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ABSTRACT
We address the problem of constructing multiagent systems by co-
ordinating heterogeneous, autonomous agents, whose internal de-
signs may not be fully known. A major application area is Web
service composition. We develop an approach that (a) takes declar-
ative specifications of the desired interactions, and (b) automati-
cally enacts them. Our approach is based on temporal logic, has a
rigorous semantics, and yields a naturally distributed execution.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Design, Verification

Keywords
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1. INTRODUCTION
Web services enable application development over the Web by

supporting program-to-program interactions. Current standards en-
able the description, discovery, and invocation of services [4]. Ser-
vices are most valuable when composed in novel ways. However,
current approaches are limited to hard-coded, procedural abstrac-
tions for composition. These cannot handle interactions flexibly
enough to support realistic composition scenarios.

Two key aspects of realistic scenarios are that the services are in-
herently autonomous and their compositions are often long-lived.
For example, a long-lived interaction occurs in e-business when
you try to change an order because of some unexpected conditions
or try to get a refund for a faulty product. Further, specific con-
figurations may impose their own requirements. Even short-lived
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settings may require flexibility, e.g., routing an order differently in
some cases or checking if the service requester is authenticated and
properly authorized before accepting its order.

The Business Process Execution Language (BPEL), a leading
traditional approach, specifies compositions of services in the form
of a workflow, where the workflow is captured procedurally in
terms of branch and join primitives indicating the orderings of dif-
ferent tasks [3]. BPEL specifications orchestrate invocations of ser-
vices from a central engine, but do not readily accommodate the
kinds of flexibility described above.

Recent approaches inspired from artificial intelligence are promis-
ing. These capture richer representations of services and support
planning. However, the service scheduling component of DAML-S
[1] offers a representation at the level of branch and join primitives.
Some recent work applies planning and other agent techniques for
domain-specific reasoning about services, e.g., [11]. Another fam-
ily of approaches exploits high-level multiagent abstractions such
as commitments [16, 17]. Such abstractions characterize interac-
tions among agents in terms of the commitments of the different
parties to one another. The agents can reason about their commit-
ments to others and others’ commitments to them in order to decide
how to act. However, the actions of the agents must be coordinated
so that the overall computation proceeds as desired. And the de-
sired coordination might itself be negotiated and be the subject of
commitments. This is where the present approach comes in.

This paper takes a multiagent systems stance on the problem of
service composition, emphasizing the distributed computing under-
pinnings of agents. Agents can apply naturally for composition
provided we develop rigorous yet easy-to-use methods to capture
complex interactions. The approach of this paper is to achieve
service composition by postulating an agent for each service to
be composed and by declaratively specifying workflows for the
agents. Declarative specifications can support greater flexibility
than can traditional primitives of the ilk of branch and join. The
agents can dynamically and with maximum flexibility bring about
the right events with just enough constraints to satisfy the stated
workflow. This idea applies for developing multiagent systems in
general, not just those for Web services. A generic facility for agent
coordination can be used by a higher-level reasoner to bring about
the interactions that it deems fit without having to contend with the
details of distributed events.

For reasons of space, more extensive motivation and technical
details are deferred to [14]; however, this paper is self-contained.
Section 2 describes our specification language. Section 3 shows
how flows are enacted. Section 4 formalizes enactment via a series
of sophisticated and provably correct strategies. Section 5 discusses
some literature and directions.



2. SPECIFYING SERVICE COMPOSITION
We now discuss how to compose services by specifying con-

straints on events (described below) of different services. I is an
event-based linear temporal logic—effectively, propositional logic
augmented with the before(·) temporal operator. Beforeis formally
a dual of the more conventional “until” operator; it was studied as
the “chop” operator [2]. Because of its similarity with sequence
composition in imperative programming languages, the chop facil-
itates compositional specifications. Here, before is used to state
minimal ordering requirements so as to facilitate compositionality.
I can capture a remarkable variety of coordination requirements,

yet be compiled and executed in a distributed manner. I incorpo-
rates a set of significant events—roughly, transitions of different
services that are externally visible and significant for coordination.
A dependency, D, is an expression in I. A workflow, W , is a set
of dependencies.

We specify the syntax of I through the following BNF with start
symbol I. Here, slant indicates nonterminals; −→ and | are meta-
symbols of BNF; the remaining symbols are all terminals. � and
� delimit comments.

L1. I −→ dep | dep ∧ I�conjunction: interleaving�

L2. dep −→ seq | seq ∨ dep �disjunction: choice�

L3. seq −→ bool | event | event · seq�before: ordering�

L4. bool −→ 0 | �

Γ �= ∅ is the set of event literals used in I. ΓD is the set of literals
mentioned in D and their complements—e.g., Γe = {e, e}. Our
formal semantics is based on runs, i.e., sequences of events. Legal
runs satisfy the following requirements: (1) event instances and
their complements are mutually exclusive and (2) an event instance
occurs at most once in a computation. Our universe is UI , which
contains all legal runs involving event instances from Γ. For τ ∈
UI and I ∈ I, τ |= I means that I is satisfied over the run τ . This
notion can be formalized as follows. Here, τi refers to the ith item
in τ and τ[i,j] refers to the subrun of τ consisting of its elements
from index i to index j, both inclusive. |τ | is the last index of τ and
may be ω for an infinite run. We use the following conventions: e,
f , e, f , etc. are literals; D, E, etc. are dependencies; i, j, k, etc.
are temporal indices; and τ , etc. are runs.

M1. τ |= e iff (∃i : τi = e)

M2. τ |= I1 ∨ I2 iff τ |= I1 or τ |= I2

M3. τ |= I1 ∧ I2 iff τ |= I1 and τ |= I2

M4. τ |= I1 · I2 iff (∃i : τ[0,i] |= I1 and τ[i+1,|τ |] |= I2)

The semantics of individual events has no temporal component.
The idea is that the specifier does not care about when an event
occurs except for the restrictions specified using the · operator. I1 ·
I2 means that I1 is satisfied before I2 (thus both are satisfied). The
denotation of a dependency I is the set of runs that satisfy I , i.e.,
[[I ]] = {τ : τ |= I}. We define equivalence of two dependencies
as D ≡ E iff [[D]] = [[E]].

2.1 Coordination Relationships
As running examples, we use two dependencies due to Klein

[9]. In Klein’s notation, e < f means that if both events e and
f happen, then e precedes f ; i.e., f disables e. Also in Klein’s
notation, e → f means that if e occurs then f also occurs (before
or after e); i.e., e requires f . We formalize these below.

EXAMPLE 1. LetD< � e∨f ∨ e ·f . Letτ ∈ UI satisfyD<.
If τ satisfies bothe andf , thene andf occur onτ . Thus, neither
e nor f can occur onτ . Hence,τ must satisfye · f , which requires
that an initial part ofτ satisfye and the remainder satisfyf ; i.e.,e
must precedef on τ .

EXAMPLE 2. LetD→ � e ∨ f . Letτ ∈ UI satisfyD→. If τ
satisfiese, thene occurs onτ . Thus,e cannot occur onτ . Hence,
f must occur somewhere onτ .

Let’s see how our approach captures a variety of coordination
requirements as dependencies.

D1. e feeds or enables f . f requires e to occur before: e · f ∨ f

D2. e conditionally feeds f . If e occurs, it feeds f : e ∨ e · f ∨ f

D3. Guaranteeing e enables f . f can occur only if e has occurred
or will occur: e ∨ e ∧ f

D4. e initiates f . f occurs iff e precedes it: e ∧ f ∨ e · f
D5. e and f jointly require g. If e and f occur in any order, then

g must also occur (in any order): e ∨ f ∨ g

D6. g compensates for e failing f . If e happens and f does not,
then perform g : (e ∨ f ∨ g) ∧ (g ∨ e)∧ (g ∨ f)

The above are mostly self-explanatory. D6 captures require-
ments such as that if e occurs, but is not matched with f , then g
must occur, and g must not occur otherwise. This is a typical re-
quirement in information applications with data updates, where g
corresponds to an action to restore the consistency of the informa-
tion (potentially) violated by the success of e and the failure of f .
Hence the need to compensatefor e if f does not occur.

Consider the following simple scenario inspired by supply chains.
Here an assembly service composes three services, supplying hoses,
valves, and elbow joints. The assembly orders a matching hose and
valve to create a requested assembly. For simplicity, each service
(A, V , H , E) can be started and may complete successfully or fail.
The elbow joints service supports cancellation (undo), which al-
ways succeeds. Thus, the events defined are As, Ac, Vs, Vc, Hs,
Hc, Es, Ec, and Eu (subscripts s, c, and u indicate start, success-
fully complete, and undo, respectively), and their complements.
The failure of a service is the complement of its successful com-
pletion, e.g., the failure of the valves service is Vc.

• If (and only if) an assembly is started, start the valve and hose
services: (As ∨ Vs ∧Hs) ∧ (Vs ∨As) ∧ (Hs ∨ As).

• As soon as the hose completes successfully, start elbow joints,
except that if the valve service has failed before elbow joints
are started, do not start elbow joints: (Hc ∨ Es ∧ Vc ∨ Vc ·
Es ∨Es · Vc).

• If the valve service has failed but elbow joints have com-
pleted successfully, then and only then undo the elbow joints:
(Vc ∨Ec ∨ Eu) ∧ (Eu ∨ Vc) ∧ (Eu ∨Ec).

2.2 Residuation
Imagine a scheduler that schedules events to satisfy all stated de-

pendencies. A dependency is satisfied when a run in its denotation
is realized. We characterize the state of the scheduler by the runs it
can allow—the state determines which events may or may not oc-
cur. Initially, the allowed runs are given by the stated dependencies.
As events occur, the allowed runs get narrowed down.

Intuitively, two questions must be answered for each event under
consideration: (a) can it happen now? and (b) what will remain
to be done later? The answers can be determined from the stated
dependencies and the history of the system. One can examine the



runs allowed by the original dependencies, select those compatible
with the actual history, and infer how to proceed. However, our
approach achieves this effect symbolically, without examining the
runs. This is important, because it makes our reasoning depend on
the finite specifications, not on the potentially infinite runs.
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Figure 1: Scheduler states and transitions for D<

The dependencies stated in a workflow fully describe the initial
state of the scheduler; successive states are computed symbolically.
Figure 1 shows how the states and transitions of the scheduler may
be captured symbolically. The state labels give the corresponding
obligations, and the transition labels name the different events. An
event that would make the scheduler obliged to 0 cannot occur.

For a source state D and transition by event e, the target state is
given by D/e. This refers to the residuationof D by e and corre-
sponds to the largest set of runs satisfying the given dependency:

M5. ν ∈ [[D/e]] iff (∀υ : υ ∈ [[e]] ⇒ (υν ∈ UI ⇒ υν ∈ [[D]]))

EXAMPLE 3. (Figure 1) If e or f happens, thenD< is neces-
sarily satisfied. Ife happens, then eitherf or f can happen later.
But if f happens, then onlye must happen afterwards (e cannot be
permitted any more, since that would meanf precedese).

2.3 Symbolic Calculation of Residuals
M5 characterizes the evolution of the state of a scheduler, but

offers no suggestions as how to determine the transitions. Fortu-
nately, a set of equations exists using which the residual of any
dependency can be computed. Importantly, dependencies not men-
tioning an event have no direct effect on it and reasoning with re-
spect to different dependencies can be performed modularly.

E1. 0/e
.
= 0

E2. �/e
.
= �

E3. (E1 ∧E2)/e
.
= ((E1/e) ∧ (E2/e))

E4. (E1 ∨E2)/e
.
= (E1/e ∨E2/e)

E5. (e · E)/e
.
= E, if e �∈ ΓE

E6. D/e
.
= D, if e �∈ ΓD

E7. (e′ ·E)/e
.
= 0, if e ∈ ΓE (e′ is any event literal)

E8. (e · E)/e
.
= 0

EXAMPLE 4. Verify that the above equations yield the transi-
tions of Figure 1.

The scheduler can take a decision to accept, reject, or trigger an
event only if no dependency is violated by that decision. There are
several ways to apply the above algebra. The relationship between
the algebra and the scheduling algorithm is similar to that between
a logic and proof strategies for it. For scheduling, the system ac-
cepts, rejects, or triggers events to determine a run that satisfies all
dependencies. The following theorem is proved in [14].

THEOREM 1. EquationsE1–E8 are sound and complete.

3. DISTRIBUTED SCHEDULING
One of our requirements is that the agents act as autonomously,

constrained only their coordination relationships. This presupposes
that the decisions on events be taken based on local information.
Further, distribution promises greater scalability and reliability by
placing decision-making functionality right where the decision needs
to be made.

To enable sound local decisions, we place a guardon each event.
The guard on an event is a condition such that when it is true, it is
OK to let the event happen. The guards depend on the dependencies
that have been specified. We want the guards to be as general as
possible. Moreover, as some events occur, other events can become
enabled or disabled, i.e., the guards of the latter events can become
true or false. This means that the guards of events can be modified
based on messages from other events.

In other words, our approach requires (a) initially determining
the guards on each event, (b) arranging for the relevant information
to flow from one event to another, and (c) modifying the guards to
assimilate the information received from other events.

3.1 Temporal Logic for Internal Reasoning
The guard on an event is the weakest condition whose truth guar-

antees correctness if the event occurs. Guards must be temporal
expressions so that decisions taken on different events can be sen-
sitive to the state of the system. The guards are compiled from the
stated dependencies; in practice, they are quite succinct.
T is our temporal language for guards. ✷E means that E will

always hold; ✸E means that E will eventually hold (thus ✷e en-
tails ✸e); and ¬E means that E does not (yet) hold. E · F means
that F has occurred preceded by E. For simplicity, we assume the
following binding precedence (in decreasing order): ¬; ·; ✷ and ✸;
∧; ∨. The syntax of T is given in BNF with T as the start symbol.

L5. T −→ conj | conj ∧ T

L6. conj −→ disj | disj ∨ conj

L7. disj −→ bool | ✷ seq | ✸ seq | ¬ event

The semantics of T is given with respect to a run (as for I) and
an index into that run (unlike for I). In addition, we need an aux-
iliary notion of semantics, which requires two indices. Our seman-
tics characterizes progress along a given computation to determine
the decision on each event. It has important differences from tra-
ditional linear temporal logics [7]. One, our runs are sequences of
events, not of states. Two, our main semantic definitions are given
in terms of a pair of indices, i.e., intervals, rather than a single in-
dex. For 0 ≤ i ≤ k, u |=i,k E means that E is satisfied over the
subsequence of u between i and k. For k ≥ 0, u |=k E means
that E is satisfied on u at index k—implicitly, i is set to 0. A run
u is maximaliff for each event, either the event or its complement
occurs on u. The universe, UT , is the set of maximal runs.

M6, which involves just one index i, invokes the semantics with
the entire run until i. The second index is interpreted as the present
moment. M10 introduces a nonzero first index. M7 and M10

capture the dependence of an expression on the immediate past,
bounded by the first index of the semantic definition. M8, M9,
M11, M12, M13, and M14 are as in traditional semantics. M13 and
M14 involve looking into the future. M7 implicitly treats events
as being in the scope of a past-time operator. Consequently, M12

interprets ¬ as not yet.
Truth at an index corresponds to truth from the beginning to that

index. An event is true in a range iff it occurs within that range. A
sequence formula is true over a range iff its first component is true
before the second component and both components are true within
the same range.



M6. u |=i E iff u |=0,i E

M7. u |=i,k f iff (∃j : i ≤ j ≤ k and uj = f), where f ∈ Γ

M8. u |=i,k E ∨ F iff u |=i,k E or u |=i,k F

M9. u |=i,k E ∧ F iff u |=i,k E and u |=i,k F

M10. u |=i,k E · F iff (∃j : i ≤ j ≤ k and u |=i,j E and
u |=j+1,k F )

M11. u |=i,k �
M12. u |=i,k ¬E iff u �|=i,k E

M13. u |=i,k ✷E iff (∀j : k ≤ j ⇒ u |=i,j E)

M14. u |=i,k ✸E iff (∃j : k ≤ j and u |=i,j E)

There are some important motivations for the above semantics.
Our approach includes two kinds of negation: a strong kind ap-
plied on events as in e, and a weak one as in ¬e. Logical frame-
works with two negations have been studied before in the context of
reasoning about action. However, the existing frameworks use the
weak negation as a default, epistemic, or nonmonotonic negation,
along the lines of negation as failure [10]. By contrast, we describe
a purely monotonic system: although ¬e indicates less information
than e, the decisions made during scheduling are cautious and do
not have to be withdrawn.

Our approach takes events to be stable; i.e., once an event in-
stance has occurred, it remains occurred forever. This idea is im-
portant for distributed systems to accommodate message delay [8].
However, it is in tension with the semantics of before. Specifically,
if e and f hold forever, then a run that satisfies e · f would also
satisfy f · e, thereby losing ordering information. Our semantics
avoids this undesirable effect.

We define E ∼= F iff E and F are true over the same index pairs
over the same runs.

EXAMPLE 5. The possible maximal runs forΓ = {e, e} are
{〈e〉, 〈e〉}. On different runs,e or e may occur. Initially, neither
e nor e has happened, so runs〈e〉 and〈e〉 both satisfy¬e and¬e
at index 0. Run〈e〉 satisfies✸e at 0, because evente will occur
on it; similarly, run 〈e〉 satisfies✸e at 0. After evente occurs,✷e
becomes true,¬e becomes false, and✸e and¬e remain true.

3.2 Deriving Guards from Specifications
Our objective is to determine the guards purely symbolically.

However, for expository ease, and to formally establish correctness
of our approach, we begin with an obvious but inefficient approach
and improve it step by step until we obtain the desired approach.
We now use T to compile guards from dependencies.

Since the guards must yield precisely the computations that are
allowed by the given dependencies, a natural intuition is that the
guard of an event covers each computation in the denotation of the
specified dependency, and no more.

We associate a set of paths, Π(D), with a dependency D. A path
ρ ∈ Π(D) is a sequence of event symbols (no two of which are
equal or complements) that residuate D to �—the dependency is
satisfied if the events in the path occur in the order of residuation.
We require that Γρ ⊇ ΓD , i.e., all events in D (or their comple-
ments) feature in ρ. Each path is effectively a correct execution for
its dependency. A path may have more events than those explic-
itly mentioned in a dependency. This is not a problem: Section 4.2
develops an equivalent approach that only looks at the dependency
itself, not the paths. Clearly, the paths in Π(D) satisfy D. More-
over, we can show that there is a unique dependency corresponding
to any set of paths.

Since each path ρ in a dependency D satisfies D, if an event e
occurs on ρ, it is clearly allowed by D, providede occurs at the
right time. In other words, e is allowed when (1) the events on ρ
up to e have occurred in the right sequence, and (2) the events of ρ
after e have not occurred, but will occur in the right sequence.

We define a series of operators to calculate guards as G : I ×
Γ �→ T . Gb(ρ, e) denotes the guard on e due to path ρ (b stands for
basic). Gb(D, e) denotes the guard on e due to dependency D. To
compute the guard on an event relative to a dependency D, we sum
the contributions of different paths in D. Gb(W, e) denotes the
guard due to workflow W and is abbreviated as Gb(e) when W is
known. This definition redundantly repeats information about the
entire path on each event. Later, we shall remove this redundancy
to obtain a semantically equivalent, but superior, solution.

DEFINITION 1. Gb(ρ, e) � if e = ei, then✷(e1 · e2) ∧ . . .∧
✷(ei−2 · ei−1) ∧ ¬ei+1 ∧ . . . ∧ ¬en ∧ ✸(ei+1 · ei+2) ∧ . . . ∧
✸(en−1 · en), else0.
Gb(D, e) �

∨
ρ∈Π(D) Gb(ρ, e).

Gb(W, e) �
∧

D∈W Gb(D, e).

OBSERVATION 2.
u |=k Gb(D, e)⇒ (∃ρ ∈ Π(D) : u |=k Gb(ρ, e)).
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Figure 2: Guards with respect to D< = e ∨ f ∨ e · f

Figure 2 illustrates our procedure for the dependency of Exam-
ple 1. The figure implicitly encodes all paths in Π(D<) (here, for
simplicity, Γ = ΓD). The initial node is labeled ¬e∧¬e∧¬f ∧¬f
to indicate that no event has occurred yet. The nodes in the middle
layer are labeled ✷e, etc., to indicate that the corresponding event
has occurred. To avoid clutter, labels like ✸e and ¬e are not shown
after the initial state.

EXAMPLE 6. Using Figure 2, we can compute the guards for
the events inD<. Each path on whiche occurs contributes the
conjunction of a✷ term (what happens beforee) and a¬ and a✸

term (what happens aftere).
• Gb(D<, e) = (¬f ∧ ¬f ∧ ✸(f ∨ f)) ∨ (✷f ∧ �). But

✸(f ∨ f) ∼= �. Hence,Gb(D<, e) = (¬f ∧ ¬f) ∨ ✷f ,
which reduces to¬f ∨✷f , which equals¬f .

• Gb(D<, e) = (¬f∧¬f∧✸(f∨f))∨(✷f∧�)∨(✷f∧�),
which reduces to�.

• Gb(D<, f) = �.

• Gb(D<, f) = (¬e ∧ ¬e ∧✸e) ∨✷e ∨ ✷e ∼= ✸e ∨ ✷e.

Thuse can occur at any time,e can occur iff has not yet happened
(possibly becausef will never happen),f can occur any time, but
f can occur only ife has occurred ore is guaranteed.

3.3 Scheduling with Guards
To execute an event e, check if its guard is� (execute e), 0 (reject

e), or neither (make e wait). Whenever an event e occurs, notify all
events depending on e that ✷e now holds, thereby causing their
guards to be updated.



EXAMPLE 7. Using the guards from Example 6, ife is attempted
and f has not already happened,e’s guard evaluates to�. Con-
sequently,e is allowed and a notification✷e is sent tof (and
f ). Upon receipt of this notification,f ’s guard is simplified from
✸e ∨ ✷e to�. Now iff is attempted, it can happen immediately.

If f is attempted first, it must wait because its guard is✸e ∨ ✷e
and not�. Sometime later ife or e occurs, a notification of✷e or
✷e is received atf , which simplifies its guard to�, thus enabling
f . The guards ofe andf equal�, so they can happen at any time.

The above development shows how we can compute the seman-
tics of T , i.e., realize the appropriate runs, incrementally. But in
some situations potential race conditions and deadlocks can arise.
To ensure that the necessary information flows to an event when
needed, the execution mechanism should be more astute in terms of
recognizing and resolving mutual constraints among events. This
reasoning is essentially encoded in terms of heuristic graph-based
reasoning. Although these heuristics can handle many interesting
cases, they are not claimed to be complete.

4. FORMALIZATION
We have two main motivations for carrying out a formalization

of our approach. Formalization can help in proving the correctness
of an approach and in justifying improvements in efficiency, e.g.,
in updating guards incrementally as messages are exchanged and
to simplify guards prior to execution.

Correctness is a concern when (a) guards are compiled, (b) guards
are preprocessed, and (c) events are executed and guards updated.
Correctness depends on how the guards are used to yield actual
computations. That is, correctness depends on the evaluation strat-
egy, which determines how events are scheduled. We formalize
evaluation strategies by stating what initial values of guards they
use, and how they update the guards. We begin with a strategy that
is simple but correct and produce a series of more sophisticated, but
semantically equivalent (hence correct), strategies.

DEFINITION 2. An evaluation strategy is a functionS : ℘(I) �→
(Γ×UT ×N �→ T ).

Given workflow W , S yields a function S(W), which captures
the evolution of guards and execution of events. Given an event e,
a run v, and index j in v, S(W, e, v, j) equals the current guard of
e at index j of v. Here v corresponds to the run being “generated”
and j indicates how far the computation has progressed. Formally,
an evaluation strategy S(W) generatesrun u ∈ UT if for each
event e that occurs on u, u satisfies e’s current guard due to S(W)
at the index preceding e’s occurrence. We write this as S(W) ❀ u.

DEFINITION 3. S(W) ❀i u � (∀j : 1 ≤ j ≤ i ⇒ u |=j−1

S(W, uj)).

DEFINITION 4. S(W) ❀ u � (∀i : i ≤ |u| ⇒ S(W) ❀i u).

The idea is that an evaluation strategy incrementally generates
the given run. At any index in the run, an event may take place if
its guard is true at the preceding index in the run. That is, an event
may be allowed only at a specified index in the run. A given partial
run may be completed in various ways, all of which would respect
the stated dependencies.

Although the guard is verified at the designated index on the run,
its verification might involve future indices on that run. That is,
the guard may involve ✸ expressions that happen to be true on the
given run at the index of e’s occurrence. Because generation looks
ahead into the future, it is more abstract than execution.

In order to establish model-theoretic correctness of the initial
compilation procedure given by Definition 1, we begin with a triv-
ial strategy, Sb. Sb sets the guards using Gb and nevermodifies
them. Theorem 4 establishes the soundness and completeness of
guard compilation.

DEFINITION 5. (∀v, j : Sb(W, e, v, j) � Gb(W, e)).

OBSERVATION 3. Sb(W) ❀ u iff
(∀j : 1 ≤ j ≤ |u| ⇒ u |=j−1 Gb(W, uj)).

For runs u and v, u ∼i v means that u agrees with v up to index
i. u ∼i D means that u agrees with dependency D up to index
i. Now we can show that if a run agrees all the way with D, then
it satisfies D. Further, if u |=k−1 Gb(w, uk), then u contains the
events of w in the same order.

THEOREM 4. Sb(W) ❀ u iff (∀D ∈ W : u |= D).

PROOF. Consider any dependencyD inW. SinceD is obeyed
by the strategy, at least one path must allow the given run; this
means the run contains the events of this path; hence, the run
satisfies the dependency. Conversely, treating a given run as a
path in each dependency ensures that the run can be generated by
the strategy.

4.1 Evaluating Guards
At run time, a guard equal to � means the given event can oc-

cur; a guard equal to 0 means the given event cannot occur. For all
guards in between, we would potentially have to modify them in
light of messages about other events. The operator ÷ captures the
processing required to assimilate different messages into a guard.
This operator embodies a set of “proof rules” to reduce guards
when events occur or are promised. Table 1 defines these rules.
Because our sequences are limited to two literals, we do not con-
sider longer sequences. Our improved guard definition only creates
two-sequence guards expressions, because it works straight from
the dependency syntax.

Old Guard G Message M New Guard G ÷ M

G1 ∨ G2 M G1 ÷ M ∨ G2 ÷ M
G1 ∧ G2 M G1 ÷ M ∧ G2 ÷ M

✷e ✷e �
✷e ✷e or ✸e 0
✸e ✷e or ✸e �
✸e ✷e or ✸e 0
✷(e1 · e2) ✷(e1 · e2) �
✷(e1 · e2) ✷(e2 · e1) 0
✷(e1 · e2) ✷ei or ✸ei 0
✸(e1 · e2) ✷(e1 · e2) or ✸(e1 · e2) �
✸(e1 · e2) ✷(e2 · e1) or ✸(e2 · e1) 0
✸(e1 · e2) ✷ei or ✸ei 0
¬e ✷e 0
¬e ✷e or ✸e �
G M G, otherwise

Table 1: Assimilating Messages

When the dependencies involve sequence expressions, the guards
can end up with sequence expressions, which indicate ordering of
the relevant events. In such cases, the information that is assimi-
lated into a guard must be consistent with that order. For this rea-
son, the updates in those cases are more complex. Lemma 5 means
that the operator ÷ preserves the truth of the original guards.

LEMMA 5. (∃k ≤ j : u |=k M and
u |=j G÷M)⇒ u |=j G.



PROOF. The proof is by induction on the structure of
expressions. The base cases can be verified by inspection. Let
(∃k ≤ j : u |=k M andu |=j (G1 ÷M ∨G2 ÷M)). If
u |=j G1 ÷M , thenu |=j G1 (inductive hypothesis). Therefore,
u |=j G1 ∨G2, and similarly forG2. G1 ∧G2 is analogous.

The repeated application of ÷ to update the guards corresponds
to a new evaluation strategy, S÷. This strategy permits possible
runs on which the guards are initially set according to the original
definition, but maybe updated in response to expressions verified
at previous indices. S÷ does not require that every M that is true
be used in reducing the guard. Lemma 5 enables us to accommo-
date message delay, because notifications need not be incorporated
immediately. This is because when ✷e and ✸e hold at an index,
they hold on all future indices.

DEFINITION 6. S÷(W, e, u, 0) � Gb(W, e).
S÷(W, e, u, i + 1) �= S÷(W, e, u, i) ⇒ (∃k ≤ i : u |=k M and
S÷(W, e, u, i + 1) = (S÷(W, e, u, i)÷M)).

Theorem 6 establishes that the evaluation of the guards accord-
ing to ÷ is sound and complete. All runs that could be generated
by the original guards are generated when the guards are updated
(completeness) and that any runs generated through the modified
guards could be generated from the original guards (soundness).

THEOREM 6. ReplacingSb byS÷ preserves correctness, i.e.,
S÷(W) ❀ u iff Sb(W) ❀ u.

PROOF. From Definition 6, it is possible to have a runu, such
that (∀i : S÷(W, e, u, i) = Gb(W, e)). Therefore,S÷(W)
generates all the runs thatSb(W) generates. Thus completeness is
established. Soundness is established inductively since an
acceptable run is computed incrementally.

The main motivation for performing guard evaluation as above is
that it enables us to incrementally collect the information necessary
to make a local decision on each event. Theorem 6 establishes
that any such modified execution is correct. However, executability
requires in addition that we can take decisions without having to
look into the future. The above theorem does not establish that
the guards for each event will be reduced to ✷ and ¬ expressions
(which require no information about the future). That depends on
how effectively the guards are processed.

4.2 Simplification
We now show how guards as given in Definition 1 can be com-

puted more efficiently. Theorems 7 and 8 show that the compu-
tations during guard compilation can be distributed over the con-
juncts and disjuncts of a dependency. Since our dependencies are
limited to having sequences of two literals, this means the con-
stituent sequence terms can be processed independently of each
other. Theorem 8 is also important for another reason, namely,
that in essence it equates a workflow with the conjunction of the
dependencies in it.

The next theorems rely on additional auxiliary definitions and
results. I(w,Γ′) gives all the superpaths of w that include all inter-
leavings of w with the events in Γ′. We assume that (∀e : e ∈ Γ′

iff e ∈ Γ′). First we show that the guard contributed by a path
w equals the sum of the contributions of the paths that extend w,
provided all possible extensions relative to some Γ′ are considered.
For each event e in Γ′, e and e can occur anywhere relative to w,
and thus they essentially factor out. Using this, we show that the
guards are well-behaved with respect to the denotations of the de-
pendencies, i.e., D ≡ E ⇒ Gb(D, e) = Gb(E, e).

THEOREM 7. Gb(D ∨E, e) = Gb(D, e) ∨ Gb(E, e).

PROOF. The implication from left to right is trivial. In the
opposite direction, starting with a pathw in Π(D), we can
interleavew safely with events inΓD∨E \ Γw. Likewise forΠ(E).
Thus the contribution ofw to the right hand side is included in the
left hand side.

THEOREM 8. Gb(D ∧E, e) = Gb(D, e) ∧ Gb(E, e).

PROOF. The implication from left to right is trivial. In the
opposite direction, consider the contribution of a pair of paths
v ∈ Π(D) andw ∈ Π(E) to Gb(D, e) ∧ Gb(E, e). If e does not
occur on bothv andw, the contribution is0. Otherwise, construct
a path inΠ(D ∧ E), which has the combined contribution ofv
andw.

We introduce the basis of a set of paths as a means to show
how guards can be compiled purely symbolically, and to establish
some critical results regarding the independence of events from de-
pendencies that do not mention them. Intuitively, Ψ, the basis of
Π(D), is the subset of Π(D) that involves only those events that
are mentioned in D. Π(D) can be determined from Ψ(D) and vice
versa. Theorem 9 shows that the guard on an event e due to a de-
pendency D not mentioning e is simply ✸D. This means that, for
most dependencies and events, guards can be quickly compiled into
a succinct expression.

THEOREM 9. Gb(D, e) = ✸D, if e �∈ ΓD.

PROOF. Apply induction on the structure of dependencies. For
the base case, consider0,�, and eventf , wheref �= e. For the
inductive step, letD = e1 · . . . · en. Separately establish that
Gb(D, e) = ✸D. SinceD ∈ I, we can show✸(D1 ∨D2) ∼=
✸D1 ∨✸D2, and✸(D1 ∧D2) ∼= ✸D1 ∧✸D2.

4.2.1 Symbolically Calculating Guards
We now define a symbolic calculation for guards as below. These

cases cover all of the syntactic possibilities of I. Importantly, our
definition distributes over ∧ and ∨: using our normalization re-
quirement, each sequence subexpression can be treated separately.
Thus the guards are quite succinct for the common cases, such as
the relationships of Section 2.1.

DEFINITION 7. The guards are given by the operator
G : I × Ξ �→ T :

(a) G(D1 ∨D2, e) � G(D1, e) ∨ G(D2, e)
(b) G(D1 ∧D2, e) � G(D1, e) ∧ G(D2, e)
(c) G(e1 · . . . · ei · . . . · en, ei) � ✷e1 ∧ . . . ∧✷ei−1 ∧

¬ei+1 ∧ . . .¬en ∧✸(ei+1 · ei+2) ∧ . . . ∧✸(en−1 · en)
(d) G(e1 · . . . · en, e) � ✸(e1 · . . . · en), if

{e, e} �⊆ {e1, e1, . . . , en, en}
(e) G(e1 · . . . · ei · . . . · en, ei) � 0
(f) G(0, e) � 0
(g) G(�, e) � �

EXAMPLE 8. We compute the guards for the events inD<:

• G(D<, e) = (✸f ∨ (¬f ∧✸f)) ∼= ¬f

• G(D<, e) = �
• G(D<, f) = ✸e ∨ ✷e

• G(D<, f) = �



Thusf ande can occur at any time. However,f can occur only if
e has occurred or never will. Similarly,e can occur only iff has
not yet occurred (it may or may not occur in the future).

The symbolic calculation of guards corresponds to a new evalu-
ation strategy, Ss, which begins with guards initialized according
to Definition 7 and updates guards through ÷.

DEFINITION 8. Ss(W, e, u, 0) � G(W, e).
Ss(W, e, u, i + 1) �= Ss(W, e, u, i) ⇒ (∃k ≤ i : u |=k M and
Ss(W, e, u, i + 1) = (Ss(W, e, u, i)÷M)).

Theorem 10 establishes that the evaluation of the guards accord-
ing to ÷ is sound and complete. All runs that could be generated
by the original guards are generated when the guards are updated
(completeness) and that any runs generated through the modified
guards could be generated from the original guards (soundness).

THEOREM 10. ReplacingS÷ bySs preserves correctness, i.e.,
Ss(W) ❀ u iff S÷(W) ❀ u.

PROOF. Follows from Theorems 7, 8, 9, which are in essence
encoded in Definition 7.

4.2.2 Eliminating Irrelevant Guards
Theorem 11 shows that the guard on an event e due to a depen-

dency D in which e does not occur can be set to �, provided D is
entailed by the given workflow—an easy test of entailment is that D
is in the workflow. Thus dependencies in the workflow that do not
mention an event can be safely ignored for that event. This makes
sense because the events mentioned in D will ensure that D is sat-
isfied in any generated run. Thus at all indices of any generated
run, we will have ✸D anyway. Below, G∆

� replaces the irrelevant
guards for events not in ∆; S∆

� is the corresponding strategy.

THEOREM 11. ReplacingSs(W) byS∆
�(W) does not violate

correctness.

PROOF. SinceS∆
�(W) is weaker thanSs(W), completeness is

preserved.
ConsiderD ∈ W ande �∈ ΓD. Letf ∈ ΓD . Consequently,e and
e do not occur inG(D, f). Thus the occurrence or nonoccurrence
of e or e has no effect uponf .
LetS∆

�(W) ❀ u. If u �|=j Ss(D, uj+1) andu |=j S∆
�(D, uj+1),

then clearlyuj+1 �∈ ΓD . LetB(u) = {ui : u �|=i−1 Ss(D, ui)}.
Letv be such thatu # v andΓv = Γu \ B(u). Since the guards
for events inΓD do not depend onuj+1, we have that
(∀k, l : 1 ≤ k and1 ≤ l anduk = vl ⇒ u |=k−1 G(D, uk) iff
v |=l−1 G(D, vl)). Hence,Ss(W) ❀ v. By Theorem 4,v |= D
and thusu |= D.

Theorems 8 and 11 establish that the guard on an event e due
to a conjunction of dependencies is the conjunction of the guards
due to the individual dependencies that mention e. Thus, we can
compile the guards modularly and obtain expressions that are more
amenable to processing.

4.3 Formalizing Event Classes
Not all events are alike. We consider four classes of events,

which have different properties with respect to coordination. Be-
cause the significant events are visible, the service always knows
of their occurrence (some of our results are about distributing this
knowledge requirement over the agents). When an agent is willing
to delay or omit an event, it is on the basis of constraints provided
by the service, which in turn involve the occurrence or nonoccu-
rrence of other events.

• Flexible, which the agent is willing to delay or omit

• Inevitable, which the agent is willing only to delay

• Immediate, which the agent performs unilaterally, i.e., is will-
ing neither to delay nor to omit

• Triggerable, which the agent is willing to perform if requested.

The first three classes are mutually exclusive and exhaustive; each
can be conjoined with triggerability. We do not have a category
where an agent will entertain omitting an event, but not delaying
it, because unless the agent performs the event unilaterally, there
must be some delay in receiving a response from the service. This
is because the above event classes apply to the interface between
an agent and a logical coordinator.

Event classes do not replace the dependencies, which specify the
constraints among different agents. For example, it is possible that
a postal service agent may offer to deliver at two addresses in a
particular order, but let the residents at the two addresses decide
whether delivery should be made there at all. Thus at the concep-
tual level, it is possible that an agent may appear to another agent
to be willing to cancel an action but not to delay it. However, this
requirement is captured through dependencies. If p1 and p2 are
the postal deliveries and a1 and a2 are the addressees’ permissions
then, following Examples 1 and 2, we would have p1 ∨ p2 ∨ p1 · p2

(if both deliveries occur, they are ordered), and p1∨a1 and p2∨a2

(deliveries are only made if permitted).
For inevitable and immediate events, the dependencies must be

strengthened. The basic idea is to eliminate paths whose prefixes
lead to a state where an inevitable event may have to be denied,
or an immediate event denied or delayed. An algorithm to derive
strengthened dependencies proceeds by iteratively removing unsafe
paths; it is iterative because removing one path to make a depen-
dency safe for one event can make it unsafe for another.

The strengthened dependencies are then used in all reasoning,
e.g., in computing the guards. Below, we show revised representa-
tions for some relationships.

EXAMPLE 9. We can verify that ife is inevitable, thene ∨ f
strengthens toe · f ∨ e · f ∨ e · f ∨ f · e ∨ f · e, which simplifies
to e · f ∨ f , i.e., slightly stronger than the original dependency.
Similarly, referring to Figure 4, we can check that ife is immediate,
thene ∨ f · e strengthens to0.
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Figure 3: Guards from D< assuming e is inevitable

EXAMPLE 10. Figure 3 shows the dependency of Figure 2. The
path〈fe〉 is deleted because iff occurs first,e must not occur. We
can verify thatGb(D<, e) is unchanged butGb(D<, f) is stronger:
sincee cannot be rejected, we cannot letf happen unlesse or e has
already happened. Figure 3 still holds whene is immediate. Thus
the same guards are obtained as before.
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Figure 4: Extreme example of an immediate event (e)

EXAMPLE 11. Referring to Figure 4, we can readily see that
the guards for all the events are0. However, ife is inevitable, then
the guards are nonzero, as can be readily checked.

5. DISCUSSION
We presented a generic approach for building multiagent sys-

tems to achieve service composition. Our approach hones in on the
structure of the composed computations. It can thus facilitate the
design and enactment of coordinated behavior by hiding low-level
details. By separating the specification and the internal languages,
we can begin with declarative specifications and derive operational
decision procedures from them. The semantics of I considers en-
tire runs, to reflect the intuition that the specifier only cares about
good versus bad runs, not how to achieve them. By contrast, the se-
mantics of T involves indices into the runs, to reflect the intuition
that decisions on events are sensitive to what exactly has transpired
when a decision is taken. Our approach requires neither unnec-
essary control over agents’ actions, nor detailed knowledge of the
agents’ construction.

Some relevant ideas exist in the literature on extended trans-
actions. We consider two of the recent contributions geared for
Web service composition. One is the business transaction proto-
col, which provides primitives through which a composition can be
carried out by a central coordinator [5]. The composed services
are all modeled by a fixed set of significant events, along the lines
of the two-phase commit protocol: start, prepare to commit, fail, or
commit. The protocol describes how the coordinator communicates
with the services. By contrast, our approach enables the significant
events to be selected and dependencies among them to be stated
in an application-specific manner, and the execution is distributed
among the services.

The other approach is TxA (née WSTx), which defines three
provider transactional attitudes. The attitudes specify how a given
service may participate in a transaction [12]: by exposing a pre-
pared to commit state for one or a group of operations or by al-
lowing compensation. The transactions are coordinated through an
external coordinator, which tracks the success or failure of the in-
dividual services, and reports them to the application.

Concurrent METATEM, a executable temporal logic, has been
used to specify and build agents and multiagent systems [15]. It en-
ables the specification of the behavior of the various agents, some-
what like reactive systems in traditional logics of programs. This
is a major difference from our approach, because we only formal-
ize the coordination requirements in our logic, and leave the in-
ternal details to the implementors. However, both approaches use
linear models with a bounded past and infinite future. Our · (be-
fore) operator is related to the until and sinceoperators. Concurrent
METATEM has a greater range of operators. Wooldridge assumes

that the agents execute in lock-step synchronization, and that they
always choose the “right” path, which would lead to the stated rules
being satisfied (assuming the rules are consistent) [15]. These as-
sumptions are relaxed in our approach. Our agents can execute
asynchronously, and must be serialized only when necessary.

The present paper does not address the challenge of how the re-
quired declarative specifications are created in the first place. To
this end, we previously proposed a methodology based on an anal-
ysis of example conversations [13]. This methodology produces
specifications that capture the essential constraints and no more.

We lack the space to include complexity results here. In general,
the approach is efficient because it is limited; yet it is expressive
enough for practical service composition needs. Proofs of theorems
and additional motivation and results for the technical development
of Sections 3 and 4 are available in [14].
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