective states and another for describing the environment. The ontolo-
gies are encoded in OWL (Web Ontology Language). The ontologies are designed to
be expandable to ensure that they can meet the needs of new models and applications.

The emotion ontology describes the structure of an affective state and provides a
set of affective states that adhere to that structure. Koko’s emotion ontology provides
by default are the 24 emotional states proposed by Elliot [2]. Those emotions include
states such as joy, hope, fear, and disappointment.

The event ontology can be conceptualized in two parts, event definitions and events.
An event definition is used by applications and sensors to inform Koko of the type of
data that they will be sending. The event definition is constructed by selecting terms
from the ontology that apply to the application, resulting in a potentially unique subset
of the original ontology. Using the definition as a template, an application or sensor
generates an event that conforms to the definition. This event then represents the state
of the application or sensor at a given moment. When the event arrives at the affect
model it can then be decomposed using the agreed upon event definition.

Koko comes preloaded with an event ontology (partially shown in Figure 4) that
supports common contextual elements such as time, location, and interaction with ap-
plication objects.

Consider an example of a user seeing a snake. To describe this for Koko you would
create an event seeing, which involves an object snake. The context is often extremely
important. For example, the user’s emotional response could be quite different depend-
ing on whether the location was in a zoo or the user’s home. Therefore, the application
developer should identify and describe the appropriate events (including objects) and
context (here, the user’s location).

Task

Event Occursin —| Context hame
—l value

completed
Involves Includes | tart time
end time
Object energy used
time remaining

TypeOf

Location
> A name

|- PerformedBy — gent v_alue

time spent

Action

Fig. 4. Event ontology example

3.2 The Architecture Formally

Now that we have laid the groundwork, we describe the Koko architecture in more for-
mal terms from the perspective of an application developer. The description is divided
into two segments, with the first describing the runtime interface and the second de-
scribing the configuration interface. Our motivation in presenting these interfaces con-
ceptually and formally is to make the architecture open in the sense of specifying the
interfaces declaratively and leaving the components to be implemented to satisfy those
interfaces.

Application Runtime Interface The application runtime interface is broken into two
discrete units, namely, event processing and querying. Before we look at each unit in-
dividually, it is important to note that the contents of the described events and affect
vectors are dependent on the application’s initial configuration, which is discussed at
the end of this section.

Application Event Processing. The express purpose of the application event interface
is to provide Koko with information regarding the application’s environment. During
configuration, a developer defines the application’s environment via the event ontology
in the developer interface. Using the ontology, snapshots of the application’s environ-
ment are then encoded as events, which are passed into Koko for processing. The formal
description of this interaction is as follows.

userlD x applicationID x applicationEvent — L (N

Upon receipt, Koko stores the event in the agent’s event repository, where it is
available for retrieval by the appropriate affect model. This data combined with the
additional data provided by external sensors provides the affect model with a complete
picture of the user’s environment.

Application Queries. Applications are able to query for and retrieve two types of vec-
tors from Koko. The first is an application-specific affect vector and the second is a
user-specific mood vector, both of which are modeled using the developer interface’s
emotion ontology. The difference between the two vectors is that the entries in the affect

vector are dependent upon the set of emotions chosen by the application when it is con-
figured, whereas the mood vector’s entries are an aggregation of all emotions modeled
for a particular user.

When the environment changes, via application or sensor events, the principles of
appraisal theory dictate that an appraisal be performed and a new affect vector com-
puted. The resulting vector is then stored in the affect repository. The affect repository
exposes that vector to an application via two interfaces. Formally, (here a square bracket
indicates one or more)

userlD x applicationlD — affectVector 2)

userlD x applicationID x timeRange — [affectVector] 3)

Additionally, an application can pass in a contemplated event and retrieve an affect
vector based on the current state of the model. The provided event is not stored in the
event repository and does not update the state of the model. This enables the application
to compare potential events and select the one expected to elicit the best emotional
response. The interface is formally defined as follows.

userlD x applicationID x predictedEvent — affectVector “)

Mood vectors, unlike affect vectors, aggregate emotions across applications. As
such, a user’s mood is relevant across all applications. Suppose a user is playing a game
that is frustrating them and the game’s affect model recognizes this. The user’s other
affect-enabled applications can benefit from the knowledge that the user is frustrated
even if they cannot infer that it is from a particular game. Such mood sharing is natural
in Koko because it maintains the user’s mood and can supply it to any application. The
following formalizes the above mechanism for retrieving the mood vector.

userlD — moodVector (®)]

Application Configuration Interface Properly configuring an application is key be-
cause its inputs and outputs are vital to all of the application interfaces within Koko. In
order to perform the configuration the developer must gather key pieces of information
and then supply that information to Koko using the following interface:

[affectiveState] x [eventDefinition] x [sensorID] x modellD +— applicationID (6)

The affectiveStates are the set of states (drawn from the emotion ontology) that the
application wishes to model. The eventDefinitions describe the structure (created us-
ing the event ontology) of all necessary application events. The developer can encode
the entire application state using the ontology, but this is often not practical for large
applications. Therefore, the developer must select the details about the application’s en-
vironment that are relevant to the emotions they are attempting to model. For example,
the time the user has spent on a current task will most likely effect their emotional sta-
tus, where as the time until the application needs to garbage collect its data structures is

most likely irrelevant. The sensorIDs and modellD both have trivial explanations. Koko
maintains a listing of both the available sensors and affect models, which are accessible
by their unique identifiers. The developer must simply select the appropriate sensors
and affect model and record their identifiers.

Further, Koko enables affect models to perform online, supervised learning by clas-
sifying events via a set of emotions. Applications can query the user directly for the
user’s emotional state and then subsequently pass that information to Koko. In gen-
eral, many applications have well-defined places where they can measure the user’s
responses in a natural manner, thereby enabling online learning of affective state. Ap-
plications that do exercise the learning interface benefit from improved accuracy in the
affect model. The formal definition of this interface is as follows. Notice there is no out-
put because this interface is used only to update Koko’s data structures not to retrieve
information.

userID x applicationEvent x emotionClassifier — L @)

4 Evaluation

Our evaluation mirrors our claimed contributions, namely, the benefits of the Koko ar-
chitecture. First, we evaluate the contributions of the architecture in itself. Subsequently,
we demonstrate the usefulness of the architecture with case studies of both single and
multiplayer games.

4.1 Architecture Evaluation

A software architecture is motivated not by functionality but by so-called “ilities” or
nonfunctional properties [3]. The properties of interest here—reusability, extensibil-
ity, and maintainability—pertain to gains in developer productivity over the existing
monolithic approach. In addition, by separating and encapsulating affect models, Koko
enables sharing affective data among applications, thereby enhancing user experience.
Thus we consider the following criteria.

Reusability. Koko promotes the reuse of affect models and sensors. By abstracting
sensors via a standard interface, Koko shields model designers from the details of how
to access various sensors and concentrate instead on the output they produce. Likewise,
application developers can use any installed affect model.

Maintainability. Koko facilitates maintenance by separating the application from the
affect model and sensors. Koko supports upgrading the models and sensors without
changes to the components that use them. For example, if a more accurate sensor has
been released you could simply unregister the corresponding old sensor and register the
new sensor using the old sensor’s identifier. Any model using that sensor would begin
to receive more accurate data. Likewise, a new affect model may replace an older model
in a manner that is transparent to all applications using the original model.

Extensibility. Koko specifies generic interfaces for applications to interact with affect
models and sensors as well as providing a set of implemented sensors and models.
New sensors and models can be readily installed as long as they respect the specified
interfaces.

User Experience. Koko promotes sharing at two levels: cross-application or intraa-
gent and cross-user or interagent communication. For a social or multi-player appli-
cation Koko enables users—or rather their agents—to exchange affective states. Koko
also provides a basis for applications—even those authored by different developers—to
share information about a common user. An application may query for the mood of its
user. Thus, when the mood of a user changes due to an application or otherwise, this
change becomes accessible to all applications.

4.2 Case Studies

In this section we present two case studies that demonstrate Koko in operation. The
first study is the creation of a new social application, called booST, which illustrates
the social and multiplayer aspects of Koko. The second study is the re-creation of the
affect-enabled Treasure Hunt game, which helps us illustrate the differences between
the Koko and CARE architectures.

booST The subject of our first case study is a social, physical health application with
affective capabilities, called booST. To operate, booST requires a mobile phone running
Google’s Android mobile operating system that is equipped with a GPS sensor. Notice,
that while booST does take advantage of the fact that the sensor and application run on
the same device this is not a restriction that is imposed by Koko.

The purpose of booST is to promote positive physical behavior in young adults
by enhancing a social network with affective capabilities and interactive activities. As
such, booST utilizes the OpenSocial platform [13] to provide support for typical social
functions such as maintaining a profile, managing a social circle, and sending and re-
ceiving messages. Where booST departs from traditional social applications is in its use
of the energy levels and emotional status of its users.

Each user is assigned an energy level that is computed using simple heuristics from
data retrieved from the GPS. Additionally, each user is assigned an emotional status
generated from the affect vectors retrieved from Koko. The emotional status is repre-
sented as a number ranging from 1 to 10. The higher the number the happier the indi-
vidual is reported to be. A user’s energy level and emotional status are made available
to both the user and members of the user’s social circle.

To promote positive physical behavior, booST supports interactive physical activ-
ities among members of a user’s social circle. The activities are classified as either
competitive or cooperative. Both types of activities use the GPS to determine the user’s
progress toward achieving the activities goal. The difference between a competitive ac-
tivity and a cooperative activity is that in a competitive activity the user to first reach the
goal is the winner, whereas in a cooperative activity both parties must reach the goal in
order for them to win.

Koko’s primary function in booST is to maintain the affect model that is used to
generate the user’s emotional status. The application provides the data about its en-
vironment, which in the case of booST is the user’s social interactions and the user’s
participation in the booST activities. Koko passes this information to the appropriate
user agent, who processes the data and returns the appropriate emotional status. Fur-
ther, Koko enables the exchange of affective state with the members of a user’s social

OB @ 1:39Pm D RmE@ 1:39PM £ @Al @ 1:30pm

booST booST boosT

My Ener, My Energy
Cur¥em Lev gY ~— Current Level: 5.0

6 n Status: 6.3
Emotional Status: 6.3 Emotional Status: 6.3

My Energy
~ Current Levs

Emotional Statu:

John's Energy

Current Ley

John's Energy
Current Level:
Emotional S

1 Active Challenge Challenge History

@® John Doe Send Challenge
@ Alex Smith

End Time:
Distance

tion: -.— 2 hrs 0 min
Distance: '— 0.0 miles

Time Remaining: 2 hrs 0 min

Click Below to Start Your Timer

Fig. 5. booST buddy list and activities screenshots

circle. This interaction can be seen in Figure 5 in the emoticons next to the name of
a buddy. The affective data shared among members of a social circle is also used to
provide additional information to the affect model. For instance, if all the members of
a user’s social circle are sad then their state will have an effect on the user’s emotional
status.

Treasure Hunt We showed above how a new application, such as booST, can be built
using Koko. Now we show how Koko can be used to retrofit an existing affective appli-
cation, resulting in a more efficient and flexible application.

Treasure Hunt (TH) is a educational game that demonstrates the CARE model [10]
wherein the user controls a character to carry out some pedagogical tasks in a virtual
world. TH appraises the emotional state of the user based on a combination of (1)
application-specific information such as location in the virtual world, user’s objective,
and time spent on the task and (2) data from physiological sensors providing informa-
tion on the user’s heart rate and skin conductivity. TH conducts an appraisal every time
the user’s environment changes and produces one of six perceived emotional states is
output.

To reconstruct TH using Koko, we first abstract out the sensors. The corresponding
sensor code is eliminated from the TH code-base because the sensors are not needed by
the application logic. After the sensors have been abstracted, we select the six emotional
states from the emotion ontology that match those already used in TH. The final step
is to encode the structure of the application’s state information into application events.
This basic format of the state information is already defined, as the original TH logs the
information for its internal affect model.

Both CARE and Koko models can be thought of as having three phases, as outlined
in Table 1. The difference between the two architectures is how they choose to perform
those phases. For example, in CARE’s version of TH the environmental data and emo-
tional classifiers are written to files. The data is then processed offline and the resulting

affect model is injected into the application allowing TH to produce the emotional prob-
abilities.

Table 1. Three phases of CARE affect models

Description

1 Gather environmental data and emotional classifiers
2 Perform supervised ML techniques on the data and classifiers
3 Given environmental data produce emotional probabilities

Koko improves on the CARE architecture by eliminating the need for the appli-
cation to keep record of its environmental data and also by performing the learning
online. As a result, the Koko-based TH can move fluidly from phase 1 to phase 3 and
back again. For example, if TH is using Koko then it can smoothly transition from pro-
viding Koko with learning data, to querying for emotional probabilities, and return to
providing learning data. In CARE this sequence of transitions while possible, results in
an application restart to inject the new affect model.

This improvement can be compared to an iterative software engineering approach
versus the more rigid waterfall approach. CARE corresponds to the waterfall approach,
in that it makes the assumption that you have all the information required to complete
a stage of the process at the time you enter that stage. If the data in a previous stage
changes, you can return to a previous state but at a high cost. Koko follows a more
iterative approach by removing the assumption that all the information will be available
ahead of time and by ensuring that transitions to a previous state incur no additional
cost. As a result, Koko yields a more efficient architecture than CARE.

5 Discussion

This paper shows how software architecture principles can be used to specify a mid-
dleware for social affective computing. If affective computing is to have the practical
impact that many hope it will, advances in software architecture are crucial. Further,
the vocabulary of events and context attributes introduced here can form the basis of a
standard approach for building and hosting affective applications.

Game Integration. Due to the social and multiplayer nature of Koko, it cannot be con-
tained within a traditional gaming engine. However, Koko can interoperate with gaming
engines in a loosely coupled manner. To incorporate Koko into an existing game en-
gine API, the engine can simply provide a fagade (wrapper) around the Koko API. The
facade is responsible for maintaining a connection to the Koko service and marshalling
or unmarshalling objects from the engine’s data structures to those supported by the
Koko. Currently, Koko has service endpoints that support the communication of data
structures encoded as Java objects, XML documents, or JSON objects.

Affect Modeling. Existing appraisal theory applications are developed in a monolithic
manner [2] that tightly couples application and model. As a notable exception, EMA

provides a domain-independent framework that separates the model from the applica-
tion. Whereas EMA focuses on modeling virtual characters in a specific application,
Koko models human emotion in a manner that can cross application boundaries.

We adopt appraisal theory due to the growing number of applications developed
using that theory. Our approach can also be applied to other theories such as Affective
Dimensions [15], whose models have inputs and outputs similar to that of an appraisal
model. Likewise, we have adopted Elliot’s set of emotions because of its pervasiveness
throughout the affective research community. Its selection does not signify that Koko is
bound to any particular emotion ontology. Therefore, as the field of affective computing
progresses and more well-suited ontologies are developed, they too can be incorporated
into the architecture.

Virtual Agents. Koko’s interagent communication was developed with a focus on human-
to-human social interactions (e.g., booST). This does not limit Koko to only those in-
teractions and we have begun to explore the usage of Koko with human-to-virtual agent
interactions. Given the correct permissions, virtual agents (operating outside of Koko)
could request the user’s affective state in the same manner as agents internal to Koko
can. For example, the virtual agents models used in the ORIENT [9] and NonKin Vil-
lage [17] applications could access the affect state of the player and use that information
to enhance the agent’s decision making process.

Enhanced Social Networking. Human interactions rely upon social intelligence [4].
Social intelligence keys not only on words written or spoken, but also on emotional
cues provided by the sender. Koko provides a means to build social applications that
can naturally convey such emotional cues, which existing online social network tools
mostly disregard. For example, an advanced version of booST could use affective data
to create an avatar of the sender and have that avatar exhibit emotions consistent with
the sender’s affective state.

Future Work. Koko opens up promising areas for future research. In particular, we
would like to further study the challenges of sharing affective data between applications
and users. In particular we are interested in exploring the types of communication that
can occur between affective agents.

In a companion paper [19], we describe a methodology for building affect-aware,
social applications. We are interested in refining and enhancing that methodology for
gaming applications that incorporate affect.

References

1. J. Dias and A. Paiva. Feeling and reasoning: A computational model for emotional charac-
ters. In Progress in Artificial Intelligence, LNCS, 3808:127-140. Springer, 2005.

2. C. Elliott. The Affective Reasoner: A Process Model of Emotions in a Multi-agent System.
PhD thesis, Northwestern, 1992.

3. R.E. Filman, S. Barrett, D. D. Lee, and T. Linden. Inserting ilities by controlling communi-
cations. Communications of the ACM, 45(1):116-122, 2002.

4. D. Goleman. Social Intelligence: The New Science of Human Relationships. Bantam Books,
New York, 2006.

10.

11.
12.
13.
14.

15.
16.

17.

20.

J. Gratch, W. Mao, and S. Marsella. Modeling Social Emotions and Social Attributions.
Cambridge University Press, Cambridge, UK, 2006.

. J. Gratch and S. Marsella. Fight the way you train: The role and limits of emotions in training

for combat. Brown Journal of World Affairs, Vol X (1):63-76, Summer/Fall 2003.

. J. Gratch and S. Marsella. A domain-independent framework for modeling emotion. Journal

of Cognitive Systems Research, 5(4):269-306, 2004.

. R. S. Lazarus. Emotion and Adaptation. Oxford University Press, New York, 1991.
. M.Y. Lim, J. Dias, R. Aylett and A. Paiva. Intelligent NPCs for Education Role Play Game.

In F. Dignum, B. Silverman, J. Bradshaw, and W. van Doesburg, editors, Agents for Games
and Simulations LNAI In this volume, Springer, 2009.

S. McQuiggan, S. Lee, and J. Lester. Predicting user physiological response for interactive
environments: An inductive approach. In Proceedings of the Second Artificial Intelligence
and Interactive Digital Entertainment Conference, pages 60—65. AAAI Press, 2006.

S. McQuiggan and J. Lester. Modeling and evaluating empathy in embodied companion
agents. International Journal of Human-Computer Studies, 65(4):348-360, 2007.

A. Newell. Unified Theories of Cognition. Harvard University Press, Harvard, 1990.
OpenSocial Foundation. Opensocial APIs, http://www.opensocial.org, 2009.

A. Ortony, G. L. Clore, and A. Collins. The Cognitive Structure of Emotions. Cambridge
University Press, Cambridge, MA, 1988.

R. W. Picard. Affective Computing. MIT Press, Cambridge, MA, 1997.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Upper Saddle River, NJ, 1996.

B. Silverman, D. Chandrasekaran, N. Weyer, D. Pietrocola, R. Might, and R. Weaver.
NonKin Village: A Training Game for Learning Cultural Terrain and Sustainable Counter-
Insurgent Operations. In F. Dignum, B. Silverman, J. Bradshaw, and W. van Doesburg,
editors, Agents for Games and Simulations LNAI, In this volume, Springer, 2009.

. C. Smith and R. Lazarus. Emotion and adaptation. In L. A. Pervin and O. P. John, editors,

Handbook of Personality: Theory and Research, pages 609-637. Guilford Press, New York,
1990.

. D. J. Sollenberger and M. P. Singh. Methodology for engineering affective social appli-

cations. In Proceedings of the Tenth International Workshop on Agent-Oriented Software
Engineering, LNCS. In Press, Springer, 2009.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco, 2005.

