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ABSTRACT
For agents to function effectively in large and open networks,
they must ensure that their correspondents, i.e., the agents
they interact with, are trustworthy. Since no central author-
ities may exist, the only way agents can find trustworthy
correspondents is by collaborating with others to identify
those whose past behavior has been untrustworthy. In other
words, finding trustworthy correspondents reduces to the
problem of distributed reputation management.

Our approach adapts the mathematical theory of evidence
to represent and propagate the ratings that agents give to
their correspondents. When evaluating the trustworthiness
of a correspondent, an agent combines its local evidence
(based on direct prior interactions with the correspondent)
with the testimonies of other agents regarding the same cor-
respondent. We experimentally studied this approach to es-
tablish that some important properties of trust are captured
by it.

Keywords
distributed reputation management, belief functions, trust
networks

1. INTRODUCTION
With the expansion of the Internet, people and services

are called upon to interact with independent parties. This is
so in application areas such as e-commerce, knowledge shar-
ing, and even game playing. We envision agents being used
to assist in such interactions for each relevant party or prin-
cipal. Because the parties are autonomous and potentially
subject to different administrative and legal domains, it is
important that each agent be able to identify trustworthy
parties or correspondents with whom its principal should
interact and untrustworthy correspondents with whom its
principal should avoid interaction.

Trust has recently begun to attract attention in the mul-
tiagent systems community. Previously, multiagent systems
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were restricted to those in which the participants were as-
sumed to be fully cooperative or those in which the rules
of engagement were set in such a manner that the partici-
pants were competitive, e.g., in computational markets, but
their trustworthiness never came into play. In many real-
life settings, agents will not necessarily cooperate with one
another. In such settings, agents must be able to deal with
fraud and deception. The only way to do so is by developing
a robust notion of trust. Ultimately, we imagine trust being
a building-block concept for multiagent architectures with
trust management services attracting as much importance
as knowledge representation in today’s multiagent systems.

Further, since we consider large distributed systems of
autonomous and heterogeneous agents, it is generally inad-
visable to assume that there are universally accepted trust-
worthy authorities, who can declare the trustworthiness of
different agents. Even the authorities, such as they are, may
not be considered trustworthy by all. This is a fundamental
limitation of traditional methods, the so-called “hard secu-
rity” techniques based on passwords, keys, and digital cer-
tificates. What hard security can ensure, at most, is that the
given agent obtained credentials from another credentialed
party, ultimately one that is trusted by fiat (i.e., PGP-style
web of trust, or X.509-style certifying authority trees). This
opens up two objections. First, no such trusted third party
might exist. Second, even knowing the identity of a corre-
spondent does not justify placing trust in it, because you
have no reason to believe it will act in your interest.

Trust is more than creating, acquiring, and distributing
certificates. A party might be authenticated and authorized,
but this does not ensure that it exercises its authorizations
in a way that is expected. Our approach, therefore, is to
develop a social mechanism, a so-called “soft security” tech-
nique. We begin with a perfect peer-to-peer model of a
multiagent system and study how to automatically and ef-
ficiently detect non-cooperative agents.

In our settings, all the agents are in principle equal, and
agents will necessarily form ratings of others that they inter-
act with. The trustworthiness of a correspondent is viewed
as the expectation of cooperative behavior from that cor-
respondent. But to evaluate the trustworthiness of a cor-
respondent, especially prior to any frequent direct interac-
tions, the agents will have to rely on social mechanisms for
incorporating the knowledge of other agents. In other words,
we model trustworthiness as a reputation for good behav-
ior; an agent will place trust in a correspondent based on
the latter’s reputation combined with the outcomes of its
direct interactions, if any, with the correspondent.



Let us now describe our conceptual model. We consider
interactions in electronic communities, where agents assist
and represent principal entities, such as people and busi-
nesses. Each agent attempts to determine the trustworthi-
ness of a given correspondent based on its own prior interac-
tions with that correspondent in conjunction with the testi-
monies given by other trustworthy agents or witnesses who
have interacted with the same correspondent. The mech-
anism for finding the right witnesses relies upon referrals
being generated by the agents who are directly acquainted
with the given agent. We develop an evidential model of
reputation management based on the Dempster-Shafer the-
ory. In this scheme, if no information about the agent is
available, it has no reputation at all. It should be noted
that there is a difference between having a bad reputation
and no reputation at all.

The proposed approach builds on our work on referral
networks [24]. An agent-based referral network is a mul-
tiagent system whose member agents give referrals to one
another (and are able to follow referrals received from other
agents). To do so effectively presupposes certain represen-
tation and reasoning capabilities on the part of each agent.
Each agent has a set of acquaintances, a subset of which are
identified as its neighbors. The neighbors are the agents that
the given agent would contact and the agents that it would
point (refer) others to. An agent maintains a model of each
acquaintance. This model includes the agent’s abilities to
act in a trustworthy manner and to refer to other trustwor-
thy agents, respectively. The first ability we term expertise
and the second ability we term sociability.

Each agent may modify its models of its acquaintances,
potentially based on its direct interactions with the acquain-
tance, based on interactions with agents referred to by the
acquaintance, and based on ratings of this acquaintances
received from other agents. More importantly, in our ap-
proach, agents can adaptively choose their neighbors, which
they do every so often from among their current acquain-
tances. An agent may estimate the trustworthiness of a
given party based on its own past interactions or may con-
sult other trusted agents who have directly interacted with
the same party. These agents are termed witnesses. An
agent can find the right witnesses by seeking and following
referrals from its neighbors.

The rest of this paper is organized as follows. Section 2
introduces our technical approach, giving the key definitions
for local trust rating and propagation through referrals. Sec-
tion 3 presents our experimental results. We summarize
some related work in reputation management in Section 4.
Section 5 concludes our paper with a discuss of the main
results and directions for future research.

2. REPUTATION MANAGEMENT
Traditionally, there are two main view of trust. The cog-

nitive view postulates trust as made up of underlying beliefs.
That is, trust is a function of the value of these beliefs [7].
The mathematical view ignores the role of underlying beliefs
and uses a (scalar) metric to model a subjective probability
with which an agent will perform a particular action [16].
Our approach represents an enhancement of the mathemat-
ical view. While we do not directly consider the specific cog-
nitive notions that might apply in judging trustworthiness,
our model is richer than traditional mathematical models in
accommodating testimonies and in considering both trust-

worthiness and untrustworthiness.
The idea that the rating of a correspondent be based on

direct observations as well the ratings assigned by other
sources is well-known in the literature on reputation. How-
ever, some important challenges must be addressed.

• How does an agent rate a correspondent based on their
direct interactions? Our approach does so by captur-
ing the ratings of the last several interactions, which
are recorded in the given agent’s history.

• How does the agent find the right witnesses? Our
approach applies a process of referrals through which
agents help one another find witnesses.

• How does the agent systematically incorporate the tes-
timonies of those witnesses? Our approach includes
the TrustNet representation through which the ratings
can be combined in a principled manner.

In particular, our approach has an advantage over other ap-
proaches in terms of the second and third challenges. These
are discussed in Section 4.

Before we can describe the three elements of our approach,
we must consider a representational framework over which
they are layered. There are three main choices in this regard.

• Certainty factors are scalar values to represent an agent’s
belief ratings about another. The certainty factor model
provides a mechanism for combining testimonies. How-
ever, certainty factors do not represent measures of
absolute belief. Rather, they are meant to represent
changes in belief [12].

• The agents’ inherent uncertainty about their corre-
spondent can be expressed within a Bayesian frame-
work [17]. The Bayesian approach offers a mecha-
nism for combining evidence. However, the Bayesian
approach is limited in not being able to distinguish
between lack of belief and disbelief. Lack of belief
must be modeled through the artificial construct of
equiprobable probability distributions.

• The Dempster-Shafer calculus handles the notion of
evidence pro and con explicitly [15]. There is no causal
relationship between a hypothesis and its negation, so
lack of belief does not imply disbelief. Rather, lack of
belief in any particular hypothesis implies belief in the
set of all hypotheses, which is referred to as the state of
uncertainty. This leads to the intuitive process of nar-
rowing a hypothesis [11], in which initial uncertainty
is replaced with belief or disbelief as evidence is accu-
mulated.

For the above reasons, we uses the Dempster-Shafer theory
of evidence as the underlying computational framework.

2.1 Dempster-Shafer Theory
We now introduce the key concepts of the Dempster-Shafer

approach. Let T mean that the given agent considers a given
correspondent to be trustworthy. A frame of discernment
Θ = {T,¬T} is the set of propositions under consideration.

Definition 1. Let Θ be a frame of discernment. A basic
probability assignment (bpa) is a function m : 2Θ 7→ [0, 1]

where (1) m(φ) = 0, and (2)
P

Â⊂Θ m(Â) = 1.



Thus m({T}) + m({¬T}) + m({T,¬T}) = 1. A bpa is
similar to a probability assignment except that its domain
is the subsets and not the members of Θ. The sum of the
bpa’s of the singleton subsets of Θ may be less than 1. For
example, given the assignment of m({T}) = 0.8, m({¬T}) =
0, m({T,¬T}) = 0.2, we have m({T}) + m({¬T}) = 0.8,
which is less than 1.

For a subset Â of Θ, the belief function Bel(Â) is defined

as the sum of the beliefs committed to the possibilities in Â.
For example,

Bel({T,¬T}) = m({T}) + m({¬T}) + m({T,¬T}) = 1

For individual members of Θ (in this case, T and ¬T ), Bel
and m are equal. Thus

Bel({T}) = m({T}) = 0.8, and Bel({¬T}) = m({¬T}) = 0

2.2 Local Trust Ratings
When agent Ai is evaluating the trustworthiness of agent

Aj , there are two components to the evidence. The first
component is the services offered by agent Aj . The second
component is the testimonies from other agents in case Ai

has no transactions with Aj before. Suppose agent Ai has
the latest H responses from agent Aj , Sj = {sj1, sj2, . . . , sjH}.
We use the distinct values of {0.0, 0.1, . . . , 1.0} to denote the
quality of service (QoS) sjk, where1 ≤ k ≤ H (note that the
quality of service was rated by users. sjk is equal to 0 if
there is no response from agent Aj).

Following Marsh [16], we define for each agent an upper
and a lower threshold for trust. For each agent Ai, there
are two thresholds ωi and Ωi, where 0 ≤ ωi ≤ Ω ≤ 1.
We use f(xk) to denote the probability that a particular
value xk of quality of services from agent Aj happens, where
xk ∈ {0.0, 0.1, . . . , 1.0}. For example, given a specific value
xk, there are three services with that quality in the latest H
responses, then f(xk) = 3/H. But if there are less than H
responses available, say h, then f(xk) = 3/h.

Definition 2. Given a series of responses from agent
Aj, Sj = {sj1, sj2, . . . , sjH}, and the two thresholds ωi and
Ωi of agent Ai, we can get the bpa toward agent Aj: m({T})
=
P1

xk=Ωi
f(xk), m({¬T}) =

Pxk=ωi
0 f(xk), and m({T,¬T

}) =
Pxk=Ωi

xk=ωi
f(xk).

m({¬T})

 0  Ω  ω  1

m({T, ¬T})
m({T})

Figure 1: Distribution of trust ratings

2.3 Combining Belief Functions
When an agent has not interacted often enough with a cor-

respondent, it must seek the testimonies of other witnesses.
Next we discuss how to combine such evidence.

A subset Â of a frame Θ is called a focal element of a
belief function Bel over Θ if m(Â) > 0. Given two belief
functions over the same frame of discernment but based on
distinct bodies of evidence, Dempster’s rule of combination
enables us to compute a new belief function based on the
combined evidence. For every subset Â of Θ, Dempster’s
rule defines m1 ⊕ m2(Â) to be the sum of all products of
the form m1(X)m2(Y ), where X and Y run over all subsets

whose intersection is Â. The commutativity of multiplica-
tion ensures that the rule yields the same value regardless
of the order in which the functions are combined.

Definition 3. Let Bel1 and Bel2 be belief functions over
Θ, with basic probability assignments m1 and m2, and focal
elements Â1, . . . , Âk, and B̂1, . . . , B̂l, respectively. SupposeP

i,j,Âi∩B̂j=φ m1(Âi)m2(B̂j) < 1

Then the function m : 2Θ 7→ [0, 1] that is defined by

m(φ) = 0, and

m(Â) =

P
i,j,Âi∩B̂j=Â

m1(Âi)m2(B̂j)

1−P
i,j,Âi∩B̂j=φ

m1(Âi)m2(B̂j)

for all non-empty Â ⊂ Θ is a basic probability assignment
[22].

Bel, the belief function given by m, is called the orthogonal
sum of Bel1 and Bel2. It is written Bel = Bel1⊕Bel2. Let us
now look at how beliefs obtained from two separate agents
are combined. Suppose

m1({T}) = 0.8, m1({¬T}) = 0, m1({T,¬T}) = 0.2
m2({T}) = 0.9, m2({¬T}) = 0, m2({T,¬T}) = 0.1

Then m12 is obtained as follows:

m12({T}) = 0.72 + 0.18 + 0.08 = 0.98
m12({¬T}) = 0

m12({T,¬T}) = 0.02

2.4 Deciding Whether to Trust
It helps to distinguish between two kinds of beliefs: lo-

cal belief and total belief. An agent’s local belief about a
correspondent is from direct interactions with it and can be
propagated to others upon request. An agent’s total belief
about a correspondent combines the local belief (if any) with
testimonies received from any witnesses. Total belief can be
used for deciding whether the correspondent is trustworthy.
To prevent non-well-founded cycles, we restrict agents from
propagating their total beliefs. However, in principle, the
necessary information underlying a total belief can be ob-
tained by the requesting agent from the original witnesses.

Agent Ar models all of the information he gets about Ag

using belief functions, and then decides whether to cooper-
ate with Ag. Figure 2 shows the whole process. We argue
that the total belief is needed only if they have no transac-
tion before. One intuition is the trustworthiness is people
or agent specific. Agent A may trust agent B, but not C.

To evaluate the trustworthiness of agent Ag, agent Ar will
check if Ag is one of its acquaintances. If so, Ar will use its
existing local belief to evaluate the trustworthiness of Ag.
Otherwise, Ar will query its neighbors about Ag. When an
agent receives a query about Ag’s trustworthiness, it will
check if Ag is one of its acquaintances. If yes, it will return
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Figure 2: The process of deciding whether to coop-
erate with another agent

the information about Ag; otherwise, it will return referrals
to Ar. Ar, if it chooses, can then query the referred agents.

A referral r to agent Aj returned from agent Ai is written
as 〈Ai, Aj〉. A series of referrals makes a referral chain.
Observing that shorter referral chains are more likely to be
fruitful and accurate [13] and to limit the effort expended
in pursuing referrals, we define depthLimit as the bound on
the length of any referral chain.

The referral process begins with Ar initially contacting
a neighbor Ai, who then gives a referral, and so on. The
process terminates in success when a rating is received and
in failure when the depthLimit is reached or when it arrives
at an agent neither gives an answer rating nor a referral.

To simplify the notation, we refer to the initial contact
〈Ar, Ai〉 as a referral as well. For simplicity, a chain is writ-
ten as 〈A0, A1, . . . , Ak〉, where A0 is the querying agent and
every agent Ai for i < k gives a referral to agent Ai+1.

2.5 TrustNet
Now suppose Ar wants to evaluate the trustworthiness of

Ag, after a series of l referrals, a testimony about agent Ag

is returned from agent Aj . Let the entire referral chain in
this case be 〈Ar, . . . , Aj〉, with length l. A TrustNet is a
representation built from the referral chains produced from
Ar’s query. It is used to systematically incorporate the tes-
timonies of the various witnesses regarding a particular cor-
respondent.

Definition 4. A TrustNet TN(Ar, Ag,A, R) is a directed
graph, where A is a finite set of agents {A1, . . . , AN}, and
R is a set of referrals {r1, . . . , rn}.

Given a series of referrals {r1, r2, . . . , rn}, the requester
Ar constructs a TrustNet TN by incorporating the each
referral ri = 〈Ai, Aj〉 into TN . Ar adds ri to R if and only
if Aj 6∈ A and depth(Ai) ≤ depthLimit . Figure 3 shows how
the testimonies propagate through the TrustNet.

Suppose agent Ar wants to evaluate the trustworthiness of
agent Ag, and {w1, . . . , wL} are a group of witnesses towards
agent Ag. We now show how testimonies from witnesses can
be incorporated into the trust rating of a given agent. Let
τAi and πAi be the belief functions corresponding to agent
Ai’s local and total beliefs, respectively.

Definition 5. Given a set of witnesses ∆ = {w1, w2, . . . ,
wL}, agent Ar will update its total belief value of agent Ag

as follows

πAr = τw1 ⊕ . . .⊕ τwL
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1wτ

Agent Ag Agent Ag Agent Ag 
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Figure 3: Testimony propagation through witnesses

 

Input:  Suppose Ar is the request agent, set Λ is the agents 
being visited. Given a series of referrals {r1, r2, …, rn}, and for  
each referral rk = 〈Ai, Aj〉, there is a bpa assigned to agent Aj

by agent Ai. 

Output: The bpa of agent Ag from a series of testimony given 
witnesses. 
 
1. If Aj ∉ Λ then 

• If Aj = Ag, then append rk to the TrustNet, and store the 
testimony from Ai (one of the witness to Ag), otherwise 

• If depth(Aj) < six, append rk to the TrustNet, and send a 
query to Aj, otherwise 

• ignore the referral rk. 
2. If Aj ∈ Λ, ignore the referral rk.  
3. Compute the bpa of agent Ag using Dempster’s rule of 

combination, and return the bpa of agent Ag.  
 

Figure 4: Testimony propagation algorithm

Figure 4 summarizes the testimony propagation algorithm,
where the depthLimit is six.

Next we consider the situation where Ar needs to compute
its total belief regarding Ag.

• Case 1: Ar has interacted with Ag. Ar will trust Ag if
τAr ({TAg})−τAr ({¬TAg}) ≥ ρ, where ρ is a threshold
for trustworthiness and 0 < ρ < 1.

• Case 2: Ar has not interacted with Ag. Ar computes
its total belief about Ag for decision making. Ar will
trust Ag if πAr ({TAg})− πAr ({¬TAg}) ≥ ρ.

• Case 3: Ag is totally new to the society. In this case
πAr ({TAg}) = πAr ({¬TAg} = 0, and πAr ({TAg ,¬TAg}) =
1. If we set the value of ρ equal to 0, then Ar may co-
operate with the new agent Ag.

3. EXPERIMENTAL RESULTS
Our experiments are based on a simulation testbed we

have developed, which involves between 100 and 500 agents
with interest and expertise vectors of dimension 5. Each
agent keeps the latest 10 responses from another agent if
there are more than 10 responses. The agents are limited in
the number of neighbors they may have, here 4. The length
of each referral chain is limited to 6. Moreover, we introduce



a probability between 0 and 1 to model the cooperativeness
of each agent Ai, denoted as CAi . Agent Ai will generate
an answer from his expertise vector upon a query with the
probability CAi even when there is a good match between
the query and his expertise vector.

In each simulation cycle, we randomly designate an agent
to be the requester. The queries are generated as vectors
by perturbing the interest vector of the requesting agent.
When an agent receives a query, it will try to answer the
query based on its expertise vector, or refer to other agents
it knows. The originating agent collects all suggested refer-
rals, and continues the process by contacting some of them.
At the same time, each agent may keep track of more ac-
quaintances than are its neighbors. In our case the size is
12). Periodically it decides which acquaintances to be kept
as neighbors, i.e., which are worth remembering.

Recently Prietula and Carley [18] studied the effects of
agent trust in a simulated organization task. Schillo et al.
tested the performance of two groups of agents with different
settings for honesty and dishonesty, and altruism and ego-
tism [21]. We previously studied the reputation changes of a
“non-cooperative” agent and a new agent in a group of 20 to
60 agents. However, our previous work did not consider the
different environments of the agents. Using our simulation
testbed, we studied the role of trust in the following three
settings: reputation buildup, community size and ratio of
non-cooperative agents.

3.1 Metrics
We now define some useful metrics in which to intuitively

capture the results of our experiments.

Definition 6. Suppose {w1, . . . , wL} are exactly L agents
whose neighbors include Ai. Then βAi , the cumulative belief
regarding agent Ai is computed as

βAi = τw1 ⊕ τw2 , . . . ,⊕τwL

and the reputation of agent Ai is defined as

Γ(Ai) = βAi({TAi})− βAi({¬TAi}.
If L = 0 then Γ(Ai) = 0.

Definition 7. The average reputation of a group of agents
is defined as:

Π = 1/N
PN

i=1 Γ(Ai),

where N is the total number of agents in the group.

3.2 Bootstrapping
Following Watts and Strogatz [25], we begin from a ring

but, unlike them, we allow for edges to be directed. We use
a regular ring with 100 nodes, and 4 edges per node (to its
nearest neighbors) as a starting point for the experiment.
Since the simulation does not involve real users, the qual-
ity of service (QoS) is estimated based on how close of the
answer to the interest vector.

The cooperativeness for each agent is set to 1 if not speci-
fied. For any two agents Ai and Aj , τAi({TAj}) = τAi({¬TAj

}) = 0, τAi({TAj ,¬TAj}) = 1 in the beginning. We have a
relative low value for the lower threshold Ωi, since we want
to model the cooperativeness of agents. For each agent Ai,
we have ωi = 0.1 and Ωi = 0.5. Whether a neighbor will be
kept as a neighbor depends on how close of the neighbor’s
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Figure 5: Reputations change of all agents in the
bootstrapping stage (from a regular ring)

expertise vector to the agent’s interest vector. After every
100 round, we compute the reputation for the single agent,
and whole group using the metrics defined above. The com-
putation is not counted in the simulation cycle.

In the first simulation we evaluate the convergence of our
approach. We hypothesize that the average reputation of all
agents reaches equilibrium when each agent finds the right
neighbors of itself. Consider the following example. Their
initial average reputations are zero. During 50,000 simu-
lation cycles, we found that the average reputation of the
whole group agents changed rapidly in the very beginning,
climbed to a peak, but then slowed down and stabilized at
a low level. Figure 5 confirms our hypothesis.

3.3 Reputation Buildup
Clearly, a functioning social network cannot remain sta-

ble for long, because agents will continually introduce and
remove themselves from the network. In the second simula-
tion, we show that a knowledgeable agent Ag who accumu-
lates a high reputation during the first simulation cycle of
25, 000, behaves cooperatively with a cooperativeness factor
1 until it reaches a high reputation value, and then starts
abusing its reputation by decreasing its responsiveness fac-
tor to 0.25. Thus its average reputation begins to drop,
ultimately settling at a reputation of 0. Figure 6 illustrates
this case. A reputation of 0 indicates that Ag is no longer
a neighbor of any agent. That is, it ends up isolated from
the other agents. However, in order to distinguish the agent
with zero reputation (new agent) from the agent with −1
reputation, each agent can potentially blacklist agents for
whom it has negative ratings. We defer this enhancement
to future work.

3.4 Community Size
Usually there is a better chance to select a partner in a

large (virtual) city of 300, 000 people than in a small town
of 3, 000 people. On the other hand, it is much easier to
collect “bad” testimonies in a small town. We conjecture
that the average reputation of an agent in a smaller group
should change faster than that in a larger community.

Given two groups of agents, with the number of agents
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20 and 100, respectively. Suppose agent Ag1 and agent Ag2

are two cooperative agents in the beginning with the co-
operativeness factors 1. After a series of simulation cycles,
both of them decrease their cooperativeness factor to 0.25.
Thus, their average reputation starts dropping because of
their non-cooperative behaviors. Figure 7 shows that the
reputation of agent Ag1 drops faster (measured by number
of queries sent by each agent) since it is in a smaller com-
munity.

Another interesting phenomenon is that the reputation
of agent Ag1 oscillates around −0.5, a quite low reputation
level, but agent Ag2 ’s reputation changes back to 0. This
tells us that a bad agent is more easily forgotten in a big
community than in a small group. For our simulation, each
agent has 4 neighbors and 12 acquaintances. An agent has
it easier selecting good neighbors from 100 agents than from
20 agents.

3.5 Ratio of Non-Cooperative Agents
We believe the ratio of honest to dishonest agents will af-
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fect the structure of the whole community. If several agents
in the community are dishonest and agents don’t trust each
other, the community will collapse. We consider the prob-
lem of determining the percentage of non-cooperative agents
at which a stable community is destroyed. Figure 8 shows
the results, where the average reputation of agents converges
to a high level when the ratio of non-cooperative agents is
20%. We also can find that agent group with 20% non-
cooperative agents converges faster than other two. Since in
a group where cooperative agents dominate, it is easier to
find good neighbors and detect non-cooperative agents.

4. RELATED WORK
OnSale Exchange and eBay are important practical exam-

ples of reputation management systems. OnSale Exchange
allows its users to rate and submit textual comments about
sellers. The overall reputation of a seller is the average of the
ratings obtained from his customers. In eBay, sellers receive
feedback (+1, 0, −1) for their reliability in each auction and
their reputation is calculated as the sum of those ratings
over the last six months. In OnSale, the newcomers have
no reputation until someone rates them, while on eBay they
start with zero feedback points. Both approaches are com-
pletely centralized and require users to explicitly make and
reveal their ratings of others. However, it is questionable
if the reputation ratings reflect the trustworthy behavior of
sellers, since in the online marketplaces, it is very likely for a
user to misbehave, receive low reputation ratings and obtain
another online identity.

Some prototype approaches are relevant, like Yenta [9]
and Weaving a Web of Trust [14]. Yenta clusters people
with common interests according to referrals of users who
know each other and verify the assertions they make about
themselves, while Weaving a Web of Trust relies on the exis-
tence of a connected path between two users. These systems
require preexisting social relationships among the users of
their electronic community. It is not clear how to establish
such relationships and how the ratings propagate through
this community.

A social mechanism of reputation management was im-
plemented in Kasbah [8, 28] which require that users give a
rating for themselves and either have a central agency (di-



rect ratings) or other trusted users (collaborative ratings).
A central system keeps track of the users’ explicit ratings
of each other, and uses these ratings to compute a person’s
overall reputation or reputation with respect to a specific
user in a directed graph. However, it is not clear how the
agents collect the ratings in an open environment where the
number of agents grows to very large.

Trusted Third Parties (TTP) [19] are often employed to
facilitate trust in commercial transactions. Typical TTP
services for electronic commerce include certification, time-
stamping and notarization. TTPs act as a bridge between
buyers and sellers in electronic marketplaces. However, TTP
is most appropriate for closed marketplaces. In loosely fed-
erated, open systems a TTP may either not be available or
have limited power to enforce good behavior.

One of the first works that tried to give a formal treat-
ment of trust was that of Marsh [16]. His model attempted
to integrate all the aspects of trust taken from sociology
and psychology. Since Marsh’s model has strong sociolog-
ical foundations, the model is rather complex and cannot
be easily used in today’s electronic communities. Moreover
the model only considers an agent’s own experiences and
doesn’t involve any social mechanisms. Hence, a group of
agents cannot collectively build up a reputation for others.

A more relevant computational method is from Social In-
teraction Framework (SIF) [20]. In SIF, an agent evaluates
the reputation of another agent based on direct observa-
tions as well through other witnesses. Moreover Michael
Schillo et al. tested the performance of two groups of agents
with different honesty/dishonesty for altruism/egotism [21].
Schillo’s work motivates some of our experiments for repu-
tation management. However, SIF does not describe how to
find such witnesses, whereas in the electronic communities,
deals are brokered among people who probably have never
met each other.

Yu and Singh developed an approach for social reputation
management [26, 27], in which they used a scalar value to
represent an agent’s belief ratings about another and com-
bine them with testimonies using combination schemes sim-
ilar to the certainty factor model. The drawbacks of the
certainty factor models, discussed in Section 2, led us to
consider alternate approaches.

Rahman and Hailes [1] proposed an approach in virtual
communities. Basically it is a kind of adaptation of Marsh’s
work and some concepts were simplified (for example, trust
can have only four possible values) and some were kept (such
as situation or contexts). The main problem with their ap-
proach is that every agent must keep rather complex data
structures that represent a kind of global knowledge about
the whole network. Usually maintaining and updating these
data structures can be laborious and time-consuming. Also
it is not clear how the agents get needed information and
how well the model will scale when the number of agents
grows.

Aberer and Despotovic [2] simplified our model and use
that to manage trust in a peer-to-peer network where no
central database is available. Their model is based on binary
trust, i.e., an agent is either trustworthy or not. In case
a dishonest transaction happened, the agents can forward
their complaints to other agents. They used a special data
structure, namely P-Grid, to store the complaints in a peer
-to-peer network. In order to evaluate the trustworthiness
of another agent B, an agent A searches the leaf level of the

P-Grid for complaints on agent B.
Barber and Kim [4] discussed a multiagent belief revi-

sion algorithm based on belief networks. In their model the
agent is able to evaluate incoming information and gener-
ate a consistent knowledge base, and avoid fraudulent infor-
mation from unreliable or deceptive information source or
agents. Their research focused on modeling the reliability
of information source and maintaining the knowledge base
of each agent, while we tried to effectively detect untrust-
worthy agents in a group.

There has been much work on social abstractions for agents,
e.g., [6, 10]. The initial work on this theme studied various of
relationships among agents. There have been some studies
of the aggregate behavior of social systems that is relevant
to some of our tasks. More recent work on these themes
has begun to look at the problems of deception and fraud
[7]. However, our proposed approach goes beyond their ap-
proach in the kinds of representations of trust, propagation
algorithms, and formal analysis.

5. CONCLUSION
This paper examines trust in an application- and domain-

independent manner and emphasizes the key properties of
trust. For this reason, we directly consider how agents may
place trust in other agents and finesse the ways in which
a principal may convey its trustworthiness to another prin-
cipal, for example, with various subtle actions and social
moves. The explicit reputation management can help the
agents detect selfish, antisocial, or unreliable agents and
leads to more robust multiagent systems.

The iterated, multi-player prisoners’ dilemma is intimately
related to the evolution of trust [3, 5]. On the one hand, if
the players trust each other, they can both cooperate and
avert a mutual defection where both suffer. On the other
hand, such trust can only build up in a setting where the
players must repeatedly interact with each other. Our ob-
servation is that a reputation mechanism sustains rational
cooperation, because the better players are rewarded by so-
ciety whereas the bad players are penalized. Both the re-
wards and penalties can be greater from a society than from
an individual [23].

Our present approach does not fully protect against spu-
rious ratings generated by malicious agents. It relies upon
there being a large number of agents who offer honest ratings
to override the effect of the ratings provided by the malicious
agents. In future work, we plan to study the special prob-
lems of lying and rumors in extensions of the present frame-
work. We also plan to study evolutionary situations where
groups of agents consider rating schemes for other agents.
The purpose is not only to study alternative approaches for
achieving more efficient communities, but also to test if our
mechanism is robust against invasion and, hence, more sta-
ble.
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