
Checking Correctness of Business Contracts via
Commitments∗

Nirmit Desai
NC State University

Raleigh, NC 27695-8206

nvdesai@ncsu.edu

Nanjangud C. Narendra
IBM India Research Lab

Bangalore, India

narendra@in.ibm.com

Munindar P. Singh
NC State University

Raleigh, NC 27695-8206

singh@ncsu.edu

ABSTRACT

Business contracts tend to be complex. In current practice, con-
tracts are often designed by hand and adopted by their participants
after, at best, a manual analysis. This paper motivates and for-
malizes two aspects of contract correctness from the perspective of
the preferences of the agents participating in them. A contract is
safe for a participant if participating in the contract would not leave
the participant worse off than otherwise. More strongly, a contract
is beneficial to a participant if participating in the contract would
leave the participant better off than otherwise.

This paper seeks to partially automate reasoning about the cor-
rectness of formally modeled business contracts. It represents con-
tracts formally as a set of commitments. It motivates constraints
on how cooperative agents might value the various states of com-
mitments. Further, it shows that such constraints are consistent and
promote cooperation. Lastly, it presents algorithms for checking
the safety and guaranteed benefits of a contract.

Categories and Subject Descriptors

K.4.4 [Electronic commerce]: Distributed commercial transac-
tions; I.2.11 [Distributed artificial intelligence]: Multiagent sys-
tems

General Terms

Design, Economics

Keywords

Contract verification, agreement modeling

1. INTRODUCTION
Interorganizational business interactions are typically defined by

(business) contracts. A contract describes the roles and responsibil-
ities of its participants, along with the typical value exchanges that
take place during contract enactment. In current practice, contracts
are defined in natural language, and are often ambiguous. Given
the size and complexity of business contracts, manual verification
is both expensive and error prone. Incorrect contracts, not being
compatible with the participants’ preferences, are either subverted
or carried out at some loss. Further, the risk of hidden hazards in

∗With partial support from the US National Science Foundation
under grant IIS-0139037.

Cite as: Checking Correctness of Business Contracts via Commitments,
Nirmit Desai, Nanjangud C. Narendra, and Munindar P. Singh, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16.,
2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

contracts adds friction to the economy, thus preventing potential
gains in trade.

As a motivating example, let’s consider a real-life business con-
tract [6]. Briefly, this contract is an agreement among Foamex,
AMFS, Foamtec, and a Customer. Foam products are to be man-
ufactured in Singapore and shipped to the Customer by AMFS.
AMFS proposes to obtain raw materials from Foamex, ship them
to Foamtec, obtain the finished product from Foamtec, and ship the
product to the Customer. The contract merely states the terms and
conditions under which the interorganizational interactions occur.
It may turn out to be unsafe or not beneficial for a participant.

A participant cannot easily determine (a) whether it would be
beneficial or safe to enter into this contract and (b) what additional
constraints it might place on its interactions to ensure safety and
obtaining a benefit. Whereas contracts often list failure conditions
and any associated penalties, a participant would like to ensure that
the contract is correct from its point of view, i.e., it is adequately
protected. Accordingly, this paper addresses the important question
of contract correctness: given (partial) knowledge of an agent’s
preferences, would it be safe or beneficial for that agent to enter
into a specific contract?

We represent a contract as a collection of the participants’ com-

mitments toward each other [15, 17]. Thus we understand the in-
teractions that occur during the enactment of a contract in terms
of how they affect the participants’ commitments according to a
specific life cycle (described shortly). Additional constraints on
interactions are captured via a protocol, understood as a set of co-
ordination requirements.

Figure 1: Commitments in the Foamtec contract

Figure 1 depicts the Foamtec contract via commitments. Here,
CC(x, y, p, q) means that x is committed y to bringing about q

if p is brought about. A contract would thus be enacted via state
changes on commitments. Each such change is valued (poten-
tially differently) by the participants. For example, AMFS’ paying
Foamex would garner a positive value for Foamex but a negative
value for AMFS.

The contributions of this paper are to the engineering and analy-
sis of contracts. It studies the correctness of contracts from the per-
spective of an individual participant. It proposes algorithms for de-

termining the valuation criteria for a participant under which a con-
tract is, respectively, safe or beneficial for that participant. These
algorithms are implemented in a prototype design tool, using which
a contract designer or agent implementer can explore the space of
contracts and the protocols that enact them. Although this paper’s
subject matter touches upon theories of games and rationality, it
makes no general contribution to those areas. Instead, it rationality
uses as a motivation and provides a basis for a soundness test. In
particular, we show that if our algorithms produce a solution, then
at least one pure-strategy Nash equilibrium exists.

Organization

Section 2 summarizes the key background on the commitment life
cycle and valuation constraints. Section 3 introduces new valuation
constraints, shows a model for the constraints, and formalizes def-
initions of correctness criteria. Section 4 presents our algorithms
for checking correctness. Section 5 discusses the related work and
some directions for future work.

2. BACKGROUND
This section reviews key background relating to commitments

and rationality, which informs our technical approach.

2.1 Commitments

Figure 2: Life cycle of commitments

CC(x, y, p, q) denotes that x is committed (roughly, obligated)
to y to bringing about q if p holds. Here p is called the precon-
dition and q the condition of the commitment. If the precondition
is T (true), it is a base commitment where the debtor is absolutely
committed to bringing about the condition. Otherwise, it is a con-
ditional commitment. For understanding contracts, a (conditional)
commitment corresponds to a (conditional) offer. A commitment
can be in one of five states: act (offer in force), exp (offer expired),
bas (base commitment; offer was taken up), sat (satisfied as the
condition is brought about), and vio (violated as the condition can-
not be brought about). Based on the above, some apparent states are
impossible: CC(x, y, p, q) cannot be bas or vio for any p(6≡ T), q;
CC(x, y, T, q) cannot be act or exp for any q. We abstract out any
deadlines associated with commitments and assume timeouts are
exogenous, meaning not controlled by the agents. Figure 2 shows
a simplified life cycle of a commitment, loosely based on previous
works [4, 7]. Operations cause commitment states to change.

Consider a scenario where a buyer and a seller are exchanging
goods for payment. A conditional commitment CC(buyer, seller,
goods, payment) : act, established via create, denotes an obliga-
tion from the buyer to the seller that if the goods are delivered, the
buyer will pay. In the event that the precondition goods holds, the
conditional commitment is detached and changes to a base com-
mitment CC(buyer, seller, T, payment) : bas. In the event that

payment holds, the buyer’s commitment is discharged. Commit-
ments do not imply temporal ordering between their conditions and
preconditions. For example, payment may happen before goods,
thus discharging the above conditional commitment.

Previous works describe the formal semantics of the commit-
ment operations, especially in the face of concurrency [4]. Other
considerations include whether a debtor eschews all responsibility
by delegating a commitment. Business scenarios can differ in this
regard. This paper’s examples involve retaining responsibility.

2.2 States and Transitions
The enactment of contracts, as specified via protocols, can be

captured as a transition system. The states of the transition system
consist of fluents; the transitions are labeled with the actions of
the agents. Actions may cause the value of the fluents to change,
thereby changing the state. By default, each action p causes a fluent
p to hold in the resulting state. Thus, in the following, p always
refers to a fluent caused by an action but not to the action itself.
The negation of p is written p; exactly one of p and p holds in each
state. Commitments and commitment conditions are fluents and
commitment operations are actions represented by corresponding
fluents. A ‘·’ denotes a precondition (which may or may not be T).
Agents assign values to the states of the world. The valuations of
actions are captured by valuations of the corresponding fluents.

2.3 Valuations
Each agent values each state privately and independently of other

agents. For simplicity, the following examples assume that money
is valued as itself. However, our approach does not depend on such
an assumption. The values to an agent a of a state S and a fluent p

are denoted by va(S) and va(p), respectively. We assume that the
valuations do not change during contract enactment.

• If a fluent p corresponds to an action performed by a, then
va(p) is the cost of performing the action. This valuation
does not take into account the valuation that the agent has for
other effects caused by the action. For example, if p repre-
sents the fact that a paid $5, then the value to a of performing
p is −$5. An effect of paying $5 may bring about other flu-
ents besides p that a values independently of va(p). If p does
not correspond to an action of a, va(p) may be positive if a

benefits from p. For example, if p is a fluent representing the
fact that a has received $5 from another agent, then the value
to a of p may be $5.

• The value to a of a fluent CC(a, b, ·, q) : sat does not take
into account the values of the actions a performs to satisfy the
commitment. For example, the value to a of CC(a, b, T, $5) :
sat disregards the value of paying $5, but may include an im-
provement in a’s reputation resulting from its satisfaction.

• The value to a of a fluent CC(a, b, T, q) : vio may be the
penalty a has to pay for violating the commitment.

• The value to b of a fluent CC(a, b, ·, q) : sat does not take
into account the value to b of the condition q that a brings
about to satisfy the commitment. For example, $5 value of
the condition is separate from vb(CC(a, b, T, $5) : sat).

• The value to b of a fluent CC(a, b, T, q) : vio does not take
into account the missed value of the condition q that a fails
to bring about. For example, vb(CC(a, b, T, $5) : vio) may
be the compensation to b paid by the legal context in which
the commitment exists.

2.4 Basic Valuation Constraints
Given the above basic valuations, we adopt from Yolum & Singh

[19], the following constraints on how agents may value the various
states that may arise during enactment of business contracts. For a
given business environment and a business contract enacted in it,
only a subset of these value constraints may hold. Also, we assume
that the agents satisfy or violate commitments entirely by choice
and not because of other constraints. For example, even though
an agent has no control over natural calamities, it may choose to
allocate sufficient resources to satisfy its commitments. If it does
not allocate sufficient resources, and the commitments are violated,
that is interpreted as being the agent’s choice.

Performing an action always incurs a cost to the performing agent.

If a fluent p corresponds to an action performed by a, then

va(p) < 0 (1)

This does not take into account the valuation that the agent
has for other effects of the action. This constraint rules out
altruistic agents, who may derive positive value out of per-
forming actions for others.

Debtors value a base commitment higher than the deed, though

both are negative.

va(q) < va(CC(a, b, T, q) : bas) < 0 (2)

Since promising to perform an action is better than perform-
ing the action itself, the debtor prefers the former over the
latter. Since bringing about the condition q always incurs a
cost to the debtor, for the debtor, a base commitment is worse
than having no commitment for q.

Creditors assign positive value to the condition of the commit-

ment. If CC(a, b, p, q) : act, then

vb(q) > 0 (3)

That is, commitments are always favorable to creditors.

Creditors prefer the deed over a base commitment to perform the

deed, and both are positive.

vb(q) > vb(CC(a, b, T, q) : bas) > 0 (4)

This captures the intuition that since debtors may choose to
violate their commitments, creditors prefer to have the con-
dition brought about over having a base commitment. Also,
being creditor of a base commitment is better than being
creditor of no commitment because, with a commitment, the
prospect of satisfying the commitment remains alive.

Valuation distributes over conjunction of fluents.

v(p ∧ q) = v(p) + v(q) (5)

This constraint rules out combinatorial and substitutional val-
uations. Combinatorial valuations apply when the value of a
combination of items is greater than the sum of the value of
individual items. Substitutional valuations apply when the
value of a combination of items is less than the sum of the
values of the individual items.

3. PROPOSED TECHNICAL FRAMEWORK
This section introduces the enhancements to the above that en-

able us to formalize and develop algorithms for contract checking.

3.1 Advanced Valuation Constraints

Debtors derive positive value by satisfying commitments.

va(CC(a, b, ·, q) : sat) > 0 (6)

This rules out agents who do not prefer to keep their commit-
ments. It also rules out environments where keeping commit-
ments does not increase the reputation of the agent.

For debtors, the benefit of satisfying commitments does not offset

the cost of bringing about the condition.

va(CC(a, b, ·, q) : sat) + va(q) < 0 (7)

This rules out environments wherein a debtor values repu-
tation gain above the cost of discharging the corresponding
commitment.

For debtors, the penalty of violation is worse than the cost of dis-

charging a commitment.

va(CC(a, b, T, q) : vio) < va(q) + va(CC(a, b, T, q) : sat)
(8)

This rules out environments in which the violation of a com-
mitment may be a better choice than satisfying the com-
mitment. Thus, unlawful agents who prefer to violate their
commitments are ruled out. Also, lawless business envi-
ronments where punishments for violators are nonexistent
or lenient are ruled out. This constraint holds for multiple
commitments: agents may still choose to violate low-priority
commitments to ensure satisfaction of high-priority commit-
ments, when both cannot be satisfied.

Debtors create commitments that are beneficial to them. For an
agent a if CC(a, b, p, q) : act, then

va(p) + va(q) + va(CC(a, b, ·, q) : sat) > 0 (9)

This rules out irrational agents who create commitments that
may not benefit them. In the case of nested commitments,
this applies only to the outermost commitment: the inner
commitments may not all be beneficial individually, but the
outer commitment as a whole must be beneficial. A corol-
lary of this constraint is that debtors prefer creating condi-
tional commitments over inaction. However, the value of an
active commitment is bounded by the benefit from the trade
corresponding to the commitment.

va(p) + va(q) + va(CC(a, b, ·, q) : sat) >

va(CC(a, b, p, q) : act) > 0 (10)

Creditors assign no value to a discharged commitment beyond the

value of the condition.

vb(CC(a, b, ·, q) : sat) = 0 (11)

Creditors assign no value to a violated commitment beyond any

compensation from the context.

vb(CC(a, b, T, q) : vio) = 0 (12)

Debtors and creditors assign no value to an expired commitment.

va(CC(a, b, p, q) : exp) = 0 (13)

vb(CC(a, b, p, q) : exp) = 0 (14)

An expired conditional commitment is akin to an expired of-
fer and has the same value as there being no commitment.

3.2 Models of Valuation Constraints
The above constraints reflect our intuitions about valuations of

commitments and states by rational agents. We now show that the
above constraints have models and thus are consistent. We also
show via an example that these models promote trade when there
are gains to be made by the parties. The following section illus-
trates the importance of commitments for encouraging cooperation
in business environments.

A protocol enacts a contract. In the following, a strategy of an
agent determines its choice of actions at each state of the proto-
col enacting the contract. An outcome of a strategy is a state in
which the protocol may terminate if the agent follows the strategy.
A strategy is dominant for an agent if the agent values all possible
outcomes of the strategy higher than the possible outcomes of al-
ternative strategies, regardless of the strategies of other agents. A
pure-strategy Nash equilibrium is a set of deterministic strategies,
one for each agent, such that no agent can garner higher value by
unilaterally changing its current strategy.

3.2.1 Commitments and Rationality

As an example, let us assume that a buyer and a seller have
agreed to trade goods for money. Also, both the buyer and the
seller are rational and have the valuations as shown in Table 3.2.1.
These valuations are used in the following for showing that (1)–
(14) have a model and for computing the pure-strategy Nash equi-
libria. However, like (1)–(14), the preferences (15) and (18)–(19)
originate from intuition and not from the valuations of Table 3.2.1.
Thus, verifying that the valuations of Table 3.2.1 is a model of (1)–
(14), (15), and (18)–(19) means that the intuitions are consistent.
For brevity, in the following, g, p, Csb, and Cbs denote goods,
pay, CC(S, B, pay, goods), CC(B, S, goods, pay), respectively.

g g p p

Seller −4 0 5 0
Buyer 6 0 −5 0

Csb Cbs

act bas sat vio act bas sat vio

Seller 0.5 −3 2 −3 0 3 0 0
Buyer 0 4 0 0 0.5 −4 2 −4

Table 1: Valuations of the buyer and the seller in purchase

According to these valuations, like in usual practice, a trade is
beneficial to both parties. First, let us assume an environment
where commitments are not enforced. This is typical of open en-
vironments without any regulating agency and corresponds to as-
sumptions commonly made in game-theoretic approaches. In this
environment, the only possible states are S1 = {g ∧ p}, S2 =
{g ∧ p}, S3 = {g ∧ p}, and S4 = {g ∧ p}. Because the seller is
rational, it values these states with the following relationships.

vs(S2) > vs(S4) > vs(S1) > vs(S3) (15)

The best outcome for the seller is S2: it receives payment but
doesn’t send the goods. If commitments are not enforced, the seller
would try to achieve S2. Similarly, the buyer would prefer receiv-
ing goods and not sending a payment.

By applying (5) to (15), and canceling out terms on both sides,
we obtain the following inequalities.

vs(g) > vs(g) (16)

vs(g) + vs(p) > vs(g) + vs(p) (17)

Table 2 shows, in each cell, the valuation of the seller followed
by that of the buyer. It shows the pure-strategy Nash equilibrium in

Send payment Do not send payment

Send goods 1 1 −4 6
Do not send goods 5 −5 0 0

Table 2: Pure-strategy Nash equilibrium without commitments

bold. This means that with the valuations of Table 3.2.1, a rational
buyer and seller would not trade.

Now, let us assume a commitment Csb = CC(S, B, pay, goods)
exists between the buyer (B) and the seller (S). Hence, the seller has
committed to sending the goods if payment is received. Also, Con-
straints (1)–(14) are in force. For brevity, let g denote goods and
let p denote pay. Then, the only possible states are:

S5 = {Csb : act ∧ g ∧ p} S6 = {Csb : bas ∧ g ∧ p}
S7 = {Csb : sat ∧ g ∧ p} S8 = {Csb : sat ∧ g ∧ p}
S9 = {Csb : vio ∧ g ∧ p}

For the seller to send goods, and still benefit from the contract,
it should value these states with the following inequalities while
complying with the constraints in force.

vs(S8) > vs(S5) > vs(S7) (18)

vs(S8) > vs(S9) (19)

The seller’s valuations reflect the following intuitive preferences:
commitment satisfaction above commitment violation, due to (19);
trade better than no trade; and no trade better than trading without
a commitment, due to (18). Both (19) and (18) can be inferred
from (1)–(14), implying that no additional constraints are needed
to motivate the seller to cooperate.

3.2.2 Consistency of Constraints

Now let us show that (1)–(14) are consistent with (15) and (18)–
(19). Doing so will prove that there are models of the valuation
constraints such that the agents can discharge their commitments
and still benefit individually.

By applying (5) to (18)–(19), and canceling out terms, we obtain
the following inequalities.

vs((Csb : bas) + p) > vs((Csb : act) + p) (20)

vs((Csb : act) + g) > vs((Csb : sat) + g) (21)

vs((Csb : sat) + g + p) > vs((Csb : vio) + g + p) (22)

To prove that (16)–(17) and (20)–(22) along with (1)–(14) are
consistent, demonstrating a model is sufficient. It is easy to verify
that the valuations of Table 3.2.1 satisfy all of the above constraints
and, thus, Table 3.2.1 is a model.

A similar result can be obtained from the perspective of the buyer.
The result trivially extends to generalized commitments, the trad-
ing example discussed here is merely an illustration. However, as
shown in Table 3, the pure-strategy Nash equilibrium with just one
commitment does not promote trade: the commitment motivates
the seller but not the buyer. Note that the pure-strategy Nash equi-
librium is not a dominant strategy for the seller, but is for the buyer.

Send payment Do not send payment

Send goods 3 1 −2 6
Do not send goods 2 −5 0 0

Table 3: Pure-strategy Nash equilibrium with Csb

Let us assume that the buyer and the seller both have commit-
ments to each other: Cbs = CC(B, S, goods, pay) and Csb =
CC(S, B, pay, goods). Constraints (1)–(14) along with (16)–(17)
and (20)–(22) are in force. Thus, the only possible states are:
S10 = {Csb : act ∧ Cbs : act ∧ p ∧ g}

S11 = {Csb : bas ∧ Cbs : sat ∧ p ∧ g}
S12 = {Csb : sat ∧ Cbs : bas ∧ p ∧ g}
S13 = {Csb : sat ∧ Cbs : sat ∧ p ∧ g}
S14 = {Csb : sat ∧ Cbs : vio ∧ p ∧ g}
S15 = {Csb : vio ∧ Cbs : sat ∧ p ∧ g}

Given the valuations of Table 3.2.1, the strategy to trade (send
goods and send payment, respectively) is the dominant strategy and
is one of the pure-strategy Nash equilibria as shown in Table 4. Its
dominance means that no additional constraints need to be enforced
for motivating cooperation.

Send payment Do not send payment

Send goods 3 3 −2 2
Do not send goods 2 −3 0 0

Table 4: Pure-strategy Nash equilibria with Csb and Cbs

3.3 Contract Correctness
This section defines basic terminology and describes some inter-

esting correctness properties for contracts via examples.
A contract C is represented as a set of commitments. For exam-

ple, the contract between a buyer and a seller engaged in the pur-
chasing can be represented as C={CC(S, B, pay, goods), CC(B,
S, goods, pay)}.

DEFINITION 1. A protocol is a specification of a set of coordi-

nation constraints on the actions of the agents.

We specify two kinds of coordination constraints. A precedence
constraint a ≺ b means that a must occur before b. A mutual
exclusion constraint a XOR b means that exactly one of a or b

must occur. For example, the protocol for the above example may
be specified as P={pay ≺ goods}.

DEFINITION 2. An agent is rational if it always chooses a course

of action that leads to the most beneficial states in the foreseeable

future.

Informally, the foreseeable future is the set of future states that
are known to the agents making the choice. In our formulation,
the protocol yields the known future states. A rational agent would
choose the course of action depending on whether or not it knows
the other agents to be rational. If all agents know each other to be
rational, and know that each of them knows that, and so on, then
the agents are publicly rational. We only consider publicly rational
agents in the following.

DEFINITION 3. A contract is rationally beneficially omni-correct
(rbo) with respect to a set of value constraints if it guarantees that

all agents benefit from participating in it as long as the specified

constraints hold, regardless of the protocol.

For example, with (1)–(14), in the contract C={CC(S, B, pay,
goods), CC(B, S, goods, pay)}, both the buyer and the seller ben-
efit regardless of the temporal order of pay and goods.

For practical significance, it is more useful to define correctness
from the perspective of individual agents. A contract is correct
from the perspective of an agent if the agent benefits from it.

DEFINITION 4. A contract is rationally beneficially uni-correct
(rbu) from the perspective of an agent with respect to a set of value

constraints if it ensures that the agent benefits from participating in

it as long as the specified constraints hold.

Thus, rbo-correctness is equivalent to rbu-correctness for each
agent. Consequently, we need only an algorithm for checking rbu-
correctness: rbo-correctness can be inferred from it. Also, rbo-
correctness implies rbu-correctness for each agent. Guaranteed
benefit may be unnecessarily strict. It may be sufficient to check
if an agent would not incur losses by participating in the contract.

DEFINITION 5. A contract is rationally safely omni-correct (rso)

with respect to a set of value constraints if it ensures that no agent

incurs losses from participating in it as long as the specified con-

straints hold, regardless of the protocol.

As for benefit, safety from the perspective of a rational agent can
be defined as rsu-correctness. Thus, rso-correctness is equivalent to
rsu-correctness for each agent. For example, C={CC(x, y, p)} is
rsu-correct for y relative to the valuations V={vy(p) > 0, vx(p) <

0}. However, C is not rsu-correct for x as it can only lose by par-
ticipating in this contract.

DEFINITION 6. A contract is rationally beneficially omni-correct
under a protocol (rbop) with respect to a set of value constraints

and a protocol if it ensures that all agents benefit from participat-

ing in it as long as the specified constraints hold and the specified

protocol is followed.

For example, in the contract C={CC(B, S, pay, goods)}, given
(1)–(14), both the buyer and the seller benefit as long as the proto-
col P={pay ≺ goods} is followed. Absent the protocol, the seller
may deliver the goods, thus discharging CC(B, S, pay, goods) but
the buyer will not pay if vB(pay) < 0 (and if it is rational). Thus,
this contract would be harmful to the seller.

Similarly, rbup-correctness can be defined from the perspective
of a rational agent. In the above example, if the protocol does not
constrain the order of the seller’s and buyer’s actions, the contract
is not rbup-correct for the seller. Protocol-based correctness too
can be considered relative to safety instead of benefit. Thus, we
can define rsup-correctness and rsop-correctness.

This paper presents algorithms for checking rsup and rbup cor-
rectness. However, rsop and rbop correctness can be inferred from
rsup and rbup correctness for every agent, respectively. Also, rsu
and rbu correctness are special cases of rsup and rbup correctness
with no coordination constraints, respectively. Thus, the algorithms
presented in the following can also be used to check rsu, rbu, rso,
and rbo correctness of contracts.

Other interesting properties include correctness relative to partial
knowledge of constraints and knowledge of the rationality of only
a subset of agents. We defer these cases as well as correctness from
the perspective of an irrational agent to future study.

4. CHECKING CORRECTNESS
This section describes (1) our overall methodology and tools for

semiautomatically checking two kinds of contract correctness prop-
erties and (2) algorithms for checking these correctness properties.

4.1 Methodology
Figure 3 depicts the steps of our methodology. The dashed edges

denote manual steps whereas the solid edges denote steps auto-
mated by tools. A contract designer specifies and translates a legal
contract into commitments (steps 1 and 2). Methodologies similar
to those of Milosevic et al. [11] can be adapted for commitments.
The contract designer also specifies the protocol coordination con-
straints (step 3).

We employ the causal logic C+ [8] to declaratively specify the
protocols and commitments and the tool CCalc [16] for generating

Figure 3: A methodology for checking correctness of contracts

a transition system for the specified protocol (step 4). Our algo-
rithms operate on a transition system and output a Boolean for-
mula of inequality constraints on the valuations of various protocol
states (step 5). The Boolean formula is then evaluated via a SAT
solver using the inequalities that hold based on the constraints of
Sections 2.4 and 3.1 (step 6). However, not all inequalities can
necessarily be resolved by those constraints. This is because the
states may contain multiple commitments such that they cannot be
ranked according to the agent’s preferences. Also, a business part-
ner’s preferences may not be known. Either the contract designer
decides on the truth of such inequalities (step 7) or the solver as-
sumes them to be false. The truth or falsity of the overall formula
reflects whether or not the contract possesses the concerned prop-
erty. Depending on the correctness result, the contact designer may
adjust the terms of the contract or the coordination constraints (step
8). We have prototyped the above tools for such semiautomatic cor-
rectness checking of formally specified contracts and protocols.

4.2 Algorithms
Given the constraints imposed on the preferences of the agents

due to rationality and the definitions of the various kinds of correct-
ness properties, we need algorithms to check whether a given con-
tract and protocol possess these properties. This section presents
an algorithm to check rbup-correctness and describes how an al-
gorithm for rsup-correctness can be derived from it. As described
above, these algorithms can also be used to compute or infer other
correctness properties.

Figure 4: Transition system for a purchase protocol

We illustrate the algorithms with a purchase protocol that adds
an offer message to the above pay-goods example. The seller (S)
makes an offer that creates the commitment. Payment and goods
can be exchanged in any order. Thus, the only coordination con-
straints are P={offer ≺ offerpay, offer ≺ offergoods}. Figure 4
shows the corresponding transition system generated via CCalc.

From each state, multiple agents may act simultaneously. Thus,
each transition may have multiple actions, one for each agent. Tran-
sitions are labeled with conjunctions of action literals. Action lit-
erals can be positive or negative, respectively denoting the occur-
rence or nonoccurence of an action. A transition can have at most
one action literal from an agent. If protocol constraints allow only
the nonoccurrence of an action from a state, then its literal is dis-
carded from the transition label. A timeout may cause a transition
that is labeled with only negative literals and is not a self-loop. For
example, s1 → s2 is a timeout transition.

A protocol state is transient if it has at least one outgoing timeout
transition. For example, s1 is a transient state in Figure 4. An agent
x controls a transition ti via an action α, denoted by controls(x, ti,

α), if α is an action of x and is required for the transition. An agent
x controls a state si via α, denoted by controls(x, si, α), if for at
least one of the outgoing transitions ti of the state, controls(x, ti,

α) holds. For example, the seller and the buyer both control s1. A

transition ti from si to sj is denoted by si
ti→ sj and a path from

si to sj is denoted by si ; sj .
A state has a timeout transition for each commitment whose state

is either act or bas. Upon timeout, act is replaced by exp and bas

is replaced by vio.
A state si is a terminal state, denoted by terminal(si), if it is not

the start state and not a transient state such that: (a) it has no outgo-
ing transitions or (b) all agents that control si would choose to stay
in that state. If (a), then the condition for the state being terminal,
denoted by cond(terminal(si)), is true. Otherwise, the condition
reflects whether or not all agents choose to stay in the state. For
example, s4 is a terminal state as long as vb(s4) > vb(s6).

An action β is an alternative to an action α of x at state si,
denoted by alt(β, α, si, x), if β and α are different named actions or
β and α have opposite polarity. For example, an alternative action
of pay at s1 for the buyer is ¬pay.

An action α requires an action γ at state si, denoted by req(α,

γ, si), if on all transitions from si where α occurs, γ also occurs.
The purchase example does not demonstrate this relationship.

In the following, A is the set of all (rational) agents, Ω the set of
all actions, and T the set of all transitions in the given protocol.

Algorithm 1 presents choice() that returns an expression that re-
flects whether or not x will choose α at si. Intuitively, x will choose
α if it is better than all other alternatives β of α.

Algorithm 1: choice(x, si, α): Check if x will choose α at si

conj← TRUE;1

foreach β ∈ Ω:alt(β,α,si,x) do2

conj← conj · “∧” · better(x,si,α,β);3

return conj ;4

Algorithm 2 presents better() that returns a logical expression
that reflects whether α is better than β for x at si. This means that
for all transitions that x controls via α at si (a) all required actions
are chosen by the concerned agents (lines 3–4), and either (b) if the
transition is to a terminal state sj , then for all the terminal states
sβ reachable from si via β: either (1) sj is better than sβ , or (2)
the path to sβ will not be chosen, or (3) the condition for either sj

or sβ being terminal does not hold (lines 5–8), or (c) if sj is not a

terminal state then, at least one action will be chosen at sj .

Algorithm 2: better(x, si, α, β): Check if for x α is better than
β at si

conj← TRUE;1

foreach ti ∈ T at si: controls(x,ti,α) do2

foreach y ∈ A,y 6= x: controls(y,ti,γ) ∧ req(α,γ,si) do3

conj← conj · “∧” · choice(y,si,γ);4

if si
ti→ sj:terminal(sj) ∨ si = sj then5

foreach sβ 6= sj: terminal(sβ) ∧ si ; sβ do6

expr←7

“(vx(sj) > vx(sβ) ∨ ¬cond(terminal(sj)) ∨
¬cond(terminal(sβ)) ∨ ¬path(si ; sj))”;
conj← conj · “∧” · expr;8

else9

expr← FALSE;10

foreach z ∈ A:controls(z,sj ,δ) do11

expr← expr · “∨ (” · conj · “∧” choice (z, sj ,12

δ) “)”;

conj← expr;13

return conj ;14

Verify that neither the expression returned by choice(s, s0, offer)

nor the expression returned by choice(s, s0, ¬offer) can be satis-
fied. When neither expression can be satisfied, this implies that
there is no dominant pure-strategy Nash equilibrium for the given
agent (as Section 3.2 discusses for the one-commitment case).

PROPOSITION 1. [Soundness] From a start state, if choice(x,
s0, α) returns a satisfiable expression, and the valuations are con-

sistent with (1)–(14), there exists a pure-strategy Nash equilibrium.

Proof. Say choice(x, s0, α) returns a satisfiable expression. This

implies that one of the agents x has a choice from s0 that ensures

that for all possible terminal states sj from s0, x is better off than

all possible terminal states sβ possible by doing β from s0 (line 7

in Algorithm 2). This implies that x will always unilaterally choose

α from s0. Also, in subsequent states, on the path to the chosen

terminal states, other agents must have chosen at least one action

(lines 11–13 in Algorithm 2). Say a Nash equilibrium does not ex-

ist. This implies that for at least one agent, there is a strategy better

than its current choice. Also, from the resulting set of chosen strate-

gies (one per agent), again, there is another agent that can benefit

by changing its choice, and so on. But, for x and the other agents

with their chosen actions, there are no better alternatives (lines 2–

3 in Algorithm 1). Thus, no agent would change its strategy. Thus,

an equilibrium must exist.

PROPOSITION 2. [Incompleteness] From a start state, although

choice(x, s0, α) does not return a satisfiable expression, and the

valuations are consistent with (1)–(14), there may exist a pure-

strategy Nash equilibrium.

Proof. To prove incompleteness, a case where choice() returns an

unsatisfiable expression even though a Nash equilibrium exists is

sufficient. Figure 5 shows such a case. Say x controls α and y

controls β. Also, vx(β) > 0 and vy(α) > 0. There are no commit-

ments between x and y. However, the valuations vx(s8) > vx(s10)
> vx(s7) > vx(s9) are consistent with (1)–(14). The Nash equi-

librium is for both the agents to not act. However, choice() for all

actions from s7 would return unsatisfiable expressions.

Algorithm 3 presents a method to check rbup-correctness of con-
tracts. If an expression returned by rbup-correct(si, sr, x) can be

Figure 5: A protocol for proving incompleteness of choice

satisfied, it means that the contract guarantees that the protocol ter-
minates in a state better than sr for x starting at si. A call to rbup-

correct(s0, s0, x) would check the same from the starting state s0.
Algorithm 3 checks that for all agents z (including x) that may act
from si, and make a choice to do γ, all terminal states sj possible
as a result of γ at si are beneficial to x, i.e., (vx(sj) > vx(sr)).

Algorithm 3: rbup-correct(si, sr , x): Check rbup-correctness
relative to sr from the perspective of x starting at state si

conj← TRUE;1

foreach z ∈ A, γ ∈ Ω:controls(z,si,γ) do2

conj← conj · “∧” · choice(z,si,γ);3

foreach ti ∈ T:controls(z,ti,γ) do4

if si
ti→ sj:terminal(sj) ∨ si = sj then5

expr←6

“(vx(sj) > vx(sr) ∨ ¬cond(terminal(sj)))”;
conj← conj · “∧” · expr;7

else8

conj← conj · “∧” · rbup-correct (sj , sr , x);9

return conj ;10

The algorithm for checking rsup-correctness is not presented here.
This is because the only difference between safety and benefit is
that instead of checking (vx(sj) > vx(sr)) as in rbup-correct
(line 6), we would check for (vx(sj) ≥ vx(sr)) in rsup-correct.

PROPOSITION 3. [Safety] rsup-correct(s0, s0, x) returns a sat-

isfiable expression if the valuations are consistent with (1)–(14).

Proof. If x has no choice from s0 that is safe, x will not act, remain

in s0, and be safe as vx(s0) ≥ vx(s0). If x does not control s0,

as a creditor it can let the unsafe commitments created by the other

agents expire, and still be safe. Due to (9), x will not act to create

a commitment that does not benefit it as a debtor.

However, an algorithm for rsup-correctness is useful because it
enables a designer to explore if progress can be made safely and
how knowledge of the truth or falsity of a subset of the inequality
constraints affects the outcome.

5. DISCUSSION
This paper addresses the important problem of reasoning about

the correctness of business contracts. Generic correctness check-
ing of business contracts via low-level representation (such as finite
state machines) has only limited business applicability. Instead, we
focus on the value that contract execution would bring to the par-
ticipants. We present a valuation model based on earlier work on

commitments, by representing a contract as a collection of commit-
ments, with values associated with satisfying or violating commit-
ments. We define correctness properties for contracts and present a
methodology and algorithms for verifying them.

5.1 Literature
Checking business contracts for correctness is an active research

area. Molina-Jiménez et al. [12] present a technique for checking
contract correctness by modeling the contract as a finite state ma-
chine (FSM). They map the rights and obligations extracted from
the clauses of the contract into the states, transition and output func-
tions, and input and output symbols of a FSM. Molina-Jiménez et

al. can verify that the clauses stipulated in the contract are observed
when the contract is executed. However, they verify the correctness
of a contract as stated. By contrast, we investigate the different vari-
ants by which the contract can be executed, and their relative values
to participating agents. In a similar vein, Wan & Singh [17] present
a method to verify a collection of multiparty commitments for cor-
rectness, and produce executions under which progress takes place.
However, the notion of correctness there is limited to preventing
deadlock, and ignores the valuations of agents. Our basic valuation
constraints were originally proposed by Yolum & Singh [19]. How-
ever, their emphasis is on rules via which agents make increasingly
strong commitments toward each other to arrive at an agreement
while minimizing the risks.

Governatori et al. [9] discuss the compliance of business pro-
cesses with business contracts. They model the rights and obli-
gations of participating agents, and present general guidelines for
translating deontic logic expressions into business process tasks ex-
pressed in a language such as BPMN [13]. Governatori et al. seek
to ensure that a business process adheres to a contract. By contrast,
we check the correctness of contracts.

Radha Krishna et al.’s contract modeling framework EREC for-
mally represents a business contract along with the data and process
models that realize it [10]. Although EREC does not focus on con-
tract correctness, it would be worthwhile to investigate how it can
be combined with our commitment-based approach.

Our protocol scenario generation approach is inspired by Chopra
& Singh’s work on contextualizing protocols [3]. They provide ex-
amples of contextualizations such as, (for purchase) return-refund,
reminder, and pay-before-goods. We introduced considerations of
rationality and additional rules for eliminating infeasible scenarios.
Expanding our protocol scenario generation to represent domain-
specific customizations would be a fruitful direction.

Winikoff [18] presents a similar commitment-based interaction
generation approach. However, it focuses only on designing agent
interactions based on the commitments given. Bentahar et al. [2]
present a formal semantics for a combined commitment and ar-
gumentation network. This may be used in our work to support
argumentation. Argumentation may be needed for implementing
mid-stream protocol adaptations due to exceptions.

The e3value project [5] is the closest to our work. It presents a
model of the value exchanges that occur during business-to-business
interactions. However, it lacks an account of correctness as devel-
oped here. In a similar vein, Pijpers & Gordijn [14] show how to
derive business process models from value models. Baldoni et al.

[1] present a language and approach for verifying conformance of
a set of agent interactions to a defined protocol. The verification
is based on modeling the protocol and interactions as finite-state
automata, and comparing the two. Our work, by contrast, has a
broader scope, since it views ensuring correctness from the con-
tract perspective.

5.2 Future Work
Besides the possibilities discussed above, this topic opens up

several avenues for further research, of which we list a few. One,
we will augment our tools so that they produce explicit counterex-
amples, which can be used to refine a contract. Two, we will en-
hance our analysis technique to provide global contract correctness
valuations and guarantees. Three, we will consider further problem
scenarios so as to construct a comprehensive methodology.

6. REFERENCES
[1] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti.

Verification of protocol conformance and agent
interoperability. CLIMA VI, pp. 265–283, 2005.

[2] J. Bentahar, B. Moulin, J.-J. C. Meyer, and B. Chaib-draa. A
logical model for commitment and argument network for
agent communication. AAMAS, pp. 792–799, 2004.

[3] A. K. Chopra and M. P. Singh. Contextualizing commitment
protocols. AAMAS, pp. 1345–1352, 2006.

[4] N. Desai, A. K. Chopra, and M. P. Singh. Representing and
reasoning about commitments in business processes. AAAI,
pp. 1328–1333, 2007.

[5] E3Value. 2007. http://www.e3value.com/.

[6] Foamex, AMFS, and Foamtec. Manufacturing agreement.
http://contracts.onecle.com/admat/foamtec.mfg.1998.01.30.shtml.

[7] N. Fornara and M. Colombetti. Defining interaction
protocols using a commitment-based agent communication
language. AAMAS, pp. 520–527, 2003.

[8] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and
H. Turner. Nonmonotonic causal theories. Artificial

Intelligence, 153(1-2):49–104, 2004.

[9] G. Governatori, Z. Milosevic, and S. W. Sadiq. Compliance
checking between business processes and business contracts.
EDOC, pp. 221–232, 2006.

[10] P. R. Krishna, K. Karlapalem, and D. K. W. Chiu. An EREC

framework for e-contract modeling, enactment and
monitoring. Data & Know. Engg., 51(1):31–58, 2004.

[11] Z. Milosevic, S. W. Sadiq, and M. Orlowska. Translating
business contracts into compliant business processes. EDOC,
pp. 211–220, 2006.

[12] C. Molina-Jiménez, S. K. Shrivastava, E. Solaiman, and J. P.
Warne. Run-time monitoring and enforcement of electronic
contracts. Elect. Comm. Res. Appl., 3(2):108–125, 2004.

[13] OMG. Business process modeling notation, 2007.
http://bpmn.org/.

[14] V. Pijpers and J. Gordijn. Bridging business value models
and process models in aviation value webs via possession
rights. HICSS, p. 175, 2007.

[15] M. P. Singh. An ontology for commitments in multiagent
systems. Art. Intell. & Law, 7:97–113, 1999.

[16] Texas Action Group at Austin. The causal calculator
CCALC. http://www.cs.utexas.edu/users/tag/cc/.

[17] F. Wan and M. P. Singh. Formalizing and achieving
multiparty agreements via commitments. AAMAS,
pp. 770–777, 2005.

[18] M. Winikoff. Designing commitment-based agent
interactions. IAT, pp. 363–370, 2006.

[19] P. Yolum and M. P. Singh. Enacting Protocols by
Commitment Concession. AAMAS, pp. 116–123, 2007.

