
Engineering Commitment-Based Multiagent Systems:
A Temporal Logic Approach �

Jie Xing
IBM Corporation

jiexing@us.ibm.com

Munindar P. Singh
North Carolina State University

singh@ncsu.edu

ABSTRACT
Commitments model important aspects of agent interactions, es-
pecially those arising in e-business. A small number of patterns
of commitments accommodate a variety of realistic interactions
among agents. We represent these patterns and agent behavior
models formally and show how certain behavior models can be for-
mally proved to be sound for certain patterns. Thus a designer may
use a library of patterns and behaviors to engineer systems that are
guaranteed to work correctly.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Verification

Keywords
Commitments; operational semantics; behavior models, statecharts.

1. INTRODUCTION
Multiagent systems are ideally suited for applications that in-

volve autonomous, heterogeneous components, which can be nat-
urally represented by agents. Interactions of autonomous agents
in a multiagent system cannot be adequately captured merely in
terms of the sequences of their actions or messages. Commitments
among agents provide a conceptually well-founded basis for mod-
eling the interactions of agents while respecting their autonomy.
Motivation. To ensure flexibility in handling opportunities and
exploiting opportunities, the agents should be able to deviate from
rigid scripts. However, to ensure correctness, the deviations must
be principled. Representing the commitments that the agents have�

This work was supported by IBM and by the National Science
Foundation under grants IIS-9624425 and DST-0139037. We are
indebted to Feng Wan for useful discussions. A previous version of
this paper appears in the Symposium on Applied Computing, 2001,
but much of the technical development is new here.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

to one another and specifying constraints on their interactions in
terms of commitments provides a solid basis for agent interactions.
But if commitments were set arbitrarily, the multiagent systems
would be unduly complex and it would be difficult to ensure that
the member agents were behaving properly.

In simple terms, designing a multiagent system consists of de-
signing its roles and their mutual interactions, and designing the
agents to play the given roles. For our purposes, a role can be mod-
eled by a set of commitments. For example, a seller in an online
market may be expected to commit to its price quotes and a buyer
may be expected to commit to paying for goods received. In gen-
eral, the designers of the individual agents would be different from
the designers of the roles in the multiagent system. For example,
an online market would only specify the roles of buyer, seller, and
broker and their associated commitments, but individual partici-
pants may, and would often prefer to, use differently implemented
agents to play these roles.

Obviously, each application would impose its own requirements.
Further, each competing implementation of a role would involve
different algorithms and heuristics. However, we can abstract out
a small number of patterns of commitments and behavior models,
capturing the essential structure of agents’ interactions and their
internal designs, respectively. The internal design of an agent is
characterized only to the extent that it enables the agent to interact
in the manner specified.
Contributions. Software engineering has two major components:
(1) methodologies and (2) formal reasoning about models. This
paper is a contribution to formal aspects of agent-oriented software
engineering with a view to enabling rigorous methodologies for
designing software systems based on agents. Our objective is to
enable a designer to reason about whether a given behavior model
can correctly play a given role, i.e., satisfy stated patterns involving
that role. Further, our objective is to provide a library of commit-
ment patterns and a library of behavior models along with formally
proved assertions of which behavior models satisfy which patterns.
If the commitments required for the roles are chosen from our li-
brary of patterns, then the corresponding behavior models can be
readily found without the designer having to explicitly apply any
formal reasoning during the design process. In this manner, the
formal results can support sound engineering without making sig-
nificant demands on the designer. Further, to ensure that our work
embeds easily into traditional software engineering, we use state-
charts and temporal logic as our representational frameworks.
Organization. Section 2 presents important background regard-
ing commitments and commitment patterns. Section 3 formalizes
commitment patterns. Section 4 introduces and proves soundness
of the operational semantics for agent behavior models. Section 5
discusses the literature and future directions.

1

Customer Travel
 Agent

Airline
Agent

Hotel
Agent

Place order

Revise order

Place order

Place order

Revise order

Send ticket

Send reservation

Complain: Hotel
 far from airport

Send new ticket

Send new reservation

Send payment

Exception

Revision

Figure 1: An e-commerce scenario

2. COMMITMENTS AND PATTERNS
This section provides some background on commitments applied

to business process interoperation [11].

EXAMPLE 1. A customer contacts her travel agent to book a
trip to a city with multiple hotels and airports. The travel agent
requests airline and hotel clerks to make appropriate reservations
and send confirmations to the traveler. The customer may have
requirements that are not initially disclosed. For example, the hotel
location is important if the flight arrives late in the day. If the
customer’s requirements are not met, she complains to her travel
agent. If the travel agent works to satisfy his customer, he would
then make a revised request to the clerks, say, for an earlier flight.

Although small, Example 1 is not trivial. Four autonomous par-
ties are involved, and communication among them does not follow
a simple nesting of requests and responses. As shown in Figure 1,
even a task that executes successfully may need to be revisited.
Current approaches offer no conceptual or operational support for
exceptions, leading programmers to employ ad hoc techniques that
lead to reduced productivity and ineffective solutions.
Concepts. The following are some key concepts. A task identifies
a definite piece of work. Tasks may be atomic or compound, but
their structure is not directly relevant for this paper. A commitment
relates a debtor, a creditor, and a condition [7]. This means that the
debtor is obliged to the creditor to satisfying the given condition.
The condition involves the relevant predicates from the domain. In
our example, the airline can commit to the given traveler that she
is confirmed on a particular flight. A role encapsulates a set of
commitments. Any agent playing a given role is expected to satisfy
the commitments associated with that role.

Importantly, commitments are flexible, and can be revoked or
modified. For example, even a confirmed flight booking can be can-
celed. However, the revocation or modification of commitments is
constrained through further commitments. In our example, the air-
line can commit to the traveler that if her booking (a commitment)
is canceled, the airline will create a new booking (another com-
mitment) for her. Thus, commitments can capture the structure or
qualitative aspects of service agreements.
Commitment patterns. Commitment patterns, inspired from de-
sign patterns, apply to interactions among agents. The following
patterns involve two roles: a consumer and a producer. An agent

may play different roles in different patterns. Predicates with argu-
ments (i.e., data values) represent the information exchanged. Al-
though each individual commitment is a directed obligation, they
usually occur in sets involving multiple roles—thus multiparty sce-
narios can be captured. The following patterns are generic and a
reasonable first approximation for business process scenarios. We
imagine other patterns will be developed later.

1. Entertain request. This means that a producer will accept
requests from another agent and act according to the tasks
requested. The producer may refuse the request and may
accept a retraction from the other agent. For example, a travel
agent entertains a call for a trip from a customer and performs
the requested task.

2. Notify. This comes into effect when a producer has just com-
pleted its tasks for the first time. It informs its consumer
of the computed data values, and becomes committed to the
specified predicates. For example, a travel agent, who re-
served a trip package for a customer, notifies the customer
and commits to the package.

3. Entertain update. This comes into effect when a producer ac-
cepts requests to correct some data values that another agent
supplies. Further, the producer will perform the task to en-
tertain the new data values. For example, a customer may
request a later flight on the same date. The travel agent per-
forms the task again with the updated data values.

4. Renotify. This comes into effect when a producer has just
completed its tasks for the second or a later iteration, and
some of its existing commitments are violated by the recently
completed task. The violation would typically occur because
the predicates to which the agent had committed have been
falsified by the results just obtained. The producer will send
the new results to its consumer. For example, the travel agent
informs the customer of a new schedule, because the previ-
ously booked flight was canceled.

5. Retry. This comes into effect when a consumer is dissatisfied
with the results. It sends a reject request to its producer. The
producer performs its task again in order to satisfy the con-
sumer. The practical ramifications of this pattern are much
greater, however, because it enables an agent to send a com-
plaint upstream and to demand that a property it desires be
satisfied. For example, the customer sends reject information
to the travel agent to reject the trip package. The travel agent
is released from the associated commitment and performs the
task again to find an alternative package to the customer.

6. Resign. A producer may cancel its commitment by sending
a message to the other agent. For example, the travel agent
cancels to provide a later airline ticket if it is unable to make
the revised reservation for customer.

EXAMPLE 2. We now describe our commitment patterns as ap-
plied on Example 1.� After the travel agent receives a request from the customer, it

performs the make order task [entertain request].� After the travel agent finishes its task, it notifies the hotel and
airline agents about the customer’s order information (date,
place, and price) [notify].� When the hotel and airline agents receive the request from
the travel agent, they perform book room and book flight,
respectively [entertain request].� After the airline and hotel agents finish their tasks, they send
their results to the customer [notify].

2

� If the customer is dissatisfied with the schedule and suggests
a different date or destination city, she renotifies the travel
agent about the revisions [retry].� When the travel agent receives the revised requests, it ap-
plies the updates. If the effects of the revisions are significant
and lead to the violation of a prior commitment by the travel
agent, it may propagate the effect of revisions to the hotel or
airline agent as appropriate [entertain update].� When the hotel or airline agents receive a revision, they re-
execute book room or book flight [entertain update].� After the hotel or airline agent finishes its tasks, it sends the
updated information to the customer if any of the prior com-
mitments do not hold any more [renotify].� Sometimes the customer’s requirements simply cannot be sat-
isfied by the airline agent [resign]. The travel agent tries an-
other airline agent [notify], or fails for its customer [resign].
It depends on the customer’s decision about whether to abort
the order or renotify the travel agent of a new requirement.

3. FORMALIZATION
Formalization can improve the clarity of the specifications to

guide implementers and can increase one’s confidence in the cor-
rectness of software. Clarity and assurance are significant here,
because the interacting agents will, in general, be supplied by dif-
ferent vendors. For our purposes, a formalization should have both
declarative and operational components. A declarative semantics
describes what rather than how. Therefore, it can be applied to a
variety of settings, not just those that satisfy some low-level oper-
ational criteria. However, operational considerations are essential
for rigorously producing valid computations.

A commitment
�����	��
�����

relates a debtor
�

, a creditor

, and a
condition

[7]. The condition may involve predicates or commit-

ments, allowing the commitments to be nested or conditional.

DEFINITION 1. A commitment can be viewed as an abstract
data type. The following operations are important—a commitment
once created holds until canceled or released. Here,

�
and

denote

roles, and � denotes commitments of the form
�����	��
�����

.� Create(x, c) establishes the commitment � . The create opera-
tion can only be performed by the debtor of the commitment.� Cancel(x, c) cancels the commitment � . Generally, cancella-
tion of a commitment is followed by the creation of another
commitment to compensate for the former one.� Release(y, c) releases the debtor from the commitment � . It
can be performed by the creditor and means that the debtor
is no longer obliged to carry out his commitment.

3.1 Computation Tree Logic
The formal declarative semantics for the commitment patterns is

given in Computation Tree Logic (CTL), a well-known branching-
time temporal logic [2]. CTL formulas are given a semantics in
terms of a CTL structure, which is a finite rooted directed graph
whose paths correspond to different computations. One can imag-
ine the graph being unraveled into an infinite tree.

DEFINITION 2. A CTL structure � is a four-tuple
����������������� �

,
where

�
is a finite set of points;

�
is a binary relation on

�
, which

gives the possible transitions between points;
�"!��$#%'&(��)*�

is a
labeling that assigns to each point the set of atomic propositions
that are true at that point, where

)
is a set of atomic propositions;

and
�+�

is the root of
�

. That is,
�����+�+�

= , . Further,
�

must be
serial; i.e.,

�.-/�0!1�323�546��78
"!1
92:�
and

���;��
<�=23�>���
.

The following Backus-Naur Form (BNF) grammar with start sym-
bol L gives the syntax of our language. Below, slant typeface in-
dicates nonterminals; ? % and @ are metasymbols of BNF speci-
fication; A and B delimit comments; the remaining symbols are
terminals.

)
describes the basic elements of the logic, including

commitments, operations on them, and communications.
� L ? % Prop A atomic propositions and predicates B� L ? %DC

L A negation B
� L ? % L E L A conjunction B
� L ? %GF

P A universal quantification over paths B
� L ? %IH

P A existential quantification over paths B� P ? % L J L A until: operator over a single path B
The meanings of formulas generated from L are given relative to
a model and a state in the model. The meanings of formulas gen-
erated from P are given relative to a path and a state on the path.
The boolean operators are standard. Useful abbreviations includeK�LNM O�PRQS�UT E C�T��

, for any
T32:)

, VXWZY PRQ[C	K\L]M O�P
,
T_^�`aQbCc��C/T E C�`d�

and
T3%e`fQgC/Th^i`

. The temporal operators
F

and
H

are quanti-
fiers over paths. Informally,

T J ` means that on a given path from
the given state,

`
will eventually hold and

T
will hold until

`
holds.j `

means “eventually
`
” and abbreviates VXWZY P J ` . k ` means “al-

ways
`
” and abbreviates

C j C�`
. Therefore,

HlT J ` means that on
some future path from the given state,

`
will eventually hold and

T
will hold until

`
holds.�m@ nao T means “ � satisfies

T
at

�
” and �m@ n>prq o T

means “ �
satisfies

T
at

�
along path s .” Below, for

�t2$�
, u(o is the set of

paths emanating from
�
.� �v@ n ocw iff w 2:�����l�

, where w 2:)
� �v@nao T E `

iff �x@nao T and �v@nao `
� �v@ n o C/T

iff �zy@ n o T
� �v@ nao F�T

iff
�.- s ! s 2 u>o 4 �x@n>prq o T��

� �v@ n o HlT
iff

��7 s ! s 2 u o and �{@ n prq o T��
� �D@n>prq o T J ` iff

��7<�+|}!���~�� |
and ��@n prq o�� `

and
�.-_� | |�!�>~�� | | ~�� | 4 �x@ n prq o�� � T����

Our formal language involves the usual boolean operations plus
some temporal operations.

F k T holds in
�

iff
T

is true at all future
points on all paths through

�
.
F j T

holds at
�

iff
T

holds eventually
on each path through

�
.

3.2 Communication Primitives
We consider the following communicative actions, each taking

three parameters: sender
�

, receiver

, and content
�� �� � (a predi-

cate with a vector of domain arguments). Preconditions and post-
conditions are not specified for most actions, because these are de-
termined from specific models, based on the commitments that ap-
ply in those models.� Inform

���	��
�����
:
�

tells

that

is true and commits to

about the fact. This is the simplest case for a conversation.-3�
,

,

,
�� :

F k [inform
���;��
���}�X�� ���*%

AF[create
���

, C
���

,

,
�� �� �����]].� Request

���	��
���	�
:
�

asks

to do a task described by

. But
there is no guarantee that

will accept.

� Correct
���	��
���	�

:
�

requests

to repeat a task described by
. This enables

�
to send an updated request to

.

� Retract
���	��
�����

:
�

cancels a request

made to

.

3

Initial

Do

Committed

Redo
Undo

Start

Computed_done

Recomputed_done

Update

Failure

Failure

Abort

Figure 2: Task-related events and operations

� Withdraw ���;��������� : � applies after an inform and takes away
a previous commitment to (�).� � , � , � , �� : AG[withdraw ���	��������� �� ���h� AF[cancel ��� ,
C ��� , � , �}�X�� �����]].

� Refuse ���;�������	� : � would not accept � ’s request.� � , � , � , �� : AG[refuse ���	�������}�X�� ���}� AF[release ��� , C ��� ,� , �}�X�� �����]].
When � refuses ���X�� � , � is released from its commitment to��� �� � . That is, the commitment C �������;���}�X�� ��� holds no more.

� Reject ���	�������	� : � rejects � ’s information.

EXAMPLE 3. Following Example 1, the travel agent notifies the
customer about the flight, hotel and price information by using an
inform. If the customer’s requirements cannot be satisfied by the
travel agent, it sends a refuse. Or if the flight schedule has been
changed, the airline agent sends a withdraw.

3.3 Elements of Behavior Models
Agent communications represent their external activities. The

internal reasoning of agents is represented via tasks. The opera-
tion do, redo, and undo describe agents’ internal reasoning. Events
start, update computed done, recomputed done, abort and failure
represent agents’ task status, and may trigger communications.

The following domain-independent task-oriented propositions cor-
respond to transitions in an agent that performs a given task. Intu-
itively, � would bring about �}�X�� � . Figure 2 represents these as a
statechart.

� start ���	����� : � starts its task � execution for the first time,
based on its own reasoning.

� update ���	����� : � starts its task � execution for the second or
later time, based on its own reasoning.

� Computed done ���	����� : � finishes task � execution success-
fully for the first time—intuitively, computed done brings
about ��� �� � .

� Recomputed done ���;����� : � finishes its task � execution suc-
cessfully for the second or later time—intuitively, recom-
puted done brings about ��� �� � .

� Abort ���	����� : � aborts its task, causing it to resign from bring-
ing about ���X�� � .

� Failure ���	����� : � ’s task � fails because of an exception.
� Do ���	����� : � performs task � (first try).
� Redo ���	����� : � performs task � (second or later try).
� Undo ���	����� : � compensates task � after the task � fails.

EXAMPLE 4. Following Example 1, consider how the travel
agent (TA) performs the operations of task makeOrder. When TA
finishes makeOrder (�N�8� TA, �t�<�8�l�a���]�+�)) for the first time, com-
puted done(TA, makeOrder) becomes true, which triggers inform
primitive to notify the customer (CA) about the order. The CA
may be dissatisfied with the order and send a correct. TA can redo
makeOrder (redo(TA, makeOrder)). After TA finishes its task again,
recomputed done(TA, makeOrder) becomes true. Or if TA cannot
finish its task, a failure(TA, makeOrder) event is generated and trig-
gers TA to undo makeOrder via undo(TA, makeOrder).

3.4 Formalizing Commitment Patterns
We now apply the specifications to formalize our commitment

patterns. Here � is a task implementing predicate � , and holds indi-
cates that the given assertion holds. � represents is defined as.

� Notify. When � finishes task � successfully, which means
computed done ���	����� and ��� �� � is true, then � informs � about�}�X�� � .
notify ��� , � , �	�=� � �� , � . ��� [computed done ��� , ���}� holds���}�X�� ���	���R� inform ��� , � , ��� �� ���]

� Renotify. When � finishes its tasks for the second or later
time successfully, recomputed done ���	����� becomes true. Then� checks if its current commitments hold with new results. If
it is false, � informs � of the predicate associated with the
new values and withdraws the previous commitment.

renotify ���	�������	�>� � ��] , ��d¡ , � . ��� [recomputed done ��� ,���¢�¤£����	�������}�;�� ���R��¥�¦r��§.�8¨1���}�;�� ���R�©¦r��§.�8¨1���}�;�� ¡ ���R�
�R� [inform ��� , � , ���;��1¡ ���	� withdraw ��� , � , �}�;��] ���]]

� Entertain request. When � sends �3� (�� � as a request, this
triggers � to reason about the request.

entertain-request ���	�������	�=� � �� , � . ��� [request ��� , � , �}�X�� ������R� [�N�<���	�����]]
When task � is completed, � may send out a notification, but
that notification would be in the scope of another pattern.

� Entertain update. When � sends � a correct request, � per-
forms its task about that again.

entertain-update ��� , � , �	�*� � �� , �� ¡ , � . ��� [correct ��� , � ,�}�;�� ¡ �) �ª£����;���������	�� ���	���R� [�d�+�N�8���	�����]]
Finally � uses renotify patterns to inform the new results,
which would be in another scope of another pattern.

� Resign. When � ’s task � fails, or � ’s previous commitment
doesn’t hold and cannot be restored, � needs to withdraw the
fact it committed to � .

resign ���	���������=� � �� , t. ��� [� failure ���	�����=« abort ���	���������¥9¦<�d§.�8¨1����� �� ���/�i£����	�������}�X�� ���r�¬�¢� [withdraw ��� , � , ��� �� ���� undo ��� , ���]]
� Retry. If � sends � a reject, � redoes its task again, and tries

to satisfy its consumer.

retry ���;���������r� � �� , � . ��� [reject(� , � , ��� �� ���/�9£����	�������}�X�� ������R� [�d�+�N�8���	�����]]
4. ESTABLISHING CORRECTNESS

To support our operational semantics for agent interaction, we
require that the agents follow some generic behavior models. Spe-
cific behavior models are expressed as statecharts. Establishing the
soundness of operational semantics is important to assure correct-
ness of the system operation. The above CTL formulations of the

4

patterns are declarative. Statecharts provide operational semantics
of agent behavior.

Statecharts are a well-known means in software engineering to
specify concurrent computations [3]. A statechart is composed of
states (OR-state, AND-state, and basic state) and transitions. Tran-
sitions are labeled by an expression of the form "® ¯±°.²X³ . Intu-
itively, event triggers the transition if condition ¯ is true when occurs. As a result, action ³ is performed. Each of , ¯ , and ³
is optional. The states in our statecharts are abstract and correspond
to sets of physical states of the underlying computation.

4.1 Composition of Agent Behavior

Initial

Computing

RequestFailure/refuse Retract

Computing

Committed

Computed_done/
inform

Committed

Recomputing

Correct

Committed

Recomputing

Reject

Recomputing

Initial

Failure/withdraw

Committed

Recomputing

Recomputed_done
[valid_Commitment]

Recomputed_done
[valid_commitment]
/inform&withdraw
¬

Committed

Initial

Abort/withdraw

(p1) (p2) (p3)

(p4) (p)5a (p)5b (p6)

Figure 3: Commitment patterns: (p1) entertain request, (p2)
notify consumer, (p3) renotify consumer, (p4) entertain update,
(p5) resign, (p6) retry

Our patterns have two crucial properties.
´ Minimality. Each pattern imposes the fewest reasonable re-

strictions to maximize design flexibility. Each pattern cap-
tures one agent interaction property, which is considered as
minimal granularity for representing agent behaviors. Thus
each pattern represents one agent property.

´ Composability. The patterns may be assigned in any desir-
able combination by a modeler. Composition is important
for engineering.

The following procedure is used to generate our agent behavior
models from a set of commitment patterns.

1. Annotating the states and transitions for each pattern.

2. Translating each pattern into a statechart.

3. Merging multiple statecharts into a statechart to represent
agent behavior.

4.1.1 Statechart Representation
First we need to carefully define states and transitions of each

commitment pattern. A state in a statechart may have incorporated
some activities. Figure 3 shows the statecharts we generate from
our commitment patterns.

1. Notify. The transition computed done signifies an exit from
the computing state. The rule is fired when computed done
is received. Results are sent to the given consumer and the
associated commitment is created and stored, which is per-
formed by inform action. The computing state includes do
activity. (Figure 3, µ�¶)

Initial

Computing

Committed

Request

Computed_done/
inform

Failure/refuse Retract

Abort/withdraw

Start

(a) (b)

Initial

Computing

Committed

Computed_done/
inform

Failure

Abort/withdraw

Figure 4: Transaction agent model, (a) pull mode (b) push
mode

2. Renotify. The transition recomputed done occurs when the
system exits from recomputing, and the new fact holds. If
a previous commitment to a consumer isn’t valid, the previ-
ous fact doesn’t hold, then it must send the updated infor-
mation to the consumer and store the new commitment. The
inform and withdraw actions need to be performed. Other-
wise the previous commitment and the associated fact still
holds. (Figure 3, µ�·)

3. Entertain request. This consists of the initial, and computing
states, and the request, failure, refuse, and retract transitions.
The computing state includes the do activity. (Figure 3,µ�¸)

4. Entertain update. This consists of the committed, and com-
puting states, and the correct transitions. The recomputing
state includes redo activity. (Figure 3, µ�¹)

5. Retry. This consists of committed, and recomputing states
and the reject transition. The recomputing state includes redo
activity. (Figure 3, µ�º)

6. Resign. This comes into effect when something happens
to previous commitment and producer cancels the previous
commitment. There are two cases. The first case is that the
producer fails to perform its task again. This pattern consists
of recomputing, initial states. When failure occurs, withdraw
is sent to the given consumer and associated commitment
is canceled. The second case is that the previous commit-
ment doesn’t hold. This pattern consists of committed, initial
states. When an abort occurs, withdraw is sent to the given
consumer and associated commitment is canceled. undo ac-
tivity are in initial state. (Figure 3, µ�»�¼ and µ »�½)

The above patterns deal with some interactions between pro-
ducer and consumer. In general, internal events may trigger a pro-
ducer to perform its task; i.e., it may start a task by itself. This
motivates us to build two further patterns µ�¾ and µ�¿ . The start
event signifies an exit from the initial to the computing state. This
transition and related states build a pattern µ_¾ . The update event
signifies an exit from committed state to recomputing state. This
transition and related states yield a pattern µ ¿ . We lack the space to
elaborate these here.

4.1.2 Merging
In order to merge a set of statecharts into a statechart, we intro-

duce some concepts for the composition.
´ Identical state. If the names of two states in different stat-

echarts are the same, we take the two states to be identical.
This is justified because all the patterns are based on the same
agent behavior model. For example, computing state in the
notify pattern statechart is the same as computing state in the
entertain-request pattern statechart.

5

StartFailure/refuse Retract

Initial

Computing

Committed

Recomputing

Computed_done/
inform

Correct

Reject

Recomputed_done
[valid_Commitment]Recomputed_done

[valid_commitment]
/inform&withdraw
¬

Failure/withdraw

Abort/withdraw

Update

Figure 5: Basic agent behavior model for push mode (À_Á�Â)

RequestFailure/refuse Retract

Initial

Computing

Committed

Recomputing

Computed_done/
inform

Correct

Reject

Recomputed_done
[valid_Commitment]Recomputed_done

[valid_commitment]
/inform&withdraw
¬

Failure/withdraw

Abort/withdraw

Figure 6: Basic agent behavior model for pull mode (À Á+Ã)
Ä Identical transition. Two transitions are identical if they have

the same label, are triggered from the identical state, or lead
into the identical state. This is useful for introducing a hier-
archy.Ä Initial state. The initial state should be defined.Ä Merging of two statecharts. Union of two statecharts.

We apply the above approach to composing statecharts based on
commitment patterns. First, we compose patterns Å�Â , Å�Ã , and Å�Æ�Ç
into a special agent behavior model, which acts as a simple transac-
tion task agent, whose initial state is initial (Figure 4(a)). This is the
pull mode. We compose patterns Å�È , Å�Ã , and Å�Æ�Ç to create the push
mode. Both modes allow producers to cancel their commitments
to consumers. Second, we compose patterns Å�Â , Å�Ã , Å�É , Å�Ê , Å Æ Á ,Å Æ�Ç , and Å�Ë . The resulting statechart can be used as a pull mode of
the basic agent behavior model (Figure 6). Third, we merge Å;È , Å�Ã ,Å/É , Å�Ì , Å Æ Á , Å�Æ�Ç , and Å Ë to obtain the push mode of the basic agent
behavior model (Figure 5).

Figure 5 and Figure 6 show the basic behavioral model expressed
as statecharts. Agents who follow these behavioral models may in-
voke any capabilities (implemented in any manner), but the agents
persist and include well-defined states in which they can reexecute
a capability, and enter into commitments. The proprietary details of
the capability or the agent’s design are not revealed. On receiving
a request or a control signal, an agent following basic behavioral
model begins to perform a task. Upon completion, it sends the
results to some selected consumers and commits to those results.
Further events may cause the agent to reexecute its task. If the re-
sults change substantially to invalidate the agent’s commitments, it
announces the new results (canceling the old commitments and cre-
ating the new ones). The behavioral model just limits the agents’

Initial

Computing

Request

Computed_done/
inform

Failure/refuse Retract

Committed

Recomputing

Update

Recomputed_done
[valid_Commitment]

Recomputed_done
[valid_commitment]
/inform&withdraw
¬

Figure 7: Monitor agent behavior model (À_Í=Á)

actions. However, the agent will have specific commitments that
force it to carry out certain actions.

The patterns can be composed to yield a variety of behavior mod-
els. We can use the same method to compose Å�Â , Å�Ã , Å�É , and Å�Ì to
obtain a monitor agent (Figure 7), which is a behavior model for
an agent that periodically supplies the latest information to its con-
sumer. The information is automatically delivered to its consumer
without an explicit request each time after a request is entertained
for the first time.

EXAMPLE 5. We now apply the above behavior models on Ex-
ample 1. In order to meet the design requirements, these agents
may be given different behavior models. For example, the customer
agent can take the transaction behavior model for push mode. The
travel, hotel, and flight agents can take the transaction agent be-
havior model for pull mode. These models together can handle nor-
mal business scenarios. For dealing with revisions and exceptions,
the customer agent can follow the basic agent behavior model for
the push mode. Other agents too can follow the pull mode of the
basic agent behavior model. The travel agent can adopt the mon-
itor agent behavior model to provide a travel-related information
service for the customer wherein it can send periodic updates to the
subscribers.

4.2 CTL Structure Derivation
To relate our operational semantics with the temporal logic spec-

ifications, we must produce a CTL structure from our statecharts.
In general, because an external event may never occur during the
execution of a statechart, an eventuality condition is always falsi-
fied if external events are required to reach the condition. To cap-
ture possible executions of a statechart, we separate out points in
our CTL structure corresponding to the same basic configuration
[8]. We introduce a point for each transition and add further mem-
bers of the relationships into Î . The following rules derive a CTL
structure Ï = Ð�À�Ñ�Î�Ñ�ÒlÑÔÓlÕ+Ö from a statechart À�× = (À , À_Ç × , Ø , Ù Õ),
where À is a set of states, À_Ç × is a set of basic configurations, Ø is
a set of transitions, and Ù+Õ is the initial basic configuration.

Starting from Ù Õ , for each transition ÚÜÛ¬Ð�À Â ÑÝÀ Ã Ñ�Þ.ßXÞ�Ö and Þ.ß Þ =à"á â±ã\äÔå
, we create a point À�æ that is between À�Â and À_Ã , which are

basic configurations of a statechart. À æ has atomic propositions (de-
noted by ç à ,

â(è
), which can be derived from

à
and

â
, we don’t

elaborate this here. Similarly action
å

generates atomic proposi-
tions (denoted by ç å>è

) in À Ã . We place the pair (À Â , À æ), (À æ , À Ã)
into Î . If À_Ã is reached from different transitions and has different
propositions, we separate the basic configuration À Ã into different
points in the CTL structure. If

à
includes an external event, we

place the (À Â , À Â) into Î . The propositions in À Â don’t change.

6

This forces an execution from é�ê to é�ê if the external event doesn’t
occur. We add the name of basic configuration as propositions of a
related point of ë because it signifies some execution meaning. If
there is a set of activities ìlí]îÔï�ð�ñ in é;ò , each activity generates an
atomic proposition in state é ò . We denote the set of atomic propo-
sitions as ìlí]îÔï�ð�ñÜóõô�ö�é ò+÷ . ô�ö�é ò+÷ = ìlø>ñ�ù}ì acts ñ�ù�ì name of é ò ñ .

The following algorithm shows how to build a CTL structure
from a statechart. This algorithm runs in time ú�ö�û ü�ûýû é�þ1û ÷ , whereü is the set of transition and é þ is the set of basic configuration,
because it visits each transition at most one time.

Algorithm 1 Build a CTL structure from an agent behavior model
Starting with statechart é�þ = (é , é_ÿ þ , ü , î��) to build a CTL struc-
ture ë = (é ,

�
, ô , ð �).

Add ð�� to é of ë , where ô�ö�ð�� ÷ = ì name of î��lñ ; ð = î�� ;
HAS VISITED(î �) = TRUE;
Build CTL(ð);
function Build CTL(ð)
for all ï��Sö�ð���ð�	
������ ÷ of ð , where ���� = ��� �����Xø do

if HAS VISITED(ï) then
Add a binary relation ð�� ï to

�
, continue;

else
HAS VISITED(ï) = TRUE;
Add a new point ï to é of ë , where ô�ö\ï ÷ = ì�� , �(ñ ;
Add a binary relation ð�� ï to

�
;

if HAS EXTERNAL EVENT(ï) then
Add binary relation ð�� ð to

�
;

end if
if HAS VISITED(ð�) then

HAS SAME PROPOSITION = FALSE;
for all point � with ì name of ð�	\ñ>óõô�ö�� ÷ do

if ô�ö�� ÷ == ì�øañ�ù�ì acts ñ�ù}ì name of ð 	 ñ then
Add binary relation ï�� ð 	 to

�
.

HAS SAME PROPOSITION = TRUE;
break;

end if
end for
if HAS SAME PROPOSITION then

continue;
end if

end if
Add a new point ð�	 to é of ë , whereô�ö�ð�	 ÷ = ì�øañ�ù�ì acts ñ�ù}ì name of ð�	Zñ ;
Add binary relation ï�� ð 	 to

�
;

HAS VISITED(ð) = TRUE;
Build CTL(ð);

end if
end for

To derive a CTL structure from the statechart of basic agent be-
havior model for push mode, consider the type of each transition.
Start, update, computed done, recomputed done, failure and abort
are internal events. Reject, correct are external events. The propo-
sition committed and recomputing represent the existence of com-
mitment in the associated points. Figure 8 shows the CTL structure
derived from the statechart of Figure 5 by Algorithm 1. Figure 9
shows the CTL structure derived from the monitor agent behavior
model (see Figure 7), where request and retract are external events,
and failure, computed done, recomputed done, and update are in-
ternal events.

Computing

Start

Failure Computed_done

Inform
Committed Abort

Initial

Initial
Withdraw

Correct Update Reject

Recomputing

Recomputed_done

Valid_commitment¬

Recomputed_done
Valid_commitment

Committed
Committed

Inform
Withdraw

Initial
Withdraw

Figure 8: CTL structure for basic agent behavior model (é��dê)

Computing

Request

Failure

Computed_done

Inform
Committed

Initial

Update

Recomputing

Recomputed_done

Valid_commitment¬

Recomputed_done
Valid_commitment

Committed

Committed
Inform
Withdraw

Initial
Refuse

Retract

Figure 9: CTL structure derived from the statechart é �!�

4.3 Soundness of Operational Semantics

DEFINITION 3. A statechart é�þ is sound with respect to a for-
mula " iff (#_ë : (é�þ generates ë) $ ë%�Ýð��tû �&"). A statecharté þ is sound with respect to a specification ì'" ê , "_ò , (�(�(, "*)�ñ iff é þ
is sound with respect to each "�+ .

Now we apply the above to check the soundness of two agent be-
havior models. Notice that the proofs are straightforward, because
the complexity is handled by the construction algorithm. Since
each pattern is of the form ,�-.� /0�1,32�4�� , we can establish its
truth in a given CTL structure simply by inspecting the given CTL
structure to find the states where the antecedent (/) holds and then
checking if the consequent (4) holds in all paths emanating from
those states. These proofs could be readily mechanized by apply-
ing a CTL model checker, e.g., [2].

THEOREM 1. Any agent that follows the monitor agent
behavior model is sound with respect to any specification
consisting of a subset of the patterns ì entertain-request,
entertain-update, notify, renotify ñ .
PROOF SKETCH. First construct the CTL structure corresponding
to the monitor agent behavior model. Next, establish by inspection

7

that each of the given patterns is satisfied in the constructed CTL
structure.

THEOREM 2. Any agent that follows basic agent behavior
model is sound with respect to any specification consisting of the
patterns 5 entertain-request, entertain-update, retry, notify,
renotify, resign 6 .
PROOF SKETCH. As for the above, first construct a CTL structure
corresponding to the basic agent model; next inspect it for the
given patterns.

Although the monitor agent satisfies 7�8 , 7:9 , 7:; , 7:< , it does not
satisfy 7*=?> , 7 =A@ and 7:B . Thus the monitor agent is simpler than the
basic agent in behavior. The basic agent has all of these properties
of the monitor agent. Thus if ever a reject stimulus occurs, the
agent eventually tries to satisfy the request. This is because the
model satisfies the retry pattern. Further, the basic agent can cancel
a commitment, because it implements the resign pattern.

EXAMPLE 6. Theorems 2 and 1 establish that each of the be-
havior models assigned to the agents in Example 5 is correct with
respect to the patterns given in Example 2. In this manner, we can
abstract out the interactions and behaviors while leaving the de-
signer full control of the domain-specific requirements.

5. DISCUSSION
Conventional software techniques fall into one of two extremes,

being either too rigid or too unstructured. Agents offer flexibility
while dealing with autonomy, but can sometimes be nontrivial to
apply. The proposed approach emphasizes the coherence engen-
dered by commitments, while enabling agents and their interac-
tions to be readily created from a library of patterns and behavior
models. We demonstrated our approach for five typical behavior
models. However, it can readily be applied to other such models.
The correctness of these models with respect to patterns can be eas-
ily determined by using well-known model checking algorithms for
CTL. As a result, the task of designing multiagent systems can be
simplified in a rigorous manner using an extensible library of pat-
terns and behavior models.

Decomposition, abstraction, and organization are three strategies
for tackling complexity in developing agent systems agent-oriented
software engineering [9]. Our approach contributes to each of these
strategies. Patterns help decompose a multiagent system design
problem. Patterns and behavior models provides abstraction at sys-
tem and agent architectures, and help operationally relate the two
layers. Patterns enable us to capture organizational requirements
among the agents. Further, we address the design problem of how
behavior models support various combinations of desired patterns.

Gaia is a leading methodology for agent-oriented analysis and
design, especially when there is an organizational view on appli-
cation scenarios [10]. Roles are key concepts with responsibilities,
permission, activities, and protocols. In our approach, an agent
bound to a role performs tasks and interacts with other agents.
We emphasize commitments, which reflect organizational struc-
ture. Patterns are abstracted from agent interaction scenarios.

Mylopoulos et al. propose Tropos, a requirement- and goal-
oriented methodology for agents [5]. Tropos emphasizes modeling
requirements to improve flexibility and to narrow the semantic gap
between system requirements and design. This complements our
approach, which improves the flexibility of agent interactions by
abstracting out patterns and behavior models.

Odell et al. propose a three-layer representation of Agent-Interaction
Protocols (AIP) [6]. AIPs are defined as patterns representing both
the message communication between agents, and the correspond-
ing constraints on the content of such messages. Odell et al. extend

UML to include richer role specifications that require modification
of the UML sequence diagrams.

Klein and Dellarocas handle exception by employing a knowl-
edge base of generic exception detection, diagnosis, and resolution
expertise [4]. Our approach is complementary; special roles could
be included in our approach with commitments by other roles.

Dignum and van Linder [1] propose a framework for social agents
based on dynamic logic. Agents interact based on deontic relation-
ship. Dignum and van Linder deal with the motivational attitudes
such as wishes, goals, intentions, and obligations. This comple-
ments our approach. We focus more on operational semantics. The
reasoning results represented by predicates with data values as the
arguments trigger the interaction.

This work opens up some interesting directions. The approach
is extensible in terms of commitment patterns and behavior mod-
els some of which we developed for business processes. However,
other specific patterns and models are needed for other applications
so that our libraries are more complete. A remaining challenge is
to evaluate this approach on large software efforts.

6. REFERENCES
[1] F. Dignum & B. van Linder. Modelling social agents:

Communication as action. In Intelligent Agents III: Agent
Theories, Architectures, and Languages, pages 205–218.
Springer-Verlag, 1997.

[2] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen,
ed., Handbook of Theoretical Computer Science, vol. B, pages
995–1072. North-Holland, 1990.

[3] D. Harel & E. Gery. Executable object modeling with
statecharts. IEEE Computer, 30(7):31–42, July 1997.

[4] M. Klein & C. Dellarocas. Exception handling in agent
systems. In Proceedings of the 3rd International Conference
on Autonomous Agents, pages 62–68, Seattle, 1999.

[5] J. Mylopoulos, M. Kolp, & J. Castro. UML for agent-oriented
software development: The Tropos proposal. In UML 2001:
4th International Conference on the Unified Modeling
Language, pages 422–441, 2001.

[6] J. Odell, H. V. D. Parunak, & B. Bauer. Representing agent
interaction protocols in UML. In Proceedings of the 1st
International Workshop on Agent-Oriented Software
Engineering (AOSE), 2001.

[7] M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts.
Artificial Intelligence and Law, 7:97–113, 1999.

[8] A. C. Uselton & S. A. Smolka. A compositional semantics for
statecharts using labeled transition systems. In International
Conference on Concurrency Theory, pages 2–17, 1994.

[9] M. Wooldridge & P. Ciancarini. Agent-oriented software
engineering. In S.-K. Chang, ed., Handbook of Software
Engineering and Knowledge Engineering. World Scientific,
2001.

[10] M. Wooldridge, N. R. Jennings, & D. Kinny. The Gaia
methodology for agent-oriented analysis and design.
Autonomous Agents & Multi-Agent Syst., 3(3):285–312, 2000.

[11] J. Xing, F. Wan, S. K. Rustogi, & M. P. Singh. A
commitment-based approach for business process
interoperation. IEICE Transactions on Information and
Systems, E84-D(10):1324–1332, Oct. 2001.

8

