
Specifying and Resolving Preferences Among Agent
Interaction Patterns ∗

Ashok U. Mallya
†

Veraz Networks
926 Rock Avenue, Suite 20,
San Jose, CA 95131, USA

amallya@veraznet.com

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
A strength of commitment protocols is that they enable agents to
act flexibly, thereby enabling them to accommodate varying local
policies and respond to exceptions. A consequent weakness is that
commitment protocols thus fail to distinguish between possible ex-
ecutions that are normal and those that may be allowed but are not
ideal. This paper develops an approach for specifyingpreferences
among executions that are allowed by a protocol. It captures sets
of executions via an event constraint specification language and
gives them a denotational characterization based on branching-time
models. This paper develops algorithms for choosing the best ex-
ecution path by considering the interplay between the preference
specification of a protocol and local policies of agents interacting
using the protocol, thereby giving the specifications a natural op-
erational characterization. The value of the concepts developed is
illustrated by its application to a recent practical framework for pro-
tocols called OWL-P. Further, the paper shows that the operational
and denotational characterizations of preference specifications co-
incide.

Categories and Subject Descriptors
I..2.11 [Distributed Artificial Intelligence]: Multiagent Systems

1. INTRODUCTION
Commitment protocols capture the essence of the desired inter-

actions in high-level terms. Protocols regulate the externally ob-
servable, social behavior of agents, distinguishing what is allowed
from what is not. Current approaches, however, do not make any
finer distinctions about what isnormaland what is not.

This paper is about the main consequences of taking a knowledge
engineering stance toward commitment protocols.

∗This research was supported by the NSF under grant DST-
0139037.†Ashok Mallya was a full-time doctoral student at NCSU when this
paper was submitted; he has since graduated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

• To accommodate the openness of the given system, proto-
cols must apply in a wide range of contexts. That is, they
must generally allow multiple execution paths. For example,
a purchase protocol should allow the possibility that payment
might be made before delivery of goods, in which case a re-
fund should be made if delivery is unsuccessful.

• To accommodate agent autonomy, protocols must enable the
participating agents to choose their actions and responses to
the above kinds of conditions as they see fit. For example,
a purchase protocol should allow the possibilities that nego-
tiations may fail, that the payment may be made via a third
party, that an agent awaiting missing goods may send a re-
minder for them.

• To be realistic, the protocols themselves must be based on a
study of different usage scenarios, wherein not all possible
executions are considered equal. For example, as a prac-
tical matter, we would all recognize that it is more normal
for a purchase protocol to lead to an exchange of goods and
money than for a refund to be issued or for the goods to be
repossessed by the merchant because of lack of payment.

In other words, protocols should be flexible enough to accommo-
date exceptions, but should be described in such a manner that ex-
ceptions are distinguished from normal executions. Moreover, pro-
tocol descriptions should ideally enable the specification of a hi-
erarchy of exceptions, some being more acute (i.e., less desirable)
than others.

Protocol Preferences and Agent Policies.To capture the
above motivations, we propose that protocol specifications be en-
hanced with modular, pluggable descriptions of thepreferences
among executions of the protocol. These preferences are the pro-
tocol designer’s view of what are the most normal or most desired
executions. In this sense, they have a normative force. Individual
agents would have their ownpoliciesfor how they participate in a
given protocol. The policies should generally be in line with the
protocol preferences. (Verifying compliance with protocol prefer-
ences, however, is nontrivial—we return to this point in Section 6.)

Protocols can be refined to yield protocols that serve the same
goal but impose additional requirements. For example, payment by
cash is a refinement of payment (in general). Agents contemplat-
ing interacting can negotiate about the refinement of the protocol
that they will enact. For example, if a merchant accepts only cash,
payment by check or charge card is ruled out and payment by cash
is the only kind of payment that will work.

More interestingly, agents who are participating in a protocol
may negotiate about the specific actions that each would take (from
among those that are allowed by the given protocol). For exam-

ple, given that two parties agree to participate as seller and buyer
in a purchase protocol, they might then negotiate about whether the
seller is willing to send the goods before the buyer makes a pay-
ment. Protocol preferences thus provide a basis for argumentation
among the parties.

Approach.As explained in greater detail below, in our frame-
work, protocols are denotationally characterized using sets of runs
(i.e., computations), and are operationalized via translation into ex-
ecutable rulesets. With the above background, the approach of this
paper proceeds as follows to enable augmenting protocol specifica-
tions with preferences.

• We augment an existing protocol specification language with
an ability to specify preferences among different executions
of protocols. For simplicity of specification, we use a simple
language based on linear temporal logic to specify expres-
sions over protocol events to identify executions that are of
interest.

• We show how preferences based on such expressions can be
operationalized into executable rulesets.

• We show how the above preferences are mapped into a graph
whose points are sets of runs, and characterized via branch-
ing time models.

• We show that the model-theoretic and the operational char-
acterizations coincide.

We provide the example of a typical interaction between a mer-
chant and a customer through this paper to illustrate our approach.

Contributions.Our main contribution is in developing a new
methodology for designing commitment protocols. Our methodol-
ogy can be used for the following

Modeling exceptions.In traditional process models, exceptions
are modeled in an ad hoc manner, when the designer demarcates
blocks of the process and assigns exception handlers to those blocks.
In our approach, exceptions can be defined separately from the
specification of the process or the protocol. As a result, different
exception conditions can be assigned to the same protocol based
on the context of the protocol execution. This is similar in spirit to
aspect-oriented software development.

Selecting protocols.When multiple protocols are available for
an agent to realize a certain interaction, that agent can negotiate
with the other parties involved in the protocol and, based on its pref-
erences, find out if an execution of that protocol with those partici-
pants would be acceptable to it. For example, a customer agent that
does not wish to enact a hotel booking protocol in which the hotel
can cancel the room and award a refund can choose which hotel to
interact with if its preferences are made clear before enactment and
if the hotel and the customer try and negotiate the protocol to enact
based on their preferences.

Organization.Section 2 introduces commitments and commit-
ment protocols. Section 3 describes the language used to specify
sets of execution sequences and its semantics. This section also
describes how preferences among sets of execution sequences are
specified. Section 4 gives an algorithm for resolving preferences
among execution sequence sets so that agents can choose the best
course of action. Section 5 lists important patterns that arise due
to the interplay between local-actions, nonlocal actions, local poli-
cies, and protocol preferences. Section 6 concludes the paper with
a summary of our contributions and a survey of related literature.

2. BACKGROUND
We formalize protocols as transition systems similar in spirit

to commitment machines [9], which are declarative specifications.
For compatibility with this model, we use the linear temporal logic-
based event ordering language proposed by Singh [7] to specify
preferences between sets of executions in that transition system.
Although Singh’s language is given semantics based on linear mod-
els, the models are related in an incremental manner to other pos-
sibilities: thus it supports a branching interpretation. We use ex-
pressions over events in this language to specify sets of runs of a
protocol over which preferences can be expressed. This section
briefly introduces the semantics of commitments to lay the ground-
work for preference specification and introduces the language.

2.1 Commitments
A commitmentC(x, y, p) denotes that the agentx is obliged to

the agenty for bringing about the conditionp. Herex is called the
debtor, y thecreditor, andp theconditionof the commitment. The
condition is expressed in a suitable formal language.

Commitment Operations.Commitments are created, satis-
fied, and transformed in certain ways. The following operations
are conventionally defined for commitments, wherec ≡ C(x, y, p):
CREATE(x, c) establishes the commitmentc, and can only be per-
formed byc’s debtorx. CANCEL(x, c) cancels the commitmentc,
and can only be performed byc’s debtorx. Generally, cancellation
is compensated by making another commitment.RELEASE(y, c)
releasesc’s debtorx from commitmentc, and only can be per-
formed by the creditory. ASSIGN(y, z, c) replacesy with z asc’s
creditor. DELEGATE(x, z, c) replacesx with z as thec’s debtor.
DISCHARGE(x, c) c’s debtorx fulfills the commitment.

A commitment isactive if it has been created, but not yet been
operated upon by adischarge, delegate, assign, cancel, or release.
A commitment issatisfiedwhen its condition becomes true. Com-
mitments can also beconditional, denoted byCC(x, y, p, q), mean-
ing thatx is committed toy to bring aboutq if p holds. A con-
ditional commitment such asCC(x, y, p, q) becomes an uncondi-
tional commitmentC(x, y, q) when its conditionp holds. A commit-
ment isbreachedwhen it is not possible that the commitment will
be satisfied. Realistic settings assign deadlines to commitments to
detect their breach or satisfaction [5].

Commitment Protocols.Commitment protocols are interac-
tion patterns expressed in terms of the commitments that arise be-
tween the participants of the interaction. Commitment protocols
have been operationalized via commitment machines. Commit-
ment machines generate computations orruns, which are sequences
of statesthat a valid protocol execution goes through. Propositions
represent facts about the universe of discourse of the protocol such
as the actions that the protocol participants have taken, commit-
ments that have been created and operated upon, and messages that
have been sent. Each state is a snapshot of the evolving state of the
system (as the given agents interact), and is labeled bypropositions
that hold true there. State changes are caused bymessagesthat the
participants send to each other.

This paper builds on OWL-P [1, 2], which is a practical frame-
work and an associated language for specifying, combining, and
enacting commitment protocols. OWL-P (OWL for Protocols and
Processes), uses OWL (Web Ontology Language) to specify proto-
col and protocol composition constructs. An OWL-P specification
identifies roles that participate in the protocol, the messages that are
exchanged (with the meanings of the messages in terms of commit-
ments that are created), and a set of rules that constrain the set of

runs of the protocol by specifying ordering, data flow, and other
constraints.

The flexibility of commitment protocols arises because they use
commitments and other propositions to assign meanings to states
and thus capture the essence of an interaction. Treating commit-
ments explicitly enables further kinds of sophisticated reasoning,
such as involving delegation and other kinds of manipulation of
commitments. For example, a customer in a purchase protocol can
delegate to a third party (such as a bank) the payment commitment
that the customer has towards the merchant.

2.2 Running Example
We illustrate our approach with an example interaction in which

a merchant sends some goods to a customer in exchange for a pay-
ment. The exact protocol for this exchange involves variations be-
cause the customer could pay before the merchant ships the goods
and, if not satisfied, can return the item to the merchant for a refund
of the payment.

3. SPECIFYING PREFERENCES
OWL-P specifies protocols declaratively and leverages the se-

mantics of commitments and their operations to make protocols
flexible. However, OWL-P does not distinguish between the nor-
mal and abnormal executions of a protocol. For example, execu-
tions in a purchase protocol that involve returns and refunds or
missing shipments are treated on par with the normal executions
involving no missing shipments or delayed payments. For this rea-
son, we extend OWL-P to capture preferences among sets of exe-
cutions. We first devise a language over events to concisely specify
sets of protocol executions. Next, we specify preferences among
such sets using this language.

3.1 The Constraint Specification Language
We use the event-based linear temporal logicI as introduced

by Singh [7] for specifying sets of executions. We repeat here the
syntax and semantics ofI from [7]. I is the start symbol of the BNF
for the language ofI. In this BNF,slant indicates nonterminals,
−→ and | are meta-symbols of the BNF, /* and */ begin and end
comments, respectively, and all other symbols are terminals.

L1. I −→ dep | dep∧ I /*conjunction: interleaving*/

L2. dep−→ seq | seq∨ dep /* disjunction: choice*/

L3. seq−→ bool | event | event· seq/* before: ordering*/

L4. bool −→ 0 | >

Dependency.A dependency is an expression generated byI. It
specifies constraints on the occurrence and ordering of events.

Event Literal Set. Γ 6= {} is the set of event literals as generated
by the nonterminalevent. Each evente literal has acomple-
mente. Intuitively, initially, neither an event nor its comple-
ment holds; ultimately, one of them must hold.ΓD is the set
of literals mentioned in a dependencyD and their comple-
ments. For example,Γe = {e, e}. For a set of dependencies

D, we defineΓD asΓD =
[

D∈D
ΓD.

In our example, we denote the payment made by the customer by
p, the sending of goods by the merchant bys, the return of the
goods byret , and a refund byref . Using these event literals, we
can specify the constraint “refund can be done only after payment
has been made” as a dependencyref ∨ p · ref .

Since state labels in OWL-P capture the history of events in the
system, the event-based language (and semantics) that we use here
can be applied to the state-based execution semantics of OWL-P.

The formal semantics ofI is based on runs, i.e., sequences of
events. Legal runs satisfy the following requirements:

1. Event instances and their complements are mutually exclu-
sive.

2. An event instance occurs at most once in a computation.

Universe of Runs.UI is the universe of runs; it contains all legal
runs involving event instances fromΓ.

3.2 Constraint Language Semantics
For a runτ ∈ UI andI ∈ I, τ |= I means thatI is satisfied over

the runτ . This notion can be formalized as follows. Here,τi refers
to theith item inτ andτ[i,j] refers to the subrun ofτ consisting of
its elements from indexi to indexj, both inclusive.|τ | is the last
index ofτ and may beω for an infinite run. We use the following
conventions in the specification of semantics below:e, f, e, f , etc.
are literals;D, E, etc. are dependencies;i, j, k, etc. are temporal
indices; andτ , etc. are runs. The semantics ofI is

M1. τ |= e iff (∃i : τi = e)

M2. τ |= I1 ∨ I2 iff τ |= I1 or τ |= I2

M3. τ |= I1 ∧ I2 iff τ |= I1 andτ |= I2

M4. τ |= I1 · I2 iff (∃i : τ[0,i] |= I1 andτ[i+1,|τ |]I2)

Denotation. The denotation[[D]] of a dependencyD is the set of
runs that satisfyD, i.e.,[[D]] = {τ : τ |= D}.

For example, the denotation of the dependencyref ∨ p · ref is the
set of runs in which there is no refund (ref) or, if there is a refund,
a payment precedes it (p · ref).

3.3 Residuation
The residual of a dependencyD by an evente is denoted by

D/e and corresponds to the largest set of runs satisfying the given
dependency. Formally,ν ∈ [[D/e]] iff (∀v : v ∈ [[e]] ⇒ (vν ∈
UI ⇒ vν ∈ [[D]]))

The residual represents what remains in the dependency after a
certain event has occurred for the dependency to be satisfied on any
run. The following are residuation rules as given by Singh:

R1. 0/e
.
= 0

R2. >/e
.
= >

R3. (E1 ∧ E2)/e
.
= ((E1/e) ∧ (E2/e))

R4. (E1 ∨ E2)/e
.
= ((E1/e) ∨ (E2/e))

R5. (e.E)/e
.
= E if e 6∈ ΓE

R6. D/e
.
= D if e 6∈ ΓD

R7. (e′ · E)/e
.
= 0 if e ∈ ΓE wheree′ is any event literal

R8. (e · E)/e
.
= 0

Consider the dependencyp · ret · ref, which encodes “payment fol-
lowed by a return followed by a refund.” The residual of this depen-
dency withp is ret·ref, which is what is left to be done to satisfy the
dependency afterp occurs. The residual of this dependency withs,
however, is the dependency itself, since the dependency does not
specify whethers occurs.

3.4 Preferences
The specification languageI supports dependencies to succinctly

specify sets of runs. To induce a preference structure over such sets,
i.e., to specify if one set is preferred over another, we introduce the
preference relation.

Preference Relation.Let R ⊆ 2UI × 2UI be the preference re-
lation between sets of runs.R is irreflexive, transitive, and
antisymmetric. (Si, Sj) ∈ R means that any run inSi is
preferred over any run inSj . Consequently,R is downward
closed in the sense that if(Si, Sj) ∈ R, then for all subsets
S′i andS′j of Si andSj , respectively,(S′i, S

′
j) ∈ R. For con-

venience, we applyR to dependencies, meaning that their
denotations are appropriately related.(Di, Dj) ∈ R means
that any run in the denotation ofDi is preferred over any
run in the denotation ofDj , i.e., ∀τi, τj : τi ∈ [[Di]] and
τj ∈ [[Dj]], τi is preferred overτj .

A commitment protocol is associated with a set of dependencies.
For a protocolP specified in terms of a set of dependenciesDP ,
the denotation of the protocol is the set of runs that the protocol al-
lows, and is given by[[P]] =

[
D∈DP

[[D]]. We encode our merchant-

customer example by the following dependencies

P1. Refund only if payment has been done:ref ∨ p · ref .

P2. Return only if goods have been shipped:ret ∨ s · ret .
P3. If payment has been made and goods have been returned, then

refund:p ∨ ret ∨ ref .

Preference Graph. A preference graph specifies preferences among
a set of dependencies. Each dependency labels one node
of the graph, and a preference relation specifies preferences
among these dependencies, and consequently among the nodes
they label. A preference graphL = 〈Dx, R〉 specifies pref-
erences among the elements of the set of dependenciesDx

using the partial order induced byR overDx. For the above
L, we define its event literal set to be the set of all events that
are mentioned in the dependencies inDx, and their nega-
tions.ΓL =

[
D∈Dx

ΓD.

Figure 1 shows a schematic representation of an example prefer-
ence graph. This graph encodes the following:

D1. The most preferred runs are those in which payment and ship-
ping occur, and a return or a refund do not.

D2. Less preferred than runs inD1 are runs in which goods are
returned and payment is refunded.

D3. Also less preferred than runs inD1 are runs in which the pay-
ment is refunded and the goods are returned.

D4. Less preferred than all of the above are runs in which goods
are returned, but no refund occurs.

D5. Also preferred less thanD1, D2, andD3 are runs in which
the goods are shipped, a refund is made, but the the goods are
not returned.

Preference Node Denotation.The denotation of a preference node
ND labeled byD, with respect to a protocolP and a graph
L = 〈DP , R〉, whereD ∈ DP , is the set of runs allowed by
the protocol that are also allowed byD, but not by nodes in
L that are preferred overND. The motivation for the above

Figure 1: A preference graph for our example,
L = 〈{D1, D2, D3, D4, D5} , {(D1, D2), (D1, D3), (D2, D4),
(D3, D4), (D2, D5), (D3, D5) }〉.

is that each run can occur in the denotation of at most one
node in the graph. Thus if a given run is allowed by two sets
of runs, one preferred over the other, the run from the less
preferred set would not “get credit” for this run. On each
path from the top to the bottom of the graph, a given run
can occur at most once. Formally,[[ND]] = [[P]] ∩ ([[D]] −[
(Di,D)∈R

[[Di]]).

Consider the preference node formed fromD4. Since the protocol
contains no runs in which the payment has been made, goods have
been returned, and the refund does not occur,[[D4]] = {}. How-
ever, the protocol allows runs in which the payment is refunded,
the goods have been shipped, but are not returned. The preference
node formed fromD5 captures such runs as the least preferred runs
in the protocol.

4. RESOLVING PREFERENCES
How can an agent operationalize a preference graph during pro-

tocol enactment?

4.1 Evolution of Graphs
A preference graph evolves as events occur, causing the state of

the protocol to change. The evolution changes the denotation of
each node of the graph because events residuate dependencies that
label graph nodes. Below, we describe, and give an algorithm for,
the evolution of a (preference) graph. Anevolution treecaptures
the evolution of a graph. Below,τ + e concatenates evente to run
τ .

Evolution Tree. An evolution treeTL of a graphL represents all
possible states thatL can evolve through as a result of events
in ΓL. An evolution tree is a tuple,TL = 〈V, Vτ0 ,E, L〉,
whereV is a set ofevolutionnodes,Vτ0 is a distinguished
root node,E ⊆ V× V is a set ofevolution edges, andL is a
preference graph.

Evolution Node. An evolution node captures a state of a prefer-
ence graph. An evolution node corresponds to apath in the
evolution tree. This path is a legal run and is the sequence of
the events that occurred for the evolution node to be gener-
ated, starting from the root of the evolution tree. Evolution
nodes are represented asVτ = 〈L, τ〉, whereL is a graph
(as evolved from the original preference graph) andτ is the
path toVτ from the root node of the evolution tree. The root
node of an evolution treeTL is Vτ0 = 〈L, τ0〉, whereτ0 is
the zero-length run.

Evolution Edge. An edge labelede that originates atVτ ends at
Vτ+e. Thus edges are written as〈Vτ , e, Vτ+e〉.

Given a graphL, we construct the evolution treeTL for it by
first creating the root evolution nodeVτ0 = 〈L, τ0〉. From a node
Vτ , we create an edge labelede for each evente in ΓL that does
not occur inτ . For each edgee, we create a new evolution node
Vτ+e = 〈L′, τ + e〉. For this new node, we setL′ = 〈D′, R′〉,
whereD′ is the set of nonzero dependencies obtained by residuat-
ing each dependency inL by e, andR′ relates two dependencies in
D′ if the dependencies corresponding to them inD were related by
R. That is, we preserve the preferences among the residual depen-
dencies in the evolution nodes. Algorithm 1 generates an evolution
tree of a specified finite depth.

Figure 2 shows parts of the evolution tree generated using Algo-
rithm 1 on the graph shown in Figure 1. In this figure,end denotes
a special event signaling the end of the protocol. The complements
of events that have not occurred are asserted whenend occurs. In
the figure, for example, sinceret andref have not occurred, their
complementsret andref are asserted whenend occurs.

input : A preference graphL = 〈Dx, R〉, and a limit
MAX DEPTH for the depth of the tree generated

output: An evolution treeTL = 〈V, Vτ0 ,E, L〉 of L

Create the root nodeVτ0 = 〈L, τ0〉 ;1

depth ← 1 ;2

V ← Vτ0 ;3

TL.V← {V } ;4

TL.E← {} ;5

siblings ← {V };6

while depth < MAX DEPTH && siblings 6= {} do7

foreachevolution nodeV ∈ siblings do8

siblings ← siblings −{V } ;9

foreachevente ∈ ΓL such thate 6∈ V.τ do10

VV.τ+e ← createChildNode (V, e) ;11

TL.V← TL.V ∪ {VV.τ+e} ;12

TL.E← TL.E ∪ E ;13

if VV.τ+e.L.D 6 ={} then14

siblings ← siblings ∪{VV.τ+e} ;15

depth ← depth +1 ;16

return TL ;17

ProcedurecreateChildNode (V, e): Create a child18

evolution node for the nodeV on evente
input : An evolution nodeV = 〈L, τ〉, where

L = 〈D, R〉, and an evente.
output: An evolution node that represents the state ofL on

evente.
D′ ← {} ;19

R′ ← {} ;20

foreachdependencyd ∈ V.L.D do21

if d/e 6 .
= 0 then22

D′ ← D′ ∪ (d/e) ;23

foreachpreference(di, dj) ∈ V.L.R do24

if d == di or d == dj then25

R′ ← R′ ∪ (di, dj) ;26

L′ = 〈D′, R′〉 ;27

VV.τ+e = 〈L, V.τ + e〉 ;28

return VV.τ+e29

Algorithm 1 : GenerateEvolutionTree(L,
MAX DEPTH): Compute the evolution tree for a graph
L = 〈Dx, R〉, whereMAX DEPTH is a bound on the
depth of the tree to be generated.

4.2 Choosing Between Runs

Consider an agentX operating within the preference graph spec-
ified for a protocol in which it is participating. For such an agent
to determine, the action to take (there is an event corresponding
to every action instance), each evolution node is a decision point.
X chooses the event would that take the protocol to the most pre-
ferred preference graph node. Since preference nodes are distrib-
uted among the evolution nodes, andX cannot change the state of
the protocol at a finer granularity than that of evolution nodes,X
determines which evolution node is the most preferred. To deter-
mine this, apreference graph of evolution nodesis constructed as
follows: At any evolution node, to decide the next action to take,
induce a graph among the child evolution nodes using the original
preference structure, i.e., the preference structure specified in the
root of the evolution tree. Once this is done, induce a graph on the
evolution nodes based on the following criterion. Given two evolu-
tion nodesV1 andV2, create an edge fromV1 to V2 (i.e., mark that
V1 is preferred overV2) if and only if there is a nonzero dependency
D1 in V1 which is preferred over all nonzero dependencies inV2,
and no nonzero dependency inV2 is preferred overD1. Formally,

(V1, V2) ∈ O ⇔ ∃D1 in V1 : ∀D2 in V2,

(D1, D2) ∈ R and(D2, D1) 6∈ R
whereO is the preference relation over evolution nodes.O is ir-
reflexive, antisymmetric, and transitive by the above definition. Al-
gorithm 2 shows how a preference graph can be constructed be-
tween evolution nodes. Applying this algorithm to the children of
the root evolution nodeVτ0 in Figure 2, we obtain the evolution
node graph shown in Figure 3. Figure 4 shows the same graph
in detail. SinceVp contains the dependencyD1/p which is pre-
ferred over all dependencies inVret and no dependency inVret is
preferred overD1/p, we create an edge fromVp to Vret. Similar
reasoning for all four evolution nodes yields the graph of Figure 3.

Vp

Vref

Vs

Vret

Figure 3: The preference graph for the evolution nodesVp,
Vs, Vret, and Vref shown in Figure 2, based on the preference
graph L shown in Figure 1

Selecting the Best Path.Given the graph of preferences among
the child (evolution) nodes, the best action to take (event to bring
about) is the event that leads to a node in the evolution node graph
over which no other node is preferred. However, the evolution node
preference graph might have many such nodes. The agent can then
choose any one of these. Section 5 discusses some criteria for path
selection.

4.3 Types of Events
So far, we have discussed a single agent’s perspective. In agent

interaction, however, events are brought about by different agents
during the enactment of a protocol. Choosing the best path, if one
is available, is therefore not up to a single agent. We therefore
recognize two types of events,observedandcontrolled.

�

�� �

Figure 2: A partial evolution tree for the preference graph shown in Figure 1. Note that the denotations of preference nodes are not
taken into consideration in this figure, so that we can illustrate the generation of the evolution nodes clearly. If denotations were
taken into account,[[D4]] = {}, and this figure would have fewer dependencies. END is a special event signaling the end of the run.

Figure 4: A detailed view of a part of the evolution node prefer-
ence graph shown in Figure 3. Grey arrows indicate the prefer-
ence relation.Vp is preferred over Vref because ofD1/p, which
is shown in a grey rectangle.

Controlled Events. For a given agent, an event that it can bring
about is called a controlled event. We introduce a distinguished
controlled event,Noop, which means “do nothing” (in this proto-
col). An agent can perform aNoop to wait.

Observed EventsFor a given agentX, an event whichX can
observe, but not bring about, is called an observed event. We dis-
tinguish two unique observed events,start andend, which are ob-
served by agents participating in a protocol when the protocol be-
gins and ends, respectively.

Whether an event is observed or controlled is decided when the
events are described for the system being modeled. In our example,
payment (p) and return(ret) are controlled events for the customer,
and observed events for the merchant, whereas sending goods(s)
and refund(ref) are controlled events for the merchant and ob-
served events for the customer.

5. PATTERNS FOR PATH SELECTION
Given that an agent will make a choice at every node of the evo-

lution tree, and that events can be controlled or observed, we iden-
tify typical patterns of decision-making that agents can adopt in
common situations. Before describing these patterns, we explain
rule-based protocols of the type found in the OWL-P framework.

5.1 Rule-Based Protocols
We envision the application of our algorithms in a rule-based

protocol enactment framework, such as OWL-P. OWL-P enables
agents to specify theirlocal policies independent of the protocol
specification. The general structure of rules in such protocols is the
Event-Condition-Action (ECA) structure,

On e
if localPolicy(e, x)

then do a(x)

Here,e is an event anda(·) is an action (with a corresponding event
ea), which depends on the local policy for its parameters.

As an example, consider a purchase protocol which requires that
the receiver of arfq(c, m, itemID) message (which is a request for
a price quote for an item)–the merchantm–respond the the sender–
the customerc–with a quote(m, c, itemID, price) message (which
is a price quote). The rule for this requirement will be

On rfq(c, m, itemID)
if localPolicy(rfq(c, m, itemID), price)

then do quote(m, c, itemID, price)

Where multiple choices of action are afforded by the protocol on
the same triggering event, there will be one rule for each action,
with the same event and condition. In such a case, the local policy
decides which rule to enable. In case the policy enables multiple
rules, the preference specification of the protocol is used to decide
which action to take. Based on these principles, we describe pat-
terns of decision-making that agents can use.

5.2 Clear Choice

If an agent has to choose between paths in an evolution tree, and
exactly one most-preferred node exists in the evolution node pref-
erence graph, the agent takes the path to that node. This situation
is shown in Figure 5, and is termedClear Choice.

Figure 5: Clear choice: An agent can unambiguously decide
which path to choose, since the evolution node preference graph
has exactly one nodeVτp, over which no other node is pre-
ferred.

Using Noop. Sometimes, even when there is a clear choice, an
agent might not take any action because of its local policy. Consider
the situation shown in Figure 6. This is a variant of our example
in which the customer can send anrfq , which is a request for a
price quote, to the merchant, to which the merchant can reply with
q, which is a quote. AtVτ , the customerc can send either anrfq
or a payment. According to the preference graph (dictated by the
protocol), rfq is preferred over payment. However, the customer
might not wish to send anrfq. Further, instead of performing the
only other alternative, payment (p), the customer might want to
wait, hoping for a quote(q), or a shipment(s) from the merchant.
Since the protocol does not require thatc act immediately (most
realistic protocols have a notion of timeouts and deadlines),c can
perform aNoop, which is do nothing, waiting till its policy allows
it to perform anrfq or till the protocol forcesc to performp (which
will also be a policy decision, if the policy has been designed to not
violate the protocol).

Figure 6: Using a Noop when local policy does not allow the
best choice and the protocol does not impose immediate dead-
lines on the other choice(s).rfq is the best choice for the cus-
tomer, followed byp, but the the customer chooses to wait using
a Noop. This creates two most-preferred nodes,Vτ and Vrfq .

5.3 Unclear Choice
The choice of action to take (or event to generate) will be unique

if there is exactly one evolution node over which no other node is
preferred. However, this is not always the case. Although there

will never be a cycle among the preference relations between the
evolution nodes (straightforward proof by construction of the evo-
lution node preference graph), it is possible that there are multiple
most-preferred nodes, as in Figure 3, where bothVp andVs are
most-preferred, i.e., the customer can either pay or wait for the
merchant to send the goods. Since the choice here is between a
controlled and an observed event, we call this situationUnclear
Nonlocal Choice. In such a case, the agent may choose to wait for
other agents participating in the protocol to take some action.

There can also be cases in which two or more controlled events
are most-preferred (Unclear Local Choice). An agent will rely on
its local policy to make a choice when this happens. In theNoop
example, if there were no preference betweenD20 andD21, the
customer would have to decide whether to send anrfq or to send
a payment. In OWL-P, such local policy-based decisions drive the
protocol by enabling agents choose one run from among the many
runs that a protocol allows.

6. DISCUSSION
Protocols help us capture agent interactions perspicuously. The

very strength of protocols, namely, their flexibility, can pose a chal-
lenge. Executions allowed so as to make a protocol flexible under
exceptional conditions can begin to be selected over superior exe-
cutions even when the exceptional conditions do not obtain. This
paper proposes that protocols be specified generically, and prefer-
ence conditions among different sets of runs be stated separately,
depending on the context of usage of the protocol. Preferences
serve as a rough-and-ready means to capture design goals wherein
the normal executions are preferred, yet abnormal executions aris-
ing from exceptions or unexpected actions by some of the agents
are allowed.

This paper identified a denotational semantics for preference con-
ditions understood as a graph. Next, it showed how such a graph
evolves as events and actions take place. It proposed a simple
method by which an agent can decide upon its next action, describ-
ing an anomalous condition and giving an algorithm for identifying
it.

Preferences are often understood solely in decision-theoretic terms.
Decision theory is clearly important for modeling preferences and
coming up with strategies for acting according to them. However,
a denotational understanding of preferences can support the proper
application of decision theory.

Related Literature.Yolum and Singh [10] developed one of
the first operationalizations of commitments. They specified pro-
tocols by listing legal states in terms of the commitments and do-
main propositions that hold at that state, and using an event calculus
planner to generate the set of runs that were allowed. Winikoffet
al. [9] advance this line of research. Fornara and Colombetti have
also proposed a commitment-based interaction protocol framework
[3]. However, none of the above approaches specify or operational-
ize a notion of preferences among the various execution sequences
allowed by a protocol. Our work, therefore, is a significant step in
this direction. Grosofet al. [4] implement rule based agent inter-
action systems where rules are prioritized. Grosof and colleagues
proposeCourteous Logic Programs, or CLPs. In a CLP, when there
is ambiguity regarding which rule to fire, i.e., a conflict arising be-
cause multiple rules can be fired at a particular state of the world,
the priorities assigned to the rules are used to resolve the conflict.
Our work is similar to CLPs in this respect, but different in that we
propose a scheme in which preferences amongrunsare specified,
independent of a protocol specification. Further, we also present a
methodology for translating these preferences into rules that can be

embedded into the (rule-based) protocol specification.
Our work is based on the concept of social interaction among

agents, which gives importance only to the observable behavior of
agents. We describe how preferences among runs can exist. How-
ever, we do not study how agents can reason about the benefits of
using one set of protocol runs over another. Pasquier and Chaib-
Draa [6] introduce the cognitive dissonance theory into multiagent
communication by incorporating the theory and dialogue game pro-
tocols into agent interactions. Their theory explores ways in which
agents can decide when to start dialogues with other agents and
what kind of dialogues to initiate, among other things. This line
of research is complementary to and would strengthen the inter-
action framework we have presented here. Preferences among the
available runs of a protocol have also been studied from the game
theoretic point of view by Otterlooet al. [8]. They describe a
logic that can be used for reasoning about a strategy to adopt in a
game when the preferences of other agents in the game are known.
The work differs from ours because of the use of games instead of
commitment protocols. Also, preferences of agents are assumed
to be known by other agents, which does not always apply in real-
world applications such as the business interaction we have out-
lined in this paper. We plan to incorporate such reasoning among
agents into our framework.

7. REFERENCES
[1] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh.

OWL-P: A methodology for business process modeling and
enactment. InAAMAS AOIS Workshop, July 2005.

[2] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh.
Interaction protocols as design abstractions for business
processes.IEEE Trans. Software Engg., 31(12):1015–1027,
2006.

[3] N. Fornara and M. Colombetti. Defining interaction protocols
using a commitment-based agent communication language.
In Proc. 2nd AAMAS, pp. 520–527. ACM Press, July 2003.

[4] B. N. Grosof and T. C. Poon. SweetDeal: Representing agent
contracts with exceptions using XML rules, ontologies, and
process descriptions. InProc. WWW 2003, pp. 340–349.

[5] A. U. Mallya, P. Yolum, and M. P. Singh. Resolving
commitments among autonomous agents. In F. Dignum,
editor,Advances in Agent Communication, vol. 2922 of
LNAI, pp. 166–182, Berlin, 2003. Springer-Verlag.

[6] P. Pasquier and B. Chaib-Draa. The cognitive coherence
approach for agent communication pragmatics. InProc. 2nd
AAMAS, pp. 544–551. ACM Press, July 2003.

[7] M. P. Singh. Distributed enactment of multiagent workflows:
Temporal logic for web service composition. InProc. 2nd
AAMAS, pp. 907–914. ACM Press, July 2003.

[8] S. van Otterloo, W. van der Hoek, and M. Wooldridge.
Preferences in game logics. InProc. 3rd AAMAS,
pp. 152–159. ACM Press, July 2004.

[9] M. Winikoff, W. Liu, and J. Harland. Enhancing commitment
machines. InProc. AAMAS DALT Workshop, 2004.

[10] P. Yolum and M. P. Singh. Flexible protocol specification and
execution: Applying event calculus planning using
commitments. InProc. 1st AAMAS, pp. 527–534. ACM
Press, July 2002.

input : An evolution nodeVτ , and a root preference graph
Lr = 〈Dr, Rr〉

output: A graphLe = 〈Ve, Re〉 representing the
preferences among the child nodes ofVτ .

Ve ← All child nodes ofVτ ;1

Re ← {} ;2

foreachchild nodeVτ+x of Vτ do3

foreachchild nodeVτ+y of Vτ do4

foreach dependencydx in Vτ+x do5

isPrefOverAll ← true ;6

foreachdependencydy in Vτ+y do7

if (getRootDep (dx, Vτ+x, Dr),8

getRootDep (dy, Vτ+y, Dr)) 6∈ Rr or
(getRootDep (dy, Vτ+y, Dr),
getRootDep (dx, Vτ+y, Dr)) ∈ Rr

then
isPrefOverAll ← false ;9

if isPrefOverAll then10

Re ← Re ∪ (Vτ+x, Vτ+y);11

break ;12

return 〈Ve, Re〉 ;13

ProceduregetRootDep (d, Vτ ′ , D0): Find which14

dependency amongD0 node was residuated tod in node
Vτ ′

input : A dependencyd, its evolution nodeVτ ′ ,and a set
of dependenciesD0.

output: A most-preferred dependency inD0 that was
residuated tod along pathτ ′; null if no such
dependency exists.

foreachd0 ∈ D0 do15

dt ← d0 ;16

for i ← 0 to |τ ′| − 1 do17

dt ← dt/τ ′[i] ;18

if dt == d then19

Droot ← Droot ∪ {dt};20

foreach dr ∈ Droot do21

isPrefOverAll ← true ;22

foreachd′r ∈ Droot do23

if (dr, d
′
r) 6∈ R then24

isPrefOverAll ← false ;25

break ;26

if isPrefOverAll then27

return dr ;28

return null ;29

Algorithm 2 : GenerateEvolutionGraph(Vτ , Lr): Com-
pute the preference graph among child nodes of an evo-
lution nodeVτ given the preference graphLr of the root
evolution node.

