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ABSTRACT

This paper unifies two recent strands of research in multiagent sys-
tem design. One, commitments are widely recognized as captur-
ing important aspects of interactions among agents, but current ap-
proaches tend to emphasize individual commitments and typically
restrict themselves to interactions between pairs of agents. Two,
methodologies for multiagent system design tend to consider proto-
cols and coordination requirements among agents, but do not seri-
ously accommodate commitments. This paper proposes a method-
ology to infer commitments from an example conversation among
various parties. Based on the conversation, we first build a com-
mitment causality diagram indicating the causal relations among
the commitments. Using this diagram, we generate behavior mod-
els for each role. We show that models produced by this approach
successfully capture commitment-level protocols and allow flexi-
ble implementation of non-commitment communications as long
as the commitment causal relations are followed.
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1. INTRODUCTION

Commitments (also known as social commitments) are widely
recognized as a key representation for the interactions in a multia-
gent system. This is because commitments enable us to model and
analyze the behavior of autonomous agents, especially in settings
such as supply chain integration and Web service composition.

Commitments are a key element of the semantics of agent com-
munications [Colombetti, 2000; Singh, 2000a]. Of particular rele-
vance here is recent work on operationalizing commitments. Fornara
and Colombetti model the lifecycle of a commitment and develop
an operational semantics for commitments [2002]. This work gives
a foundation for deriving commitments from low-level messaging
protocols. Economou et al. show how deontic states and com-
mitments can be detected from agents’ finite state machines and
how successful agent communications rely upon the protocols that
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each agent executes [2001]. Yolum and Singh show how proto-
cols among agents can be encoded as commitment machines and
automatically executed [2002].

Another important theme is the design of multiagent systems
through a deep analysis of their desired interactions. Parunak intro-
duced Dooley graphs for this purpose [1996]. Dooley graphs sepa-
rate agent interactions into courses of conversations. Each indepen-
dent conversation reflects a fragment of agents’ models and shows
how agents behave in different stages of their interactions. Singh
enhanced Parunak’s work by generating coordination requirements
based on the agent skeletons created from a Dooley graph [2000b].
The present work helps us identify commitments made by different
characters that agents play at different stages.

Based on the foregoing, the main idea of this paper is to analyze
agent interactions in terms of causally linked commitments, and to
develop a methodology (with significant algorithmic components)
using which commitment-based agents can be inferred. The advan-
tage of doing so is to produce richly structured multiagent systems
whose members interact flexibly.

Agent interactions can be naturally understood in terms of the
commitments they make, fulfill, cancel, or modify. As our running
example, consider a travel planning scenario. A customer (or pas-
senger P) calls his travel agent (T') to book a trip. He makes a
commitment that if T° books the trip for him, he will pay for the
trip as well as any processing costs. Upon receiving the order, T’
sends requests to airline (A), hotel (H), and car rental (R) agents
to reserve air tickets, hotels, and cars, respectively. T" also makes
commitments that if A, H, R accept his requests and if P pur-
chases the trip, then he will pay them. If A finds an available flight,
he will make a commitment to reserve it. So will H and R, if they
have available spots. Eventually, if all goes well, T" will make a
commitment to P to confirm the trip. However, P may cancel all
or part of the trip. For instance, P may cancel the car rental if he
will get a ride with a colleague. In this case, P updates his request;
that is, he updates his original commitment. This update may cause
T to update and cancel some of his commitments.

From this example, we can see that the essential states of the pro-
tocol correspond to the creation, update, cancellation, or fulfillment
of each commitment. These states form our domain-specific proto-
col requirements; transitions among them states are the main inter-
actions. Therefore, if we can identify the commitments and capture
their causal relations, then we can potentially generate agent mod-
els and build a flexible and robust multiagent system.

This paper is organized as follows. Section 2 provides a back-
ground on Dooley graphs with some necessary enhancements. Sec-
tion 3 shows how to derive commitments. Section 4 captures the
causal relations among the commitments and generates agent be-
havior models. Section 5 discusses the relevant literature.



2. AGENT INTERACTIONS

The starting point for design with Dooley graphs is to analyze
an interaction by classifying the messages exchanged (communica-
tive acts) in it and tagging the key relationships among the acts.
Parunak proposed the acts Request, Refuse, Commit, Question, In-
form, ACT, to which we add Cancel. ACT refers to an action that
is external to the commitments, e.g., to discharge a particular com-
mitment. Cancel simply enables a requester to cancel his request.

Parunak defined four relationships among pairs of utterances,
namely, respond, reply, resolve, and complete. We add a fifth re-
lationship, termed update. The following is the complete set of
possible relationships between message u; and u; (here S; and R;
are the sender and receiver of u;):

e w; responds to u; iff S; receives u; and u; causes S; to send
;. This simply denotes a causal relation and indicates that
messages must follow the given order.

e u; replies to u; iff u; responds to u; and R; = S;. This tells
us that the receiver of the Reply message is also the sender of
the message to which it responds. It does not express more
meaning but helps identify characters in conversations.

e u; resolves u; iff u; replies to w; and u; is an Inform, Refuse,
Commit, or an ACT. This means that something significant
has occurred to the conversation initiator because it informs,
commits, refuses, or acts. It is implied that u; follows the
“rules of engagement” defined in u;.

e u; completes u; iff u; is a Commit and u; either cancels
or fulfills the commitment, usually one made in a previous
Resolve message.

e w; updates u; iff u; is a Commit and u; updates the commit-
ment. This can only update a Resolves message or another
“Updates” message.

Although unconditional commitments can be directly obtained from
Commit utterances, the above five relations are helpful to iden-
tify conditional commitments and causal relations among commit-
ments.

We can now capture the necessary details in our trip planning
example. Table 1 shows an interaction with the key communicative
acts and relationships identified. Notice the H; and Ha are two
hotels; Hs is contacted when Hy cancels. Similarly, A1 and A are
two airlines. Figure 1 illustrates the corresponding Dooley graph
based on the algorithm given by Singh [2000b].

Several uses have been discovered for Dooley graphs. Parunak
modularizes conversations and reuses agent modules for software
development [1996]. Singh focuses on deriving individual agent
models from the relationship of the conversations [2000b]. Huhns
et al. incorporate exception handling into the characters involved
in each agent model [2002].

However, the above approaches concentrate on low-level inter-
actions, such as event orders. They do not study how high-level
abstractions, such as commitments, can be induced. This paper
demonstrates how commitments and relations among them can be
derived from Dooley graphs and what the advantages are of looking
at the models at commitment level.

3. DERIVING COMMITMENTS

The following definitions are important for our approach.

Figure 1: Dooley graph for trip planning

Characters. These are the vertices in a Dooley graph. They
represent the individual entities at different stages of the mod-
eled interaction. In our example, the list of characters is { P1—
P3, Tl—Tg, Al—Az, Hl—HQ, R}

Conversation. A sequence of utterances between two charac-
ters derived from a Dooley Graph. A character can only par-
ticipate in one conversation. In Figure 1, the set of conversa-
tions is {x1={1,10}, x2={2.4}, x3={5,6,21}, x4={3.8.14},
x5={7.9.12}, x6={11,13}, x7={15,16,19,20}, xs={17,18} }.

Conversation initiator. The sender of the first utterance in a
conversation; e.g., the conversation initiator of x is T.

Potential causality. If utterance u; occurs in conversation
xi and utterance u; occurs in conversation x; such that u;
precedes u; then x; is a potential cause of x;. For example,
X1 potentially causes 2.

Context-related conversations. If utterance u; occurs in con-
versation ; and utterance u; occurs in conversation x; such
that u; updates u; then X; is context-related to ;. Context-
related conversations deal with same commitment classes.
For example, x1 and xe are context related conversations.

Role. The abstraction of capabilities used by characters who
deal with same type of transactions or are involved in context
related conversations. In Figure 1, the characters inside a
dotted circle belong to same role.

Agent. A concrete party who can play one or more roles. The
list of agents in our example is {P, T, A, H, R}.

Commitment. An obligation from a debtor to a creditor about
a particular condition. For debtor , creditor y, and condition
p, the relevant commitment is notated C(z, , p).



[# [ S [R [ActType [ Utterance | Respond to | Reply to | Resolve | Complete | Update |
1 | P | T | REQUEST | Book trip
2 | T | A: | REQUEST | Buy ticket 1
3 T H; | REQUEST | Reserve hotel 1
4 | AL | T | REFUSE Not Available 2 2 2
5 | T | A2 | REQUEST | Buy Ticket 4
6 | Ay | T | COMMIT Confirm Ticket 5 5 5
7 T R REQUEST | Rent car 1
8 H, | T COMMIT Confirm Hotel 3 3 3
9 |R | T | COMMIT Confirm Car 7 7 7
10| T P | COMMIT Send Itinerary 6,8,9 1 1
11| P | T | REQUEST | Cancel Car from the Itinerary 1
12| T | R | CANCEL Cancel Car 11 7
13| T P COMMIT Send Revised Itinerary 11 11 11 10
4| H | T CANCEL Cancel Hotel 8
15| T P QUESTION | Alternate Hotel? 14
16 | P | T | INFORM Yes 15 15 15
17 | T Hs> | REQUEST Reserve Hotel 16
18 | Hy | T | COMMIT Confirm Hotel 17 17 17
19| T P | COMMIT Send Revised Itinerary 18 16 16 13
20 P | T | ACT Pay for the trip 19 19 1
21| T As | ACT Pay for the ticket 6,20 6

Table 1: Possible annotated interactions in the trip planning example

— Unconditional commitment. A commitment whose con-
dition is a simple proposition.

— Conditional commitment. A commitment of the form
C(z,y,e — p), where e is a condition (possibly inter-
preted as an event) and p is a condition to be brought
about (possibly interpreted as an action). p is activated
when e becomes true.

To derive commitments, we first define a mapping between com-
municative acts and commitment operations. This paper consid-
ers four commitment operations, namely, create, update, discharge,
and cancel. Discussion of other operations (release, assign, and
delegate) is deferred to future work.

e Request (without Update). Create C(x,y,e — p). A con-
versation initiator usually requests a particular information
or service. The antecedent e corresponds to a condition po-
tentially satisfied by the requestee, e.g., a commitment to do
something. The consequent p corresponds to what the re-
quester will do if the requestee satisfies e. Therefore, this
action forms a conditional commitment.

e Request and Update. Update C(z,y,e — p). This is a com-
mitment update sent by a request creator. Either e or p could
be changed, but the modified commitment still follows the
original organizational rules.

e Commit and Resolve. Create C(z,y,p). If a Commit re-
solves an utterance, then it creates a commitment for the first
time following the applicable rules. This may caused by a
request sent from a conversation initiator and is also decided
by the willingness of the commitment creator.

e Commit and Update. Update C(z,y,p). If a Commit up-
dates an utterance, then it updates its original commitment.
It is equivalent to cancel the previous commitment and create
a new one but still following the original rules.

e Act and Complete. Discharge C(z,y,e — p) or C(z,y,p).
If an act (i.e., a non-communicative act) completes an ut-
terance, then the action performer fulfills and discharges the
commitment made in that utterance. Since a commitment
need not be fulfilled in one message, several (Act and Com-
plete) utterances may exist to complete the same utterance.

e Act and Resolve. Create and discharge C(z,y,p). If a non-
communicative act resolves an utterance, then the action per-
former creates and fulfills a commitment at same time.

e Cancel and Complete. Cancel C(z,y,e — p) or C(z,y,p),
if a Cancel completes an utterance, then it cancels a con-
ditional commitment (request) or an unconditional commit-
ment made in that utterance.

From the mappings, we can prove that commitments are created
within the boundaries of conversations because the commitments
are created by utterances and, as a consequence, both debtor and
creditor are characters in a same conversation. Algorithm 1 below
generates a complete list of commitments.

The algorithm creates a conditional commitment for a Request
message, e.g., C(P,T,e1 — pi) for utterance ui. It creates an
unconditional commitment for a Resolve message, e.g., C(Az, T,
Confirm) for utterance us. To decide the antecedent and conse-
quent in a conditional commitment, the algorithm looks for an Act
and Complete message u; that completes a Request utterance u;. If
there is one, then the Act decides the consequent. For any utterance
ug that u; responds to, the corresponding commitments or acts of
ug constructs the antecedent.

By executing the algorithm on Table 1, we obtain the follow-
ing list of commitments. Here TBD indicates fo be decided. All
conditions of the form true — q are simplified to q.

e C; =C(P, T, C(T, P, Sendltinerary)—Pay(P, T))
e (5 =C(T, A1, TBD)
e C3=C(T, A2, C(A2, T, Confirm) A Pay(P, T) —Pay(T, A2))



CommitList = {};

for each u; do

switch u; do

case Request:
Add C(S;, Ri,e; — p;) to CommitList, where

| e; = true and p; = ToBeDecided.

case (Commit and Resolve) or (Act and Resolve):
Add C(S;, R;, p;) to CommitList, where p; is an
action or a condition that S; commits to R; to per-

| form or keep true.;

case Act and Complete:
u; 4 the utterance that w; completes;
if u; is a Request then
let C(S;, Rj,e; — pj) be the corresponding
commitment of u;;
p; <+ the Act;
for each uy, that u; responds to do
switch ux do
case Commit + Resolve:
| e < e A C(Sk, R, pr);

case Act + Resolve:
| ej < e; AtheAct;

case Update:
u; < the original Resolve utter-
ance that wup updates following
the update chain;
ej < e NC(S, Ri,pi);

case Act + Complete:
| ej < e; AtheAct;

Algorithm 1: Generate a list of commitments

e C, =C(T, H;, TBD)

e C5 =C(T,R, TBD)

o Cg =C(Az2, T, Confirm)

e C7 =C(H1, T, Confirm)

e Cs =C(R, T, Confirm)

e Cy = C(T, P, Sendltinerary)
e C19 =C(T, H2, TBD)

e (11 = C(H>, T, Confirm)

Some conditional commitments have undecided antecedents and
consequents, because our initial table does not provide enough in-
formation to derive the dependencies. For example, for commit-
ment C>, because Ay declines the request, we cannot determine
what A; will commit to 7" if he accepts the request. For commit-
ments Cy, Cs, and Co, neither the antecedent nor the consequent
of T' can be determined, because there is no Act and Complete ut-
terance sent by 7" in response to the commitments made by other
parties. However, the travel domain may have a business rule or
policy that cancellation charges may be owed, e.g., if a passenger
is a no show. Any such domain policies can be added during the
final design.

Many commitment instances are derived from the conversation
table. Some commitments update the others and some replace the
others, but they essentially relate to same debtors and creditors and
deal with same transactions. We treat all these related commitments
as the instances of the same commitment class. They are merely a
result of operation performed on the same class. Next, we give the
definition of a commitment class. Two commitments C(z1,y1,p1)
and C(x2, y2, p2) belong to same class if and only if they satisfy
the following requirements:

1. Role(z1) = Role(x2) and Role(y:) = Role(yz)

2. p1 and p» deal with same transaction, goods, or information
(possibly p1 = p2).

Based on this definition, we can put commitment C> and C3
into same class, because the only difference between them is that
different instances of the same role A (A; and A-) are involved.
Likewise, C4 and C1o are classified together. For each class, we
use the commitment with the lowest subscript as the representative
of the class but with bold font. Therefore, the above two classes are
named Cs and Cy, respectively.

For a commitment class, any characters involved in its instance
commitments are replaced by their corresponding roles. For ex-
ample, in commitment class Ca, character A; and A, are both re-
placed with A, and in class C4, H; and H> are replaced by H.

If a commitment class is a conditional commitment, then the an-
tecedent of the class is the conjunction of the antecedents of the
constituting commitments, and the consequent is the list of conse-
quents of those commitments. For example, C2 = C(T, A, (C(A,
T, Confirm) A Pay(P, T)) — Pay(T, A)) and C4 = C(T, H, TBD).
This is appropriate because the commitments in a class involve the
same transactions.

4. DERIVING CAUSAL RELATIONS

Causal relations among commitments are crucial to understand-
ing the chain of commitment operations, because they drive an in-
teraction along significant states where the real transactions of do-
main value occur. A commitment causality diagram (CCD) is a
graph showing potential causality between each pair of commit-
ment operations. A CCD highlights the important stages within
the information flows and hides details of the interaction protocols
that can vary depending on the actual implementation. From a de-
signer’s standpoint, a CCD reflects the high-level business logic
that specifies what agreements should be achieved. From a CCD,
we can infer the agent conversations needed to achieve and mod-
ify the commitments underlying these agreements. Once the com-
mitments and their relations are identified, designers can always
choose an optimal conversation that flows between any related pair
of commitment operations.

Figure 2 shows a CCD derived for our running example. Each
node consists of five elements, namely, the commitment class iden-
tifier and its associated four operations: create (Crt), update (Upd),
discharge (Dcg), and cancel (Cnl). If an operation of a commitment
is causally related to another operation, then there is a directed edge
from the causing operation to the caused operation. For example,
the creation of commitment C; causes the creation of commitment
Ca, then there is an edge from Crt(Cy) to Crt(Ca).

Algorithm 2 generates a commitment causality diagram. This
algorithm scans through each commitment operation and finds its
immediate causally related operations. It examines each Responds
path started from the original operation, since one operation can
cause the occurrence of multiple other operations. The very first
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Figure 2: Commitment causality diagram for trip planning

1 for each u; that involves a commitment operation do

2 Construct u;’s Responds graph;

3 for each path in the graph do

4 if Ju; that involves a commitment operations then

5 u; < the first utterance that involves commit-
ment operation in the path;

6 Add a directed edge from w;’s operation to u;’s
operation;
7 Mark the edge with the set of conversations that

each utterance (except u; ) in the path belongs to;

8 for each commitment operation do
Use dotted line to link an incoming edge to an outgoing
edge if the conversations on the two edges are causally
| related (e.g., Crt(Cr));

Algorithm 2: Generate a commitment causality diagram

operation in each path must be the only potentially caused opera-
tion along that path, although it may not be sufficient to cause it
happen. For example, Figure 3 shows the Responds path of utter-
ance u1, wherein us, u3, and u7 are immediately potentially caused
by u1, but us and ue are not. A subtlety in this algorithm is that
different causal paths can pass through the same commitment op-
eration (see line 8 of Algorithm 2). This enables the given role to
be bound to different agents at run time. Figure 2 illustrates this
point. Recall that C4 deals with the interaction of 7" with H (de-
rived from H; and Hj). The cancellation of the instance of C7

causes a creation of a new instance of C4 for Hs, which automat-
ically voids the instance of C4 for H;. A dotted edge is added be-
tween Cnl(C7 to Cnl(Cy) to indicate this. The new instance of C4
then triggers a new instance of C7. The above scenario is reflected
in the edges labeled xs and the dotted lines within the Crt(C4) and

Crt(C7) blocks.

Figure 3: Responds tree of utterance u;

A CCD illustrates how commitments evolve during interactions.
For example, in Figure 2, P’s initial request, which corresponds to
the creation of Cy, triggers the creation of Ca, C4, and Cs. This is
a simple request, which follows a travel domain rule that causes 1"
to create three subsequent requests without further negotiation.

The creation of the first instance of Cz leads to the creation of
another instance of Cz because 1" and A4 failed to negotiate in con-
versation 2. In this case, the first instance of Cs is implicitly can-



celed (we add a dotted edge from Crt(Cz) to Cnl(C>)). The second
instance of C3 leads to the creation of Cg, because A2 in conversa-
tion 3 accepts the request and sends out a confirmation. This case
indicates that the creation of C2 may lead to the creation of Cs, but
if it fails, it will be created again by 1" without any additional ne-
gotiation or consultation. In a real system, this may happen when
the first preferred airline is sold out and 7T’ tries another acceptable
one, if there is any. Because there must be a limit on the number of
tries, when there are no more airlines to consider, the cancellation
of C2 may lead to the cancellation or update of C;. For example,
P may want to cancel the whole trip or change the schedule of the
trip.

Let us look at another case in which P updates the trip order
by canceling the car rental. This corresponds to the update of Cy,
which leads to the cancellation of Cs and update of Cg. There is
no edge between Cnl(Cs) and Cnl(Cg). However, to model a travel
domain rule that the cancellation of car rental request will cancel
any car rental confirmation, we add a dotted edge between those
two cancellation operations.

The last case we study is the cancellation of C7. This leads to the
creation of another instance of C4 by going through the conversa-
tion X7 in which case T asks P for an alternative hotel. This case
tells us that between each pair of commitment operations, there
may be more conversations and roles involved to decide whether
the potential causal relation becomes an actual cause at run time or
not.

By analyzing the CCD we can get a view on how commitments
are created, updated, and discharged in a normal business flow and
how they get canceled because of exceptions or revoked requests.
This view is not complete since the original conversation table pro-
vides only partial case scenarios. We can either provide more com-
plete agent interactions or try to complete and refine the diagram
by hand. The first option is obviously not acceptable, since you
have to provide many low-level messages and can be easily con-
fused in trying to capture causal relationships among all the mes-
sages. The second option is more appealing since we would already
have captured significant transactions and events at the commit-
ment level—the only things remaining would be additional causal
edges between some pairs of commitment operations.

4.1 Accommodating Commitment Patterns

In previous research, we proposed a small number of commit-
ment patterns so as to streamline the interactions among agents
[Xing et al., 2001]. The main patterns are Entertain Request, No-
tify the Consumer, Entertain Update, Renotify the Consumer, Sat-
isfy the Consumer (Retry), and Resign. These are the behaviors
of a single agent. However, by applying them to a CCD, we can
state that any operation performed on one commitment needs to be
propagated to the operation of another commitment to which the
first one is causally related. For example, if the creation of one
commitment causes the creation of another one, then updating or
canceling the first one should affect the second one too.

In the CCD of Figure 2, there is no out-edge from the cancella-
tion of Ci, which corresponds to the request cancellation from P.
We can add three edges connecting this node to the cancellations of
Ca, Cs, and Cy, respectively. If this cancellation happens after the
discharge of C; (in which case P has paid for the flight ticket), then
a new conversation may be involved between Cnl(C1) and Cnl(Cz)
that will resolve a refund or surcharge.

For any existing edges, we can optimize or reduce the conver-
sations along the edges. For example, the cancellation of hotel
(Cnl(Cr)) creates a new Cy4 through conversation ys. Can we elim-
inate this conversation? For instance, find another hotel within two

miles of the old one. In this way, we can save one message round
trip, which may avoid potential delay resulting from an email or
phone call in the real world.

Please note that any additional conversations may spawn new
commitments. We don’t allow commitment operations on the causal-
ity edge between two other commitment operations. Therefore, we
need to repeatedly regenerate the CCD whenever new conversa-
tions are added.

4.2 Generating Agent Models
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Figure 4: Travel agent behavior model statechart

The last step of our approach is generating agent models. The
agent models are represented in commitment centric statecharts and
are derived from the commitment causal relation diagram. Each



statechart is composed of two parts, dealing with creation and Revi-
sion, respectively. The creation phase represents the negotiation of
initial agreements and the formation of commitment chains, while
the Revision phase represents the update and cancellation of the
agreements and any subsequent effects on the commitment chains.
Algorithm 3 generates a statechart for an agent. For reasons of
space, the algorithm is not as detailed as the others, but highlights
the major steps. Figure 4 is the example statechart for 7.

1 for each operation o on each commitment created by agent A
do
Create a new state s1;
Create a new transition to s; and mark it as “Send a”’;
for each incoming edge to o do
[ <+ The source operation of the edge;
Create a new state s2;
Create a new transition to sz and mark it as “Receive
[ or any communication involved on the edge;

NN R W N

8 Construct the “creation” part of the statechart by linking and
merging the states and transitions that involve only the cre-
ations of commitments;

9 Construct the “revision” part of the statechart by Linking and
merging the states and transitions that involve update, cancel,
discharge or the second creations of commitments;

10 Connect these two statecharts together by the state where the
last commitment is created;

11 Put any concurrent states and transitions into AND states and
merge their common transitions;

12 Use AND connector to converge transitions leading to a same
state if these transitions are the AND preconditions of the
state;

Algorithm 3: Generate statechart for an agent

S. DISCUSSION

Agent-oriented software engineering (AOSE) has been a popular
topic for building electronic commerce systems and global supply
chains. Recent approaches have considered the purely methodolog-
ical aspects of AOSE. Our program of research seeks to develop
rigorous methodologies for AOSE and for multiagent systems de-
sign with the view of supporting AOSE. Our contribution here is
on the technical aspects of how to create commitment-based repre-
sentations.

Parunak originated the idea of using Dooley graph to decompose
agent conversation and differentiate courses of stages, so agent in-
teraction can be modularized and reused [1996]. This is a good
starting point to scoping characters and conversations which is very
helpful to design an agent behavior model. We extend this approach
by adding more communicative acts (cancel request) and an ad-
ditional relation among utterance (update), so agent conversations
become more meaningful in terms of the relations with each other
and business process requirement can be more accurately captured.

Singh previously found the Dooley graph is capable of deriving
skeletons for heterogeneous agents [2000b]. However, the main
results dealt with the low-level agent interaction protocols. Our
study found that the commitment dependencies are more useful
than commitments themselves since the lifecycle of each commit-
ment totally rely on the relations with other commitments and ac-
tions. They could be nesting deeply with each other. Any break in
the commitment dependency chain could affect all related commit-
ments. Therefore the major advantage of our approach over Singh’s

is to generate agent models from commitment relations, but not
from the message sequence.

Huhns et al. use Dooley graphs to deal with exception handling
in supply chains [2002]. After deriving an agent conversation and
an agent model, they add branches to the agent skeletons to cap-
ture possible exception. However, the effects of agent internal ex-
ceptions on other agents’ behavior are not clearly captured. Our
approach generalized exception handling into two commitment op-
erations, cancel and update. Our commitment causal relation dia-
gram shows what are the chains of effects of these operations, so
the designer may have generic way to deal with different types of
exceptions occurred in the whole system.

Fornara and Colombetti [2002] present an operational seman-
tics of commitments relating to communicative acts. They mapped
out each communicative act to a commitment operation and de-
pict a commitment state diagram during a course of conversations.
This greatly helps us to discover the protocols of making and ful-
fill commitments within given conversations and differentiate each
subtle state in the negotiation process. However, like most other
commitment-based approaches, this one still deals with commit-
ments between two agents, the relations among commitments are
not explored.

Verdicchio and Colombetti recently presented ideas of general-
izing commitments relations in supply chain systems [2002]. How-
ever, they are only limited in money, process, and information flows
and how each commitment operation influences the chain of com-
mitments is not clearly specified.

Economou e al.’s approach is similar to ours, but for a different
purpose [2001]. Their premise is that the protocol is fixed. If de-
ontic states are entered, then the commitments have to be fulfilled.
Since our approach captures the commitment causal relations and is
intended to help for protocol design, the deontic states can always
be changed. However, as the design is completed, the protocol is
fixed, it becomes possible to accommodate some of the topics that
Economou et al. study, e.g., inferring commitments from protocols.

Agent UML (AUML) provides various kinds of diagrams for a
designer to specify multiagent system behavior and internal agent
models [Odell et al., 2000]. AUML is weak in its handling of mul-
tiagent concepts and abstractions. Our commitment causality dia-
gram can be a complementary, alternative way to specify system
requirements. Adding CCDs to AUML would enhance the expres-
siveness of AUML to a commitment level.

It is helpful to consider three main classes of approaches for
multiagent design for information management and electronic com-
merce applications.

e Flow-based. These approaches begin from a business re-
quirement flow in which different tasks are processed in dif-
ferent stages and triggered by each other [O’Brien and Wie-
gand, 1998]. The agents are the task performers. Each agent
takes inputs from its producers and send outputs to its con-
sumers. Although the agents cooperate to handle exceptions
and ensure a reliable task execution, they lack autonomy and
the ability to negotiate for a best solution. Any change of the
business logic drastically affects each agent’s state machine
and communication interface. Our approach emphasizes re-
quirements as represented by commitments and causal rela-
tions among them. For example, whereas in flow-based de-
sign, a trip change made by a passenger may create several
more tasks including canceling some reservations and updat-
ing the itinerary, in our approach, this change is treated as
the update of a request. We can add edges among the af-
fected commitments and trigger additional functions within
the agents involved.



e Service-based. These approaches model each agent as a ser-
vice provider [Mcllraith et al., 2001]. Agents can receive
and send service requests to each other by following the pro-
tocol specified for each service. Unlike the flow-based ap-
proaches, there is no predefined flow process, so agents never
deliver services to others without being requested. However,
a group of service providers can form a supply chain system
if the services they provide are involved in a global business
process. Service-based designs are a popular approach in to-
day’s electronic commerce systems. However, in terms of the
adaptability and flexibility, practitioners are still struggling
for a better interaction model to make a supply chain more
robust, because current approaches lack the abstractions to
handle different protocols and data interfaces needed to ac-
commodate different business situations. The key missing
abstraction is commitments, which we highlight in our work.

o Commitment-based. These approaches not only specify the
services that the agents provide, but also captures how the
agents interact. Commitments can be treated as common
states during agent interaction, which represent the agree-
ments that are achieved in the interaction at any given point.
Any update, fulfillment, cancellation, or modification of the
commitments affects how the services are delivered. By cap-
turing the commitments in supply chains, we can control the
lifecycles of service deliveries and are able to handle most
business processes. Our approach belongs to this category.
The difference between our approach and previous agent ap-
proaches is that we capture causal relations among commit-
ments that are essential to link series of related operations.

6. CONCLUSIONS

Given an agent interaction marked up with the various columns
of a conversation table, as in Table 1, our approach first extracts
commitments and commitment relations from it. It then gener-
ates the agent models by fine-tuning the relation diagrams. Our
approach enables designers to model a commitment-centric agent
system based on an understanding of how agents interact with each
other by making, fulfilling, and modifying commitments. The main
idea of this approach is in designing the commitment lifecycle in
terms of the causal relations among commitments. Each commit-
ment must be taken care of by its creator and any operation per-
formed on a commitment must be properly propagated to other
commitments to ensure that inconsistencies do not arise.

Our approach fits into a methodology that involves a combi-
nation of heuristic reasoning by a human designer (e.g., creating
and marking up example interactions; enriching a CCD by hand if
desired; coding domain-specific rules) and algorithmic reasoning
(e.g., deriving a CCD and generating agent models). In this way,
it goes beyond pure methodological approaches, which concentrate
on the heuristic element. In future work, we will consider some
extensions of this approach. One direction, in particular, is to com-
plete interactions and agent models so as to help a designer detect
and address potential exception conditions.
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