
Flexible Protocol Specification and Execution:
Applying Event Calculus Planning using Commitments

Pınar Yolum
pyolum@eos.ncsu.edu

Munindar P. Singh
singh@ncsu.edu

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7534, USA

ABSTRACT
Protocols represent the allowed interactions among communicat-
ing agents. Protocols are essential in applications such as elec-
tronic commerce where it is necessary to constrain the behaviors of
autonomous agents. Traditional approaches, which model proto-
cols in terms of action sequences, limit the flexibility of the agents
in executing the protocols. By contrast, we develop an approach
for specifying protocols in which we capture the content of the ac-
tions through agents’ commitments to one another. We formalize
commitments in a variant of the event calculus. We provide opera-
tions and reasoning rules to capture the evolution of commitments
through the agents’ actions. Using these rules in addition to the
basic event calculus axioms enables agents to reason about their
actions explicitly to flexibly accommodate the exceptions and op-
portunities that arise at run time. This reasoning is implemented
using an event calculus planner that helps us determine flexible ex-
ecution paths that respect the protocol specifications.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence;
D.2.2 [Software Engineering]: Design Tools and Techniques

General Terms
Design, Verification

Keywords
Agent communication languages and protocols; methodologies and
tools; commitments

1. INTRODUCTION AND MOTIVATION
Multiagent protocols regulate the interactions between agents.

Designing protocols that ensure meaningful conversations among
agents is necessary but not sufficient to support the dynamic inter-
actions among agents. Current formalisms used in modeling net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

work protocols, such as finite state machines and Petri Nets, spec-
ify protocols merely in terms of legal sequences of actions without
regard to the meanings of those actions. Thus, applying these for-
malisms into multiagent settings result in protocols that are over-
constrained. However, protocols should not only constrain the ac-
tions of the participants, but also recognize the open, dynamic na-
ture of interactions by accommodating the key aspects of auton-
omy, heterogeneity, opportunities, and exceptions.

� Autonomy: Promoting the participants’ autonomy is crucial
for creating effective systems in open environments. Partic-
ipants must be constrained in their interactions only to the
extent necessary to carry out the given protocol, and no more.

� Heterogeneity: Participants can be of diverse designs and
may adopt different strategies to carry out their interactions.
It would help participants to accommodate heterogeneity in
others. Current specifications don’t allow this. For example,
many e-commerce protocols assume that all participants are
untrustworthy, and each step ensures that appropriately safe
actions are taken by the various participants. This unneces-
sarily degrades performance where trust has been, or can be,
established.

� Opportunities: Participants should be able to take advantage
of opportunities to improve their choices or to simplify their
interactions. Depending on the situation, certain steps in a
protocol can be skipped. A participant may take advantage of
domain knowledge and jump to a state in a protocol without
explicitly visiting one or more intervening states, since vis-
iting each state may require additional messages and cause
delays.

� Exceptions: Participants must be able to modify their inter-
actions to handle unexpected conditions. The exceptions of
interest here are not programming or networking exceptions
such as loss of messages and network delays, but are higher-
level exceptions that result from the unexpected behavior of
the participants. For example, a deadline may be renego-
tiated at a discount. This would obviously involve domain
knowledge, but the protocol representation should allow it.

Our approach to specifying protocols is based on capturing the
intrinsic meaning of actions. We model these intrinsic meanings
through social commitments. Conceptually, social commitments
capture the obligations from one party to another [1, 16]. We de-
fine operations to create and manipulate commitments. We view
each action in the protocol as an operation on commitments. In

other words, by following the protocol, each agent creates and ma-
nipulates commitments, e.g., by fulfilling, canceling, and so on. In
addition to providing a protocol specification that defines the ac-
tions as operations on commitments, we provide reasoning rules to
operationalize the commitments.

We formalize these reasoning rules and the operations on com-
mitments in a variant of event calculus which allows capturing of
meanings of actions easily. Denecker et al. previously showed that
the event calculus could be used to represent traditional network
protocols accurately and succinctly [3]. We extend this result to
multiagent protocols by incorporating commitments into the for-
malism.

Capturing the intrinsic meaning of the actions and explicitly rep-
resenting them as part of the protocol brings in flexibility to the
protocols, permitting the agents to reason about their and others’
behavior during the execution of the protocol, and enabling them
to modify their actions as best suits them.

The protocol specifications developed by our approach can be
used in two ways:

� Execution: The protocol specification can be used at run
time if the agents have the necessary resources to process
logical formulae. Essentially, the agents can logically com-
pute their transitions using the operations and the reasoning
rules. After each action, the agent is aware of its pending
commitments and any additional commitments it has to make
to get to a final state. In this respect, following the protocol
becomes generating paths that enable the agent to get to a
desired final state from its current state. We give a detailed
description of path generation in Section 6.

� Compilation: If the agents cannot reason logically, then they
have to follow a formalism that does not require them to com-
pute the transitions. One such formalism is the traditional fi-
nite state machines (FSMs). Even though FSMs are easy to
execute, they are not easy to design in the first place. With-
out capturing the meaning of transitions, redundant transi-
tions can be added or necessary transitions may be omitted.
On the other hand, specifying a protocol using our approach
is easy and this specification can be compiled into an FSM
ensures that all necessary transitions are captured.

This paper studies the framework for protocol specification and ex-
ecution in detail. Compilation of a commitment-based protocol into
an FSM is discussed elsewhere [18]. The rest of this paper is or-
ganized as follows: Section 2 introduces our running example with
pointers to different scenarios that may arise. Section 3 describes
the necessary background about event calculus. Section 4 describes
the operations and reasoning rules on commitments. Section 5 ex-
plains the specification of protocols. Section 6 depicts how plan-
ning can be used to generate scenarios of a protocol, and Section 7
discusses our work with respect to the literature.

2. RUNNING EXAMPLE
As a running example, we study the NetBill protocol developed

for buying and selling of goods on the Internet [13].

EXAMPLE 1. As shown in Figure 1, the protocol begins with a
customer requesting a quote for some desired goods, followed by
the merchant sending the quote. If the customer accepts the quote,
then the merchant delivers the goods and waits for an electronic
payment order (EPO). The goods delivered at this point are en-
crypted, that is, not usable. After receiving the EPO, the merchant
forwards the EPO and the key to the intermediation server, which

(1)

(2)

(3)

(4)

(5)
(8)

NetBill’s bank

Intermediation server

Batch
payment

(7)
(6)

Account
funding

1. Request quote
2. Present quote
3. Accept quote
4. Deliver goods

5. Send electronic
payment order (EPO)
6. Send EPO and key
7. Send receipt
8. Send receipt

Consumer Merchant

Consumer’s
bank

Merchant’s
bank

Figure 1: The NetBill payment protocol

then contacts the bank to take care of the funds transfer. When
the funds transfer completes, the intermediation server sends a re-
ceipt back to the merchant. The receipt contains the decryption key
for the sold goods. As the last step, the merchant forwards the re-
ceipt to the customer, who can then successfully decrypt and use
the goods. For our present purposes, we leave out the banking pro-
cedures in the protocol, thus simplifying it to the point where if a
merchant gets an EPO, he can take care of it successfully.

Traditional representations of protocols are inadequate in set-
tings where autonomous agents must flexibly interact, e.g., to han-
dle exceptions and exploit opportunities.

EXAMPLE 2. Consider the following scenarios that may arise
in the NetBill protocol:

� Before the customer asks for a quote, the merchant wants to
advertise his goods by sending a quote to the customer.

� The customer wants to send an ’accept’ message without
prior conversation on the price of the goods, due to emer-
gency, insignificance of money, etc.

� The merchant wants to send the goods without a prior ac-
ceptance of the customer, similar to the trial versions in the
software industry, where after a certain period of time the
customer is required to pay to continue using the goods. This
scenario is shown in Figure 2.

� After receiving the goods, the customer may send the EPO
to the bank instead of the merchant. By delegating the pay-
ment to the bank, the customer makes the bank responsible
for ensuring that the money gets to the merchant.

Customer Merchant

(1)
Send goods

(3)
Send receipt

(2)
Send EPO

Figure 2: An alternative scenario

The scenarios depicted in Example 2 can not be handled by a
protocol representation that specifies the legal sequences of actions
but does not define the content of the actions or of the intervening
states.

3. EVENT CALCULUS
The event calculus (EC), introduced by Kowalski and Sergot [7],

is a formalism to reason about events. Events in EC initiate and
terminate fluents, which are properties that are allowed to have dif-
ferent values at different time points. Their value is manipulated by
the occurrence of events. A fluent starts to hold after an event that
can initiate it occurs. Similarly, it ceases to hold when an event that
can terminate it occurs.

The event calculus used in this paper is a subset of Shanahan’s
version [10]. It is based on many-sorted first-order predicate calcu-
lus, with the addition of eight predicates to reason about the events.
We now introduce these predicates and the axioms with which to
reason about the predicates.

In the following, ��� � ���	��� refer to events,
����������� refer to fluents;
and �	����������������� refer to time points. The variables that are not
explicitly quantified are assumed to be universally quantified. �
denotes implication and � denotes conjunction. The time points
are ordered by the � relation, which is defined to be transitive and
asymmetric.

1. Initiates(����
���) means that fluent
 holds after event � at
time � .

2. Terminates(����
���) means that fluent
 does not hold after
event � at time � .

3. Initially � (
) means that fluent
 holds from time 0.

4. Initially � (
) means that fluent
 does not hold from time 0.

5. Happens(�����	������) means that event � starts at time �	� and
ends at � � .

6. HoldsAt(
����) means that the fluent
 holds at time � .
7. Clipped(�	����
�����) means that the fluent
 is terminated be-

tween � � and � � .
8. Declipped(� � ��
��� �) means that the fluent
 is initiated be-

tween �	� and ��� .
Based on the language of EC, the following axioms are defined

[10]:

AXIOM 1. HoldsAt(
���) � Initially � (
) ��� Clipped(!�	
���)
All fluents that hold initially and are not terminated by any event

from time to time � continue to hold at time � .
AXIOM 2. HoldsAt(
����") � Happens(�����	�������) �

Initiates(����
��� �) � (� � �#� ") �$� Clipped(� � ��
��� ")
Domain Description:
Initiates(a, f, t)1

t
2

Happens(a, t , t)1 2

HoldsAt(f,)t3

t
3

t
1

¬Clipped(,)t , f t1 3

Figure 3: Axiom 2

As shown in Figure 3, after an event initiates a fluent, the fluent
continues to hold if no other event that can terminate it occurs at
a later time. These two axioms capture the fact that after a fluent
begins to hold, an event that can terminate the fluent should occur
in order to put an end to the holding of that fluent.

AXIOM 3. Clipped(�	����
���%) &(')������*����",+Happens(�������*����")� (� � �#� �) � (� " �#� %) � Terminates(����
���� �) -
Axiom 3 states that a fluent is said to be clipped if and only if an

event occurs to terminate it.
Axioms 4 and 5 represent the duals of Axioms 1 and 2, respec-

tively.

AXIOM 4. � HoldsAt(
���) � Initially � (
) �� Declipped(!�	
���)
Axiom 4 states that a fluent does not continue to hold, if initially

it did not hold, and there does not occur any event that initiates it.

t
2

Happens(a, t , t)1 2

¬HoldsAt(f,)t3

t
3

t
1

¬Declipped(,)t , f t1 3

Domain Description:
Terminates(a, f, t)1

Figure 4: Axiom 5

AXIOM 5. . HoldsAt(/�01�2) 3 Happens(4�0�1	5�01�6) 7
Terminates(480�/�0�1 5) 7 (1 6:9 1 2) 7$. Declipped(1 5 0�/�01 2)

Following the same intuition, Axiom 5 states that if an event
occurs and terminates a fluent, and no other event occurs to initiate
it, then the fluent continues not to hold, as shown in Figure 4.

AXIOM 6. Declipped(1 5 0�/�0�1�;) <>=!4�0�1 6 01 2?
Happens(4�0�1�6*0�1�2) 7 (1	5 9 1�6) 7 (1�2 9 1 ;) 7 Initiates(4�0�/�0�1�6) @

t
2

Happens(a, t , t)2 3

t
3

Declipped(,)t , f t1 4

Domain Description:
Initiates(a, f, t)2

t
1 t

4

Figure 5: Axiom 6

A fluent is said to be declipped in a time period if and only if
there exists an event that occurs and either initiates or releases the
fluent in that time period. This axiom is illustrated in Figure 5.

AXIOM 7. Happens(4�0�1	5�01�6) AB1	5DC#1�6
Axiom 7 ensures that no event takes a negative amount of time.

DEFINITION 1. We introduce a two argument Happens fluent to
reason about events that start and end at the same time point. For
simplicity, we will use this version of the Happens fluent hereafter.

Happens(480�1) E:F�G�H Happens(4�0�1	0�1)
4. COMMITMENTS FORMALIZED

Social commitments are commitments made from one agent to
another agent to bring about a certain property. Commitments re-
sult from communicative actions. That is, agents create commit-
ments and manipulate them through the protocol they follow. We
represent commitments as properties in the event calculus, and de-
velop a scheme where we model the creation and manipulation of
commitments as a result of performing actions. Further, by allow-
ing preconditions to be associated with the initiation and termina-
tion of properties, different commitments can be associated with
communicative acts to model the communications among agents
more concretely.

DEFINITION 2. A base-level commitment C(x, y, p) relates a
debtor x, a creditor y, and a condition p [11].

When a commitment of this form is created, x becomes responsible
to y for satisfying p. The condition p does not involve other fluents
or commitments.

Conditional commitments are useful when a party wants to com-
mit only if a certain condition holds or only if the other party is also
willing to make a commitment.

DEFINITION 3. A conditional commitment CC(x, y, p, q) de-
notes that if the condition p is brought out, x will be committed to
bring about condition q.

EXAMPLE 3. The base-level commitment C(merchant,
customer, deliveredGoods) shows that the merchant is committing
to the customer that goods will be delivered, whereas the con-
ditional commitment, CC(merchant, customer, paidMoney, deliv-
eredGoods) specifies that the merchant will commit to send the
goods only if the customer commits to paying the money.

Below, we present a formal account of the operations that can be
performed to create and manipulate commitments [15, 11] and show
how these operations can be formalized in the event calculus. In
the following discussion, IJ0�K�0�L denote agents, M�0�M	N denote com-
mitments, and OQPRI8S denotes an event that is performed by I .

1. Create(e(x), c) establishes the commitment M . The create op-
eration can only be performed by the debtor of the commit-
ment I . When I performs the event O , the commitment M is
initiated.

Create(OQPRI8S�0�TUPRIJ0K�0RV8S):W
Happens(OQPRI8S�0�1) 7 Initiates(OQPRI8S�0�TXPRIJ0K�0RV�S�0�1) Y

2. Discharge(e(x), c) resolves the commitment M . Again, the
discharge operation can only be performed by the debtor of
the commitment to mean that the commitment has success-
fully been carried out. When I performs the event O , the
commitment M is terminated.

Discharge(OQPRI8S�0�TXPRIZ0�K�0RV8S):W
Happens(OQPRI8S�0�1) 7 Initiates(OQPRI8S�0[VJ0�1) Y

3. Cancel(e(x), c) cancels the commitment M . Usually, the can-
cellation of a commitment is followed by the creation of an-
other commitment to compensate for the former one. WhenI performs the event O , the commitment M is terminated.

Cancel(OQPRI8S�0�TXPRIJ0�K�0RV�S):W
Happens(OQPRI8S�0�1) 7 Terminates(OQPRI8S�0�TXPRIJ0�K80\V8S�01)
7 Initiates(O)PRI�S�0�TXPRIZ0�K�0RV�N\S�0�1) Y

4. Release(e(y), c) releases the debtor from the commitment M .
It can be performed by the creditor to mean that the debtor is
no longer obliged to carry out his commitment.

Release(O)PRK]S�0�TXPRIJ0�K�0\V�S): W Happens(OQPRK]S�01) 7
Terminates(OQPRK�S�0�TXPRIJ0�K80\V8S�01) Y

5. Assign(e(y), z, c) assigns a new agent as the creditor of the
commitment. More specifically, the commitment M is elim-
inated, and a new commitment M N is created for which L is
appointed as the new creditor.

Assign(OQPRK]S�0�L!0�TXPRIJ0�K�0RV�S): W Happens(OQPRK�S�0�1) 7
Terminates(OQPRK�S�0�TXPRIJ0�K80\V8S�01) 7
Initiates(O)PRK]S�0�TXPRIJ0�L!0RV8S�01) Y

6. Delegate(e(x), z, c) replaces the debtor of the commitment
with another agent L so that L becomes responsible to carry
out the commitment. Similar to the previous operation, the
commitment M is eliminated, and a new commitment M	N is
created in which L is the debtor.

Delegate(OQPRI8S�0L]0�TXPRIJ0K80[V8S): W Happens(OQPRI8S�0�1) 7
Terminates(OQPRI8S�0�TXPRIZ0K�0RV8S�01) 7
Initiates(O)PRI�S�0�TXP^L]0K80[V8S�01) Y

The creation and manipulation of commitments are handled with
the above operations. In addition to these operations, we formal-
ize reasoning rules on commitments that capture the operational
semantics of our approach. Some of these operations require addi-
tional domain knowledge to reason about. For example canceling a

commitment might be constrained differently based on the domain.
The reasoning rules we provide here only pertain to the create and
discharge operations and the conditional commitments. To ensure
completeness, we assume unique name axioms for events and flu-
ents.

Postulate 1 states that a commitment is no longer in force if the
condition committed to holds. For the condition _ to hold, an event
must occur to initiate it. In Postulate 1, when the event ` occurs
at time a , it initiates the property _ , and therefore the commitmentbUcRdJe�f�e _8g can be terminated.

POSTULATE 1. Terminates(` cRd g e�bUcRdJe�f�e _8g e a) h
HoldsAt(

bXcRdJef8e _8g e a) i Happens(` cRd g e a) i Initiates(` cRd g e _ e a)
The following two postulates capture how a conditional commit-

ment is resolved based on the temporal ordering of the commit-
ments it refers to.

POSTULATE 2. Initiates(` cRf g e�bXcRdJe�f8ej g e a) i
Terminates(` cRf g e�bkbXcRdJe�f�e _ e�j g e a) h HoldsAt(

bkbXcRdZe�f�e _ e�j g e a)i Happens(` cRf g e a) i Initiates(` cRf g e _ e a)
When the conditional commitment

bkbXcRdJe�f�e _ e�j g�g holds, if _ be-
comes true, then the original commitment ceases to exist but a new
base-level commitment is created, since the debtor

d
is now com-

mitted to bring about
j
. More specifically, In Postulate 2, when

the event ` occurs, it initiates _ , which results in the termination of
the original commitment, and the initiation of

bXcRdJe�f�e�j g . This is
similar to Colombetti’s treatment of conditional commitments [2],
but here we capture how conditional commitments are resolved into
base-level commitments rather than how they can be violated.

POSTULATE 3. Terminates(` cRd g e�bJbXcRdJe�f�e _ e�j g e a) h
HoldsAt(

bkblcRdJe�f�e _ ej g e a) i Happens(` cRd g e a) i
Initiates(` cRd g e�j!e a)

Again, when the conditional commitment
bkbXcRdJe�f�e _ e�j g holds, if

an event ` that can initiate
j

occurs,
j

starts to hold and the original
commitment is terminated. Since the creditor

f
has not committed

to anything, no additional commitments are created.
Next,we present our approach for specifying protocols.

5. SPECIFYING PROTOCOLS
To represent a protocol, we need to represent the flow of execu-

tion within the protocol. In EC, two predicates are used to specify
how the execution can evolve: Initiates and Terminates. In addition
to defining which fluents they initiate or terminate, the required pre-
conditions for activating these predicates can be specified. There-
fore, the possible transitions in a protocol can be specified in terms
of a set of Initiates and Terminates clauses.

DEFINITION 4. A protocol specification is a set of Initiates and
Terminates clauses that define which properties pertaining to the
protocol are initiated and terminated by each action.

Next we define how a protocol run is structured, which we represent
by a set of actions that take place at specific timepoints.

DEFINITION 5. A protocol run is a set of Happens clauses along
with an ordering of the timepoints referred to in the predicates.

Notice that a protocol specified as in Definition 4 does not indi-
cate any starting states, final states or transitions among execu-
tions states. An agent can start a protocol by performing any of
the actions whose preconditions match the current state of the exe-
cution. By appropriately increasing or decreasing the preconditions

of the actions, a protocol can be abbreviated or enhanced to allow
a broader range of interactions. Although we do not represent the
final states of a protocol explicitly, we can examine a protocol run
to determine if any agent has backed out of its commitment.

DEFINITION 6. A protocol run is complete if there are no pend-
ing base-level commitments; i.e., all the base-level commitments
that have been created are resolved. Formally,m HoldsAt(

bXcRdZef�e _8g e a)
If a protocol run is not complete, that is, if there is an open base-
level commitment after the execution of the protocol, we know that
a participant has not fulfilled its commitment. This signals a vio-
lation of the protocol. Although we don’t investigate the issue of
protocol compliance by agents in this work, incomplete protocol
runs provide evidence to identify non-compliant agents.

To continue our treatment of the NetBill protocol, we first de-
fine the fluents used in that protocol and then provide the protocol
specification.

EXAMPLE 4. The messages of Figure 1 can be given a con-
tent based on the following definitions. Since each action can be
performed by only one party, we do not represent the performers
explicitly.

n Roles:

– MR represents the merchant.

– CT represents the customer.
n Domain-specific fluents:

– request(o): a fluent meaning that the customer has re-
quested a quote for item o .

– goods(o): a fluent meaning that the merchant has deliv-
ered the goods o .

– pay(p): a fluent meaning that the customer has paid
the agreed upon amount p .

– receipt(o): a fluent meaning that the merchant has de-
livered the receipt for item o .

n Commitments:

– accept(o e p): an abbreviation forbkbXcrq,sDe�tvuwex)y*y�z!{|c o), pay(p))
meaning that the customer is willing to pay if he re-
ceives the goods.

– promiseGoods(o e p): an abbreviation forbkbXcrtvuwe�q,sDe�})~	~ `�_]a c o e p), goods(o))
meaning that the merchant is willing to send the goods
if the customer promises to pay the agreed amount.

– promiseReceipt(o e p): an abbreviation forbkbXcrtvuwe�q,sDe _ })f8c p), receipt(o))
meaning that the merchant is willing to send the receipt
if the customer pays the agreed-upon amount.

– offer(o e p): an abbreviation for
(promiseGoods(o e p) i promiseReceipt(o e p))

n Definition of Initiates in the NetBill Protocol:

– Initiates(sendRequest(o), request(o), a)
– Initiates(sendQuote(o , p), promiseGoods(o , p), a)
– Initiates(sendQuote(o e p), promiseReceipt(o e p), a)
– Initiates(sendAccept(o e p), accept(o e p), a)

– Initiates(sendGoods(�����), goods(�), �)
– Initiates(sendGoods(�����), promiseReceipt(�����), �)
– Initiates(sendEPO(�����), pay(�), �) �

HoldsAt(goods(�), �)
– Initiates(sendReceipt(�����), receipt(�), �) �

HoldsAt(pay(�), �)
� Definition of Terminates in the NetBill Protocol:

– Terminates (sendQuote(�����), request(�), �) �
HoldsAt(request(�), �)

The following example describes an example protocol run, and de-
picts how the commitments are created and then resolved.

EXAMPLE 5. The protocol run shown in Figure 2 can be for-
malized by the following facts:

F1. Happens(sendGoods(�����), �	�)
F2. Happens(sendEPO(�), ���)
F3. Happens(sendReceipt(�), ���)
F4. ���D�����
F5. ���:��� �

Now we look at how the commitments among the participants evolve
in the given protocol run. We also assume that initially no commit-
ments or predicates hold.

1. HoldsAt(�k�X�r�v�w���,�D�^���)�8�R�), receipt(�)), �	�) �
HoldsAt(goods(�), � �)
When the goods are sent at time ��� , the fluent goods(�) is ini-
tiated. Furthermore, following the protocol specification in
Example 4, the commitment�k�X�r�v�w���,�D�^���)�8�R�), receipt(�)) is created. So now the
goods have been delivered, and the merchant is willing to
send the receipt if the customer pays.

2. HoldsAt(�X�r�������,�D���������������	�R�)), ���) � HoldsAt(goods(�),� �) � HoldsAt(pay(�), � �)
By sending the EPO at time ��� , the customer initiates the
fluent pay(�). By Postulate 2, this ends the commitment�k�X�r�v�w���,�D�^���)�8�R�), receipt(�)) and creates the commit-
ment �X�r�v�w���,�D�������	�����]��� i ��� . Since no event occurred to
terminate goods(�), it continues to hold.

3. HoldsAt(goods(�), � �) � HoldsAt(pay(�), � �) �
HoldsAt(receipt(�), ���)
At time ��� the third fact is applicable, which initiates the
fluent receipt(�). Following Postulate 1, this terminates the
commitment �U�r���w���,����������������	�R�)). Thus, we reach the
state where the merchant has delivered the goods and the re-
ceipt, and the customer has paid.

6. EXECUTING PROTOCOLS
Planning is the construction of plans for automatic or semiauto-

matic execution by an agent. We consider plans that would lead
from an initial state to a final state by applying the operators to
transition among states. The form of logical reasoning that is com-
monly used in building event calculus planners is abduction. One
such abductive event calculus planner is due to Shanahan [10]; we
use this event calculus planner here to demonstrate how possible

paths can be generated between an initial state and a goal state
given a protocol specification defined based on the preconditions
and the effects of actions as in Definition 4.

We now walk through the steps to put together the protocol spec-
ification of the NetBill protocol and an initial state in the protocol
to produce protocol runs that lead from the initial state to a sample
final state. The reasoning rules explained before are manually com-
piled in the code. Due to lack of space, we only provide fragments
of the program written in Prolog. The fluents used in them are the
same as the ones used in Example 4, except here we add a transac-
tion identifier to each fluent as the last argument. This identifier is
used to ensure that the participants, by bringing about properties,
resolve commitments with the corresponding transaction ids.

In the event calculus, the initial states are represented by con-
junctive expressions consisting of Initially � and Initially clauses
to represent which fluents hold or do not hold at the beginning. In
the planner, though, only one predicate, Initially, has been imple-
mented. In order to indicate negative fluents, a new predicate neg
has been introduced. Figure 6 gives an example of a clause to set
up the initial state of the NetBill protocol.

axiom(initially(neg(goods(I, D))),[]).

Figure 6: Example clause of an initial state

Operators are the actions in the domain. These actions are de-
fined in the program through the executable clause. Figure 7 gives
such an example. Recall that a protocol specification consists of

executable(sendrequest(I, D)).

Figure 7: Example clause of executable events

Initiates and Terminates clauses, specifying the preconditions and
effects of the actions. Figure 8 gives an example axiom for the first
part of the protocol description that is, the Initiates clauses. The
first argument to the axioms is the Initiates clause, and the second
argument is the set of preconditions needed for the Initiates clause
to be applicable. The example axiom in Figure 8 corresponds to
the second step of the Example 5. That is, if the merchant has not
paid but promised the receipt, the action sendEPO will initiate the
commitment, ���R�����	�������	�R¡���¢£��� . Figure 9 gives an example of the

axiom(initiates(sendepo(M, D),
c(receipt(I, D)),T),
[holds_at(promisereceipt(I, M, D), T),
holds_at(neg(pay(M, D)), T)]).

Figure 8: Example of an Initiates clause

second part the protocol description, that is, the Terminates clauses.
Again, the axioms have the same format as in Figure 8, where the
first argument is the Terminates clause and the second argument
is the set of preconditions. In other words, the axiom in Figure 9
states that if a party is committed to pay, sending an epo terminates
its commitment of paying. Having the initial states, the goal states
and the domain description, an event calculus planner can generate
protocol runs that contain Happens clauses, and an ordering of time
points of the actions that take place [10].

In order to interpret the code, we provide the description of a
final state; Figure 10 shows such an example. The final state de-
picted in Figure 10 means that goods (software) have been sent with

axiom(terminates(sendepo(M, D),
c(pay(M, D)),T),

[holds_at(c(pay(M, D)), T)]).

Figure 9: Example of a Terminates clause

transaction identifier ¤)¥ and the customer is committed to send the
money for this transaction. This yields the result shown in Fig-
ure 11, where each R is a possible protocol run starting from the
initial state where no commitments or fluents hold, and ending in
the final state depicted in Figure 10.

abdemo([holds_at(goods(software, 51),t),
holds_at(c(pay(price, 51)),t)],R).

Figure 10: Description of a final state

As described before, each protocol run consists of Happens clauses
and an ordering of time points. The last argument in each Happens
clause denotes a timepoint at which the event happens. The order-
ing of these time points are then shown with the before clauses.
The two protocol runs in Figure 11 correspond to the following
scenarios: The first one starts with the merchant sending a quote
for the software, followed by the customer sending an accept mes-
sage. Recall that at this point both agents become committed to
each other: customer to send the money, and merchant to send the
software and receipt. As the last action, the merchant sends the
goods. Therefore, at the end of the protocol run, the merchant has
sent the goods and the customer is committed to send the money.
The second protocol run starts with the customer sending an accept
message, followed by the merchant sending the goods. After this
message, by Postulate 2 the customer becomes committed to pay.

R=[[happens
(sendquote(software,H816,51),t191),
happens
(sendaccept(software,H816,51),t190),
happens
(sendgoods(software,H601,51),t189)],

[before(t191,t), before(t191,t189),
before(t191,t190), before(t190,t),
before(t190,t189), before(t189,t)]] ;

R=[[happens
(sendaccept(software,H601,51),t193),
happens
(sendgoods(software,H601,51),t192)],
[before(t193,t), before(t193,t192,
before(t192,t)]] ;

Figure 11: Protocol runs computed by the planner

These protocol runs can be used by an agent at run time to decide
if an action is appropriate at a particular state of the execution. This
enables the agents to cope with the exceptions by reconstructing
plans as necessary. Thus, agents can execute protocols flexibly by
taking advantage of opportunities, and handling exceptions.

7. DISCUSSION
Traditionally, protocols have been specified using formalisms

like finite state machines, or Petri Nets, that only capture the le-
gal sequences of actions. The main advantage of these formalisms
is that they are easy to implement and can be trivially followed by
reactive agents. However, since the semantic content of the actions
is not captured, the agents cannot reason about their actions, which

means that they cannot take advantage of opportunities that arise or
handle unexpected situations at run time. To remedy this situation,
we develop an approach for protocol specification that embodies
the commitments of agents to one another. Specification of proto-
cols in terms of commitments allows agents to reason about their
actions, enabling them to take care of the unexpected situations that
may arise at run time. Agents that follow these protocols can de-
cide on the actions they want to take by generating protocol runs
with a planner as we have demonstrated. In designing protocols,
we can exploit the strengths of the event calculus to reason about
actions and commitments. The event calculus provides an elegant
way to represent the changes of the world through the actions in a
protocol, and enables us to uniformly represent commitments, op-
erations on them, and reasoning rules about them. Based on this
formal grounding, multiagent protocols can be specified rigorously
yet flexibly.

Event calculus has been theoretically studied, but has not been
used for modeling commitments or commitment-based protocols.
Denecker et al. [3] use event calculus for specifying process proto-
cols. Their specification also captures the preconditions of actions
as well as the execution of the protocol through actions. Since they
are specifying process protocols only, they use domain propositions
to denote the meanings of actions. In multiagent systems, in addi-
tion, protocols should respect agents’ autonomy and enable them to
interact flexibly to exploit opportunities and to handle exceptions.
In order to achieve this, we use commitments to denote the mean-
ings of the actions.

Commitments have been studied before [1, 5] but have not been
used for protocol specification as we have done here. Permissions
and prohibitions are also useful in protocol specifications. Permis-
sions in our approach can be accommodated through preconditions
of the actions such that an action would only initiate properties
if the party performing the action had the necessary permissions.
Prohibitions, on the other hand, forbid a party from bringing out
a proposition. Prohibitions can be formulated through commit-
ments. For example, if a client prohibits a merchant to send ad-
vertisements, the merchant becomes committed to not sending the
advertisements. In many settings, we would expect prohibitions to
be constrained, so that only authoritative roles can issue prohibi-
tions.

Multiagent interactions should satisfy three desirable criteria:
meaningful, verifiable, and declarative [12]. First we describe these
criteria and show how our approach satisfies them. Next we re-
view the recent literature, considering how these systems satisfy
the same criteria.

¦ Meaningful. The messages should be represented with their
content instead of being treated as mere tokens. Our ap-
proach is meaningful since we capture the meanings of the
actions via commitments.

¦ Verifiable. The protocol semantics should allow detection of
agents that are not complying with a given protocol without
assuming that we can examine the internal reasoning (or the
source code) of the agents. In our approach, we achieve ver-
ifiability through the commitments we capture. By keeping
track of the commitments that are created and resolved in the
system, we can infer which agents have not acted according
to their commitments. These agents have not complied with
the protocol.

¦ Declarative. A declarative, as opposed to a procedural, se-
mantics should specify what actions should be brought out in
the protocol, rather than how they are brought out. Our ap-
proach is declarative in that it specifies what properties each

action individually brings about rather than specifying proce-
durally how agents can get from a start state to a final state.

Lespérance et al. [8] develop a tool, ConGolog, for developing re-
active control mechanisms that are capable of handling exceptions.
Their system’s execution is based on a declarative domain descrip-
tion, which is similar to our definition of a protocol specification in
that it specifies the preconditions and effects of the actions in the
domain. We share their intuition in reconstructing plans at run-time
to handle exceptions. The main difference between Lespérance et
al.’s approach and ours is that they define the meanings of actions
in terms of only domain propositions, whereas we define them in
terms of domain properties and commitments. In this respect, their
representation is not verifiable. Again considering our example
protocol, assume a protocol run where a customer agent performs a
sendAccept action, after receiving a sendQuote action and no other
actions take place. In our approach, we can easily detect that the
merchant has to actually send the goods to the customer, and the
customer has to send the EPO. In Lespérance et al.’s approach,
all we know is that the merchant sent a quote to the customer and
the customer accepted the quoted price. In order to decide if the
protocol is in a good state requires examining the individual agent
programs.

Smith et al. [14] develop protocols in which actions are given
a content based on joint intentions. We agree with them on the
necessity of declarative content. They model the content of actions
with mental attributes whereas we use social constructs. In this
respect, their approach is not verifiable.

Pitt and Mamdani [9] develop an agent communication language
(ACL) framework in terms of protocols, and show how an agent
replies to a communication by choosing one of the communications
allowed by the given communication. They give content to mes-
sages based on social constructs, similar to the present approach.

d’Inverno et al. [4] develop interaction protocols for the multi-
agent framework, Agentis. They model protocols as a composition
of various services and tasks requested and offered among agents.
d’Inverno et al.’s protocol model consist of four levels: registra-
tion, service, task and notification. In all levels of Agentis, the
protocols are specified with FSMs. The FSM representations allow
Agentis to specify the protocols formally yet easily. The protocols
defined in Agentis are verifiable, since all transitions in Agentis
FSMs are public (i.e., externally visible). However, their specifi-
cation is not declarative since FSMs procedurally specify the se-
quences of actions that reach a goal state when executed in the
described sequence. Thus FSMs specify how a certain goal state
can be reached rather than specifying what each action brings out.
In addition to not being declarative, the Agentis protocol seman-
tics is not meaningful, since each message is treated as an arbi-
trary token without considering the meaning attached to it. As we
have shown above, representations that are not meaningful are not
adequate to accommodate flexible interactions among autonomous
agents, since agents cannot exercise their autonomy by choosing
among actions without knowing what each action means.

8. ACKNOWLEDGMENTS
A preliminary version of this paper appears as a poster in the Au-

tonomous Agents 2001 Conference [17]. We thank Peter Wurman,
Matt Stallman, Michael Winikoff, Mehdi Dastani, and the anony-
mous reviewers for useful comments.

This material is based upon work supported by the National Sci-
ence Foundation under grant IIS-9624425 (Career Award). Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not reflect the views
of the National Science Foundation.

9. REFERENCES
[1] C. Castelfranchi. Commitments: From individual intentions

to groups and organizations. In Proceedings of the
International Conference on Multiagent Systems, pages
41–48, 1995.

[2] M. Colombetti. A commitment-based approach to agent
speech acts and conversations. In Proceedings of the
Workshop on Agent Languages and Conversation Policies,
2000.

[3] M. Denecker, K. V. Belleghem, G. Duchatelet, F. Piessens,
and D. D. Schreye. A realistic experiment in knowledge
representation in open event calculus : Protocol specification.
In Proceedings of the Joint International Conference and
Symposium on Logic Programming, pages 170–184, 1996.

[4] M. d’Inverno, D. Kinny, and M. Luck. Interaction protocols
in Agentis. In Proceedings of the 3rd Int. Conference on
Multiagent Systems (ICMAS), pages 112–119. July 1998.

[5] L. Gasser. Social conceptions of knowledge and action: DAI
foundations and open systems semantics. In [6], pages
389–404. 1998. (Reprinted from Artificial Intelligence,
1991).

[6] M. N. Huhns and M. P. Singh, editors. Readings in Agents.
Morgan Kaufmann, San Francisco, 1998.

[7] R. Kowalski and M. J. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–95, 1986.

[8] Y. Lespérance, K. Tam, and M. Jenkin. Reactivity in a
logic-based robot programming framework. In Intelligent
Agents VI: Agent Theories, Architectures, and Languages,
pages 173–187, 2000.

[9] J. Pitt and A. Mamdani. A protocol-based semantics for an
agent communication language. In Proceedings of the
International Joint Conference on Artificial Intelligence,
pages 486–491, 1999.

[10] M. Shanahan. An abductive event calculus planner. Journal
of Logic Programming, 44:207–239, 2000.

[11] M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts.
Artificial Intelligence and Law, 7:97–113, 1999.

[12] M. P. Singh. A social semantics for agent communication
languages. In Proceedings of the 1999 IJCAI Workshop on
Agent Communication Languages. Springer-Verlag, 2000.

[13] M. A. Sirbu. Credits and debits on the Internet. In [6], pages
299–305. 1998. (Reprinted from IEEE Spectrum, 1997).

[14] I. A. Smith, P. R. Cohen, J. M. Bradshaw, M. Greaves, and
H. Holmback. Designing conversation policies using joint
intention theory. In Proceedings of the 3rd Int. Conference
on Multiagent Systems (ICMAS), pages 269–276. July 1998.

[15] M. Venkatraman and M. P. Singh. Verifying compliance with
commitment protocols: Enabling open web-based multiagent
systems. Autonomous Agents and Multi-Agent Systems,
2(3):217–236, Sept. 1999.

[16] D. N. Walton and E. C. W. Krabbe. Commitment in
Dialogue: Basic Concepts of Interpersonal Reasoning. State
University of New York Press, Albany, 1995.

[17] P. Yolum and M. P. Singh. Designing and executing
protocols using the event calculus. In J. P. Müller, E. Andre,
S. Sen, and C. Frasson, editors, The Proceedings of the Fifth
International Conference on Autonomous Agents, 2001.

[18] P. Yolum and M. P. Singh. Commitment machines. In
Proceedings of the 8th International Workshop on Agent
Theories, Architectures, and Languages (ATAL-01).
Springer-Verlag, 2002. In press.

