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Abstract

Commitments among agents can be used to model busi-
ness processes in a manner that preserves the autonomy and
heterogeneity of the interacting parties. Dooley graphs are
widely used in conversation-based multiagent system de-
sign. Commitments and their causal relationships can be
inferred from Dooley graphs to flexibly model business pro-
cesses.

We present a theoretical foundation for Dooley graphs,
commitments, and causality in terms of the π-calculus, a
process algebra for specifying concurrent systems, which
has found application in business process modeling. This
paper expresses the key elements of Dooley graphs (roles,
characters, conversations) and of our approach (commit-
ments and causal diagrams) using the π-calculus. Further,
we accommodate a new variety of primitives for exception
handling termed reentrant connectors. The π-calculus en-
ables us to derive useful properties from a given model and
to validate its correctness. We show how these properties
assist in building an entire business process model in which
agents interact flexibly.

1. Introduction

Commitments are a key element in a multiagent system
and especially in applications involving business processes
[11]. Commitments record the obligations of an agent to
another so that at any given stage we can tell what tasks
have been done and what events are expected. When com-
mitments are incorporated into business process specifica-
tions, interaction histories can be maintained and related
processes can be brought together in a natural manner.

Commitments preserve agent autonomy and heterogene-
ity. Agents interact by manipulating commitments they
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make to each other. Thus each agent can actively make de-
cisions based on its best interests but without exposing its
internal behavior. Incorporating commitments into busi-
ness process modeling helps the designer focus on
high-level requirements and dependencies among part-
ners instead of low-level process dependencies. The process
enactment is guided by the semantics of commitment op-
erations and conversations among agents. Therefore, a
commitment-oriented business process model can more
flexibly adapt to changes of business requirements and or-
ganizations than traditional approaches.

A Dooley graph visualizes an agent interaction as a set of
conversations each of which addresses one particular pur-
pose. Previous research has used Dooley graphs to derive
agent behavior and skeletons. We previously showed how
commitments and their casual relations can be derived from
Dooley graphs [10]. This is based on the idea that conversa-
tions encapsulate the communication within a business pro-
cess so that agents can flexibly execute different protocols
while still maintaining commitments made to each other.

We formulate our commitment-based model using the π-
calculus, a process algebra capable of specifying a concur-
rent system. The formalization provides not only a means
of rigorously enacting the computations, but also provides
the grounds for proving correctness as well as other inter-
esting properties. Here, we mainly use the π-calculus to
specify our model components such as reentrant connec-
tors, commitment operations, and conversations. Most im-
portantly by using the π-calculus, we will demonstrate how
this formalization can help test, improve, and verify a sys-
tem model.

This paper is organized as follows. Section 2 provides
technical background on Dooley graphs, commitments, and
the π-calculus. Section 3 expresses our model elements us-
ing π-calculus and also introduces reentrant connectors.
Section 4 derives some useful theorems and properties. Sec-
tion 5 concludes with a discussion.
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2. Technical Background

Now we present some essential background on Dooley
graphs, commitments, commitment-oriented design of mul-
tiagent systems, and the π-calculus.

2.1. Dooley Graphs

Agent interactions can be decomposed into a set of con-
versations in which only pairs of agents communicate. A
conversation is created when an agent sends out a new re-
quest or question and ends when the request or the question
is resolved. Parunak proposed visualizing agent conversa-
tions via Dooley graphs, which we illustrate below [5].

As a running example, consider a travel planning user
scenario, based on [10], itself adapted from Parunak. A cus-
tomer (or passenger P ) calls his travel agent (T ) to book a
trip. Upon receiving the order, T sends requests to the air-
line (A), hotel (H), and car rental (R) agents to reserve air
tickets, hotels, and cars, respectively. Eventually, the latter
three agents will send back the results to T and T will con-
firm an itinerary to P . During these transactions, P may up-
date his trip request (e.g., cancel the car rental) or H may
cancel a hotel reservation. These exceptions result in more
conversations to update the trip itinerary. Table 1 shows an
example utterance sequence.

By executing the algorithm described in [7], we ob-
tain a Dooley graph shown in Figure 1. In this Dooley
graph, there are 8 conversations, {χ1={1,10}, χ2={2,4},
χ3={5,6,21}, χ4={3,8,14}, χ5={7,9,12}, χ6={11,13},
χ7={15,16,19,20}, χ8={17,18}}, 16 characters (the ver-
tices in the graph representing the distinct agent behav-
iors in different conversations), {P1–P3, T1–T8, A1–A2,
H1–H2, R}, 8 roles (abstraction of the characters de-
noted in the dotted circles), and 7 agents (concrete enti-
ties playing one or more roles), {P , T , A1, A2, H1, H2,
R}. Note that agent T plays 4 roles and has 8 charac-
ters T1–T8, and A1 and A2 play the same role, which has
the characters A1 and A2.

The interesting point about Dooley graphs to note from
this example is that they separate out an agent into its roles
and a role into its characters. The characters carry out highly
commitment-specific conversations with the characters of
other agents. This paper seeks to formalize characters, roles,
agents, and conversations in the π-calculus.

2.2. Commitment and Causality

A commitment is an obligation from a debtor to a credi-
tor about a particular condition. For debtor x, creditor y, and
condition p, the commitment is notated C(x, y, p). If p is a
simple proposition or an action, such as shipping goods or
making payment, we call the commitment unconditional.
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Figure 1. Dooley graph for trip planning

If p is in the form of e → q where q is a simple proposi-
tion (understood to be activated when e becomes true), then
we call this type of commitment conditional. An example
of a conditional commitment is when a customer promises
to pay for a trip only if his travel agent books one for him.

Four operations drive the life cycle of commitments:
Creation (Crt), Update (Upd), Discharge (Dcg), and Can-
cel (Cnl). A commitment is initially created when an agent
makes a promise to another. The commitment is discharged
when the promise is fulfilled, e.g., when the actions in-
volved have been performed or the conditions have become
true. Commitments can also be canceled but doing so would
in general incur penalties. For example, if a customer can-
cels a hotel reservation less than 24 hours before check in,
his credit card may be charged for the first night’s stay.

Before commitments are discharged or canceled, they
may also be updated. This often occurs when the debtor
wants to change his input or commitment conditions to ac-
commodate any changes that he encounters internally or ex-
ternally. For example, a trip customer may want to change
his flight or a travel agent may want to update an itinerary
because of a canceled flight. Practically, all these changes
only affect transaction details but do not break the original
agreement made between the two agents. Updating commit-
ments in such a manner enables us consolidate many pro-
cesses under the same commitments and prevent business
requirements from being artificially fragmented.

Whereas a single commitment represents an obligation
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# S R Act Type Utterance Respond to Reply to Resolve Complete Update

1 P T REQUEST Book trip
2 T A1 REQUEST Buy ticket 1
3 T H1 REQUEST Reserve hotel 1
4 A1 T REFUSE Not Available 2 2 2
5 T A2 REQUEST Buy Ticket 4
6 A2 T COMMIT Confirm Ticket 5 5 5
7 T R REQUEST Rent car 1
8 H1 T COMMIT Confirm Hotel 3 3 3
9 R T COMMIT Confirm Car 7 7 7
10 T P COMMIT Send Itinerary 6, 8, 9 1 1
11 P T REQUEST Cancel Car from the Itinerary 1
12 T R CANCEL Cancel Car 11 7
13 T P COMMIT Send Revised Itinerary 11 11 11 10
14 H1 T CANCEL Cancel Hotel 8
15 T P QUESTION Alternate Hotel? 14
16 P T INFORM Yes 15 15 15
17 T H2 REQUEST Reserve Hotel 16
18 H2 T COMMIT Confirm Hotel 17 17 17
19 T P COMMIT Send Revised Itinerary 18 16 16 13
20 P T ACT Pay for the trip 19 19 1
21 T A2 ACT Pay for the ticket 6, 20 6 5

between a pair of agents, commitment causal relations re-
flect the agreements made among a group of agents and
also reveal the chain of transactions in a business process.
We derive commitments and commitment casual relations
from Dooley graphs and use conversations to encapsulate
the messages occurred between pairs of agents [10]. The
outcomes of conversations are commitment operations. By
capturing commitments and conversations, we partition a
business process into a Commitment Causality Diagram
(CCD), in which the business requirements are clearly spec-
ified in terms of commitments and their causal relations. A
CCD enables multiagent system designers to focus on the
consequences of agent conversations instead of low-level
messaging details. It also enables runtime participants to
manipulate these commitments by flexibly choosing con-
versations so that their autonomy and heterogeneity are pre-
served.

The following is a list of commitments derived from the
running example. Figure 2 is the graphical representation
of the system. It extends the CCD [10] by incorporating
conversation segments and connectors (to be introduced be-
low). For clarification, TBD means a condition is to be de-
cided because of an incomplete sample conversation.

C1 = C(P, T, C(T, P, SendItinerary) → Pay(P, T ))
C2 = C(T, A, C(A, T, Confirm) ∧ Pay(P, T )

→ Pay(T, A))
C3 = C(T, H, TBD)
C4 = C(T, R, TBD)
C5 = C(A, T, Confirm)

C6 = C(H, T, Confirm)
C7 = C(R, T, Confirm)
C8 = C(T, P, SendItinerary)

2.3. π-Calculus Overview

The π-calculus is a process algebra capable of express-
ing mobile and concurrent systems [6]. The key concepts
of the π-calculus are name binding and passing among con-
current processes. It provides four kinds of basic actions.

π ::= x〈ỹ〉 | x(z̃) | τ | [z̃ = ỹ]π

Here x〈ỹ〉 sends tuple 〈ỹ〉 via name (or channel) x, x(z̃)
receives tuple z̃ via name x, τ is an internal action not ob-
servable and [z̃ = ỹ]π means perform capability π if z̃ and
ỹ are same. These actions form the basis of a complete pro-
cess syntax (defined in more detail next):

P ::= M | P|P ′ | νzP | !P
M ::= 0 | π.P | M + M ′

• 0 is a null process which does nothing.

• π.P is a process with π as the first action; process P
cannot be executed before π is performed.

• M + M ′ is a choice between M and M ′. Only one of
them will proceed and the other will be nullified.

• P |P ′ denotes two concurrent processes P and P ′.
They can execute independently but can also interact
with each other through shared names.
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C1   Crt  Upd Dcg  Cnl

C3   Crt  Upd Dcg  Cnl C4   Crt  Upd Dcg  Cnl
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• νzP restricts the use of name z in P so that it cannot
be shared outside P .

• !P is a repetition of P where !P = P | !P .

A common reduction of π-calculus, called PR-INTER,
is shown below: (x〈ỹ〉.P1 + M1) | (x(z̃).P2 + M2) →
P1|P2{ỹ/z̃}. In this reduction, both action x〈ỹ〉 and x(z̃)
are performed and z̃ is bound to ỹ.

For simplicity, we define the following notation to re-
ceive a constant Const through channel a (as mentioned
above, τ stands for an internal basic action):

a(Const)
def
= a(y).[y = Const]τ

The constants in our models are any utterance ui and
commitment Cj .

3. Formulating the Models

Now we show how each element of Dooley graphs can
be represented in the π-calculus.

3.1. Characters

We use β to represent the process executed by characters
and use the character name as its subscript. Since a conver-
sation is a sequence of utterances, the character is a single
process executing a sequence of actions. The syntax of β is
β ::= π.β | 0, where π has the following three forms:

• au. Send utterance u through a channel named by the
character’s name a.

• b(u). Receive utterance u through a channel named by
the communicating character’s name b.

• OpiCi. Send commitment Ci through channel Opi

where Opi ε {Crti, Updi, Dcgi, Cnli}. The operation
channels for each commitment are unique. This action
notifies connectors (described in Section 3.6) that the
commitment operation Opi has performed on commit-
ment Ci. OpiCi is generated after a receiving action
b(u) in which utterance u maps to OpiCi. The map-
ping between utterances and commitment operations
was studied previously in [10].

The character processes for the above example are

βP1 = P1u1.T1(u10).Crt8C8.0
βP2 = P2u11.T6(u13).Upd8C8.0
βP3 = T7(u15).P3u16.T7(u19).Upd8C8.P3u20.0
βT1 = P1(u1).Crt1C1.T1u10.0
βT6 = P2(u11).Upd1C1.T6u13.0
βT7 = T7u15.P3(u16).T7u19.P3(u20).Dcg1C1.0
βT2 = T2u2.A1(u4).0
βT3 = T3u5.A2(u6).Crt5C5.T3u21.0
βT4 = T4u3.H1(u8).Crt6C6.H1(u14).Cnl6C6.0
βT8 = T8u17.H2(u18).Crt6C6.0
βT5 = T5u7.R(u9).Crt7C7.T5u12.0
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βA1 = T2(u2).Crt2C2.A1u4.0
βA2 = T3(u5).Crt2C2.A2u6.T3(u21).Dcg2C2.0
βH1 = T4(u3).Crt3C3.H1u8.H1u14.0
βH2 = T8(u17).Crt3C3.H2u18.0
βR = T5(u7).Crt4C4.Ru9.T5(u12).Cnl4C4.0

3.2. Roles

We use ρ to represent the process executed by a role. It
is composed by the repetition of the choices of its character
processes since at any time for a given role, only one char-
acter process can be engaged and the role can execute its
character processes repeatedly. The subscripts of roles are
the combination of two interacting characters. For exam-
ple, one of the travel agent roles, 〈T1, T6, T7〉, which inter-
acts with role 〈P1, P2, P3〉, is denoted as TP, and the corre-
sponding customer role is denoted as PT. The role processes
for the above example are

ρPT = !(βP1 + βP2 + βP3)
ρTP = !(βT1 + βT6 + βT7)
ρTA = !(βT2 + βT3)
ρTH = !(βT4 + βT8)
ρTR = !βT5

ρAT = !(βA1 + βA2)
ρHT = !(βH1 + βH2)
ρRT = !βR

3.3. Agents

We use α to represent the process executed by an agent
that is composed by the actions performed by the roles it
plays. The list of agent processes for the above example are

αP = ρPT
αT = ρTP | ρTA | ρTH | ρTR
αA = ρAT
αH = ρHT
αR = ρR

3.4. Conversations

A conversation is a sequence of utterances between two
characters. We use ξ to represent the processes involved in
a conversation. The conversation processes are the combi-
nation of the two interacting character processes. Conse-
quently, the list of conversation processes for the above ex-
ample are

ξχ1 = βP1 | βT1, ξχ2 = βT2 | βA1

ξχ3 = βT3 | βA2, ξχ4 = βT4 | βH1

ξχ5 = βT5 | βR, ξχ6 = βP2 | βT6

ξχ7 = βP3 | βT7, ξχ8 = βT8 | βH2

3.5. Conversation Segments

A conversation segment is a partition of a conversation
that has one of the following three forms, P.OpC | P ′,
P | P ′.OpC or P | P ′, where process P and P ′ are se-
quences of actions that do not contain any commitment op-
erations and all the utterances involved in P or P ′ only
respond to utterances within P and P ′. Conversation seg-
ments either result in a transactional activity (a commitment
operation), such as reserving a hotel or confirming a ticket;
or a nontransactional activity, such as a query for informa-
tion or negotiation about price. The dependencies among
conversation segments are decided by connectors, as de-
scribed in the later sections.

We use σ to represent conversation segments and use
both the conversation subscript and the segment number as
the subscript of σ. We prefix each conversation segment
with a receiving action TRi to trigger its execution. The
addition of the trigger action makes a conversation ξ dif-
fer from its segments. However, since the triggers are con-
sumed when put in conjunction with connectors, we can
consider conversations and segments as equivalent when
reasoning with connectors. The conversation segments for
our example are

σ11 = TR11.(P1u1.0 | P1(u1).Crt1C1.0)
σ12 = TR12.(T1(u10).Crt8C8.0 | T1u10.0)
σ21 = TR21.(T2u2.0 | T2(u2).Crt2C2.0)
σ22 = TR22.(A1(u4).Cnl2C2.0 | A1u4.0)
σ31 = TR31.(T3u5.0 | T3(u5).Crt2C2.0)
σ32 = TR32.(A2(u6).Crt5C5.0 | A2u6.0)
σ33 = TR33.(T3u21.0 | T3(u21).Dcg2C2.0)
σ41 = TR41.(T4u3.0 | T4(u3).Crt3C3.0)
σ42 = TR42.(H1(u8).Crt6C6.0 | H1u8.0)
σ43 = TR43.(H1(u14).Cnl6C6.0 | H1u14.0)
σ51 = TR51.(T5u7.0 | T5(u7).Crt4C4.0)
σ52 = TR52.(R(u9).Crt7C7.0 | Ru9.0)
σ53 = TR53.(T5u12.0 | T5(u12).Cnl4C4.0)
σ61 = TR61.(P2u11.0 | P2(u11).Upd1C1.0)
σ62 = TR62.(T6(u13).Upd8C8.0 | T6u13.0)
σ71 = TR71.(T7(u15).P3u16.0

| T7u15.P3(u16).TR81.0)
σ72 = TR72.(T7(u19).Upd8C8.0 | T7u19.0)
σ73 = TR73.(P3u20.0 | P3(u20).Dcg1C1.0)
σ81 = TR81.(T8u17.0 | T8(u17).Crt3C3.0)
σ82 = TR82.(H2(u18).Crt6C6.0 | H2u18.0)

Permission to make digital or hard copies of all or part of  
this work for personal or classroom use is granted without fee  
provided that copies are not made or distributed for profit or  
commercial advantage and that copies bear this notice and the  
full citation on the first page. To copy otherwise, to republish,  
to post on servers or to redistribute to lists, requires prior  
specific permission and/or a fee.  
           AAMAS'04, July 19-23, 2004, New York, New York, USA.  
           Copyright 2004 ACM 1-58113-864-4/04/0007...$5.00 



3.6. Reentrant Connectors

Traditional task connectors, e.g., as in traditional process
modeling languages [2], specify the data or control flows
among the business tasks that they connect. But in many
business applications, the processes are long-lived and the
components are autonomous service providers. These ser-
vice providers can raise exceptions or generate updates
based on their local reasoning. For example, a customer
may update his trip itinerary or the hotel may cancel a reser-
vation because of a problem at the intended facility. Existing
models would treat such updates disjointly from the origi-
nal execution, creating separate processes to handle them
without explicitly relating them to the original transactions.
Thus traditional approaches unnecessarily complicate the
modeling and enactment of processes.

We introduce reentrant connectors, which not only con-
trol the initial process coordination requirement, but also
deal with any updates sent or exceptions raised from the ini-
tial processes. The essence of our connectors is to allow pro-
cesses to repeatedly deliver results through the same control
logic until an entire transaction ends. To accomplish this,
we use commitments as described above and let our con-
nector to coordinate on commitment operations to ensure
that commitment casual relations are not violated. The fol-
lowing are the differences between reentrant and traditional
connectors.

• Both inputs and outputs of our connectors are the com-
mitment operations which convey commitment casual
relations instead of process dependencies.

• The decision-making process in our connectors con-
sists not only of Boolean logic, but also triggers for
conversations. By engaging in conversations, agents
are able to negotiate and collaborate to find optimal
business values based on their local decisions. Thus
we preserve agent autonomy.

• The operations performed on a commitment are fed to
the same connectors where the original commitment is
involved. This reentrance under revisions enables bet-
ter modeling and enactment of processes under excep-
tions and opportunities.

Figure 3 is the graphical illustration of a generic reen-
trant connector. Each connector contains two parts, one for
initial creation and the other for revision. The initial creation
process captures the business requirement level dependen-
cies which maps to the service request and response chain.
The revision process handles updates, cancellations, and
terminations occurring along the above established chains.
In our model, since we use commitment to capture the
stages of agent interactions, the revision processes can be
naturally attached to the existing commitments, thus mak-
ing multiagent system modeling clear and extensible.

Initial Creation
+ Revision

InOp1 InOp2 InOpn
...

...

OutOp1 OutOp2 OutOpm...

Figure 3. Reentrant connectors

Here we define three commonly used connectors, Γjoin,
Γfork and Γl.

3.6.1. Join Connector Γjoin The join connector has mul-
tiple input commitment creation links and but only one out-
put commitment creation link. Initially the join connector
requires that all its input links have creation of the corre-
sponding commitments; the output would be a commitment
creation as well. After the initial join, commitment Update,
Discharge, and Cancel may come in through any input link.
For Update, the connector may output a commitment up-
date or discharge. For Discharge, the connector will output
a commitment discharge only when all the input links have
Discharge operations present. For cancellation, depending
on business rules, the connector may output commitment
cancellation, update, or nothing.

As an example, the join connector executed by agent T
on commitment C5, C6, and C7 is expressed as follows,
Γjoin(〈C5, C6, C7〉 → C8) =

νd ( Crt5(C5).Sd.0 | Crt6(C6).Sd.0 | Crt7(C7).Sd.0
| S(x).S(x).S(x).TR12

.!( Cnl6(C6).Cnl3C3.0 + Crt6(C6).TR72.0
+ Cnl7(C7).TR62.0)

)

The above connector only reflects the control logic of
our running example. Initially, the connector waits for all
the three commitment creations (by consuming three S(x))
and then executes conversation segment σ12 which creates
commitment C8. After the initial creation, it enters an in-
finite loop in which it may receive the cancellation of C6

or C7, or another creation of C6. It then executes conversa-
tion segment σ71, σ72, or σ62 as appropriate, which lead to
either the creation of C3 or C6 or an update of C8.

3.6.2. Fork Connector Γfork The fork connector has
only one commitment creation input link but multiple out-
put commitment creation links. Initially upon receiving
a commitment creation on its input link, the fork con-
nector triggers all commitment creations on its output
links. After the initial execution, commitment Update, Dis-
charge, and Cancel may come in through the input link.
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For update, depending on business rules, it may af-
fect part or all of its output commitments with either update
or cancellation operations. For discharge, the connec-
tor should send commitment Discharges to all its output
links. For cancellation, the connector should send cancella-
tion to all its output links.

As an example, the fork connector executed by agent T
on commitment C1 is expressed as follows
Γfork(C1 → 〈C2, C3, C4〉) =

νd(Crt1(C1).Sd.Sd.Sd.!(Upd1(C1).TR53)
| S(x).TR21.0 | S(x).TR41.0 | S(x).TR51.0)

Upon receiving a creation of C1, the fork connector trig-
gers all three conversation segments σ21, σ41, and σ51,
which in turn create commitments C2, C3, and C4, respec-
tively. Later, there is an update of C1 which is justified to
trigger conversation σ53 only. The latter cancels commit-
ment C4.

3.6.3. Linear Connector Γl Linear connectors are the
same as fork connectors but with only one output com-
mitment creation link. As an example, the linear connec-
tor Γl(C3 → C6) is expressed as follows

Γl(C3 → C6) = Crt3(C3).TR42.!(Cnl3(C3).TR71.0
+Crt3(C3).TR82.0)

4. Reasoning on the Formulations

Using the formulations of all the elements given above,
we now define the process for an entire system Υ, which
is the combination of agent processes and connector pro-
cesses: Υ ::= α1| . . . |αn|Γ1| . . . |Γm. From this definition,
we can derive some useful properties and also verify sys-
tem correctness.

4.1. Behavior Derivation

Given a commitment operation Op(C) and a system Υ,
we can derive consequent conversations and commitment
operations. This gives a designer a means to verify whether
the multiagent system works as designed. As an example, to
derive the consequent commitment operations of Cnl6(C6)
(the hotel cancels the room reservation), we can start the re-
duction process from the revision part of Γjoin(C5, C6, C7)
since this connector covers the control logic of C6. To save
space, we only show the processes that are used in each
derivation step and use “. . . ” to denote the remaining pro-
cesses. We also put the action performed in each step on
derivation arrows.
Cnl6(C6).Cnl3C3.0 | . . .

Cnl6C6−→ Cnl3C3.0 | Cnl3(C3).TR71.0 | σ71 | . . .

Cnl3C3−→ TR71.0 | TR71.(T7(u15).P3u16

| T7u15.P3(u16).TR81) | σ81 | . . .
TR71−→ TR81 | TR81.(T8u17 | T8(u17).Crt3C3) | . . .
TR81−→ Crt3C3 | Crt3(C3).TR82.0 | σ82 | . . .

Crt3C3−→ TR82.0 | TR82.(H2(u18).Crt6C6 | H2u18) | . . .
TR82−→ Crt6C6 | Crt6(C6).TR72.0 | σ72 | . . .

Crt6C6−→ TR72.0 | TR72.(T7(u19).Upd8C8 | T7u19) | . . .
TR72−→ Upd8C8 | . . .

Upd8C8−→ . . .

Now we know the chained effects of Cnl6C6 is

Cnl3C3
TR71−→TR81−→ Crt3C3

TR82−→ Crt6C6
TR72−→ Upd8C8.

Further, since σ71 and σ72 are the segments of conversa-
tion ξχ7 , and σ81 and σ82 are the segments of ξχ8 , and we
have ξχ7 = βP3 | βT2 and ξχ8 = βT8 | βH2, we also know
this transition involve four characters P3, T2, T8 and H2

and three agents P , T , and H .

4.2. Adding Business Logic

We can accommodate further business requirement
variations by simply expanding the connector deci-
sion logics. For example, the customer may request a
trip package (a bundled flight, hotel, and car) to get dis-
count. If he cancels the car (reflected by the path
Upd1(C1) → Cnl4(C4) → Cnl7(C7)), the prices for his
airline and hotel may be increased. We can modify the con-
nector Γjoin(〈C5, C6, C7〉 → C8) to implement this logic.
In the consequent actions of Cnl7(C7), we introduce an ad-
ditional action choice Upd2C2.Upd3C3.0. Now the join
connector becomes

νd ( Crt5(C5).Sd.0 | Crt6(C6).Sd.0 | Crt7(C7).Sd.0
| S(x).S(x).S(x).TR12

.!( Cnl6(C6).Cnl6C3.0 + Crt6(C6).TR72.0
+ Cnl7(C7).(TR62.0 + Upd2C2.Upd3C3.0)))

Note that the decision logic on which actions to take is not
explicitly shown in the connector. In our model, we empha-
size the potential commitment causality and conversation
consequences, and leave local decisions to the agents. Do-
ing so maximizes agent autonomy and heterogeneity.

4.3. Verifying Model Consistency

Definition 1 Assuming that the life time of any commitment
is finite, a system Υ is consistent if and only if any runtime
commitment instance is eventually discharged.

The definition says that for a successful execution of a
business process, all the participants must eventually ful-
fill their commitments. This property is useful in a highly
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distributed and heterogeneous environment where a system
can only be validated by verifying the agents’ commitments
made to each other.

Theorem 1 If all commitment creation paths form a tree
and there is an edge from one of the commitment creations
to the discharge operation of the root commitment, then the
system Υ is consistent.
Proof Sketch: (Due to space limitations, we only give a
description of the proof instead of reasoning using the
π-calculus.) The root commitment will be eventually dis-
charged since the commitment that discharges the root will
be eventually created. Since all other commitments have a
creation path coming from root, they too will be discharged
eventually.

This resembles a service request and response chain
which is triggered by a single requester. When the root re-
quester is satisfied by a commitment created where it is the
creditor, it will discharge his commitment which in turn dis-
charges the entire chain of commitments.

5. Discussion

Commitments have been widely recognized as key repre-
sentation of agreements made among autonomous and het-
erogeneous agents in a multiagent system. Although much
work has been done at conceptual level, applications of
commitments to business processes have not been ade-
quately studied. The main challenge is how to incorporate
commitments and agent interactions into business process
specification so that autonomy can be entertained by busi-
ness participants. As one of the first attempts in this di-
rection, our work modeled agent interaction by abstracting
commitments and conversations and devised a semantics for
reentrant connectors which facilitate business flow to be en-
acted not only correctly but also flexibly.

The π-calculus has found application in software engi-
neering [1] and business process modeling [4]. These works
use the π-calculus to model computations, but conceptually
the computations they think of do not have any special fea-
tures geared to open environments. In particular, they lack
anything analogous to manipulable commitments or reen-
trance. We use π-calculus to provide a theoretical founda-
tion to our commitment-based approach. This formaliza-
tion better uses the power of the π-calculus to capture the
essence of higher-level abstractions. Using the π-calculus
helps us not only derive useful properties on the relations
among characters, roles, agents, commitments, and connec-
tors, but also verify the correctness of a model. Petri nets are
another prominent modeling approach for concurrent sys-
tems [8]. We find the algebraic nature of the π-calculus to be
more natural for representing commitments than the graph
representation of Petri nets.

Business process and web service choreography stan-
dards have evolved for several years, e.g., see [3]. Ex-
isting standards tend to focus on method invocations and
simple message exchanges. Exceptions cannot be perspicu-
ously modeled with such abstractions. When we introduce
commitments and reentrant connectors, we allow these pro-
cesses to be correlated under same commitments and coor-
dinated by the original connectors so as to reduce the com-
plexities of the composition specifications. This makes the
entire process coherent even as it is modeled in a manner
that can be readily enacted by autonomous, heterogeneous
agents.

Conclusions This paper describes a methodology to
map Dooley graphs and commitment casual relations
to π-calculus and demonstrates how this formaliza-
tion help to derive useful properties and prove sound-
ness of our commitment based models. This approach has
opened a new direction on how to reason about multia-
gent systems and apply them to real world needs such as
business process modeling. We have already begun elab-
orating these techniques to support the derivation of
agreements among agents given certain sets of commit-
ments among them [9]. In future work, we will integrate
the commitment-based calculus into business process spec-
ification.
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