In Proceedings of the National Conference on Artificial Intelligence (AAAI), 1991

A Logic of Situated Know-how

Munindar P. Singh*

Dept of Computer Sciences
University of Texas

Austin, TX 78712-1188
USA

Abstract

Know-how is an important concept in Artificial
Intelligence. It has been argued previously that it
cannot be successfully reduced to the knowledge of
facts. In this paper, I present sound and complete
axiomatizations for two non-reductive and intu-
itively natural formal definitions of the know-how
of an agent situated in a complex environment. [
also present some theorems giving useful proper-
ties of know-how, and discuss and resolve an inter-
esting paradox (which is described within). This
is done using a new operator in the spirit of Dy-
namic Logic that is introduced herein and whose
semantics and proof-theory are given.

1 Introduction

Knowledge and action are the two staples of Al. Tradi-
tionally, research in Al has focused on the conception
of knowledge corresponding to know-that or the knowl-
edge of facts. In earlier work, I have argued that an
important notion of knowledge from the point of Al
is the one corresponding to know-how or the knowl-
edge of skills, and that this cannot be easily reduced
to know-that [7; 7]. T have also given two formal model-
theoretic definitions of know-how in an abstract mod-
el of action and time—one purely reactive; the other
involving abstract strategies. This theory does not re-
quire many troublesome assumptions (e.g., that only
one event may occur at a time) that are often believed
necessary. Thus it applies uniformly to both tradition-
al and recent architectures. This theory has applica-
tions in the design and analysis of intelligent systems,
and in giving a semantics for communication among
different agents in a multiagent system [?]. However,
while a formal model-theoretic definition of know-how
has been given, no axiomatization is available for it—
this is something that would facilitate these applica-
tions considerably. The goal of this paper is precisely
to present a sound and complete axiomatization for the
two definitions mentioned above.

*This research was supported by the National Science
Foundation (through grant # IRI-8945845 to the Center
for Cognitive Science, University of Texas at Austin).

and

Center for Cognitive Science
University of Texas

Austin, TX 78712
USA

In §2, I briefly outline the motivating arguments of
[?]. Next in §3, I present the formal model. In §4,
I present the definition of know-how for the case of
purely reactive agents, and in §5, a sound and complete
axiomatization for it. In §6, I define strategies and
present the definition of know-how for complex agents
whose behavior is best described by strategies. In §7, 1
present a sound and complete axiomatization for this
notion as well. These definitions involve an extension
of dynamic logic [?] that is explained within. Some
important theorems about know-how are presented and
a paradox about know-how described and resolved in

§8.

2 Know-How

Traditional Al systems consist of a knowledge base
of facts or beliefs coupled with an interpreter that
reads and writes on it. Recently, this conception
has been seen as being quite unsatisfactory [?; 7;
?]. But corresponding to this conception, tradition-
al formal theories of knowledge and action [?7; 7;
?] stress the knowledge of facts (or know-that), rather
than the knowledge of skills (or know-how). They as-
sume that know-how can be reduced to know-that—this
assumption too is quite problematic [?]. Moore pro-
vides the following definition of know-how: an agent
knows how to achieve p iff it has a plan such that it
knows that it will result in p and that it can execute it
(7, p. 347].

This idea embodies many unrealistic assumption-
s and is objected to in [?] in detail; some problems
with it are outlined here. Real-life agents have to ac-
t rapidly on the basis of incomplete information, and
lack the time and knowledge required to form complete
plans before acting. The traditional reduction stress-
es explicitly represented action descriptions and plan-
s. However, much know-how is reactive; e.g., someone
may know how to beat someone else at tennis, but not
have a plan that will guarantee it, much less one that
is explicitly represented and interpreted. Traditional
accounts assign the same basic actions to all agents,
and allow expertise to vary only because of differences
in the knowledge of facts, not because of differences in



skills. Also, they typically consider only single agen-
t plans: thus they cannot account for the know-how
of a group of agents—organizations know how to do
c?rtain things, but may not have any explicit plan [?;
o

In the theory of [?], which is adopted here, an agent
(z) knows how to achieve p, or to “do” p, if it is able
to bring about the conditions for p through its action-
s. The world may change rapidly and unpredictably,
but z is able to force the situation appropriately. It
has a limited knowledge of its rapidly changing envi-
ronment and too little time to decide on an optimal
course of actions, and can succeed only if it has the re-
quired physical resources and is appropriately attuned
to its environment. While this “situated” theory does
not use plans, it can accommodate the richer notion of
strategies (see §6). Therefore, it contrasts both with
situated theories of know-that [?], and informal, and
exclusively reactive, accounts of action [?]. While the
pure plan-based view is troublesome, it is also the case
that real-life agents lack the computational power and
perceptual abilities to choose optimal actions in real-
time, so the assumption of pure reactivity is not re-
alistic either. Abstract “strategies” (discussed in §6)
simplify reactive decision making by letting an agent
have partial plans that can be effectively followed in
real-time.

3 The Formal Model

The formal model is based on possible worlds. Each
possible world has a branching history of times. The
actions an agent can do can differ at each time—
this allows for learning and forgetting, and changes
in the environment. Let M = (F, N) be an intension-
al model, where F' = (W, T, <, A, U) is a frame, and
N = ([1,B) an interpretation. Here W is a set of pos-
sible worlds; T is a set of possible times ordered by
<; A is the class of agents in different possible worlds;
U is the class of basic actions; as described below, []
assigns intensions to atomic propositions and actions.
B is the class of functions assigning basic actions to
the agents at different worlds and times. Each world
w € W has exactly one history, constructed from the
times in T. Histories are sets of times, partially or-
dered by <. They branch into the future. The times
in each history occur only in that history.

A scenario at a world and time is any maximal set
of times containing the given time, and all times that
are in a particular future of it; i.e., a scenario is any
single branch of the history of the world that begins at
the given time, and contains all times in some linear
subrelation of <. A skeletal scenario is an eternal linear
sequence of times in the future of the given time; i.e.,
SS at w,t is any sequence: (t = tg,%1, ...}, where (Vi:
i > 0— t; <tj41) (linearity) and (Vi, ¢’ 1t/ > t;— (35 :
t" ¥ t;j)) (eternity). Now, a scenario, S, for w,t is
the “linear closure” of some skeletal scenario at w,t.
Formally, S, relative to some S5, is the minimal set

that satisfies the following conditions:
o Fternity: SSC S
o Linear Closure: (Wt @t € S— (Vt' 1 tg < t/ <

t"— 1t €9))

S ¢ 1s the class of all scenarios at world w and time
t(w#WVt#U)= Sy NSyiy =0. (S,t,t) isa
subscenario of S from ¢ to ¢/, inclusive.

Basic actions may have different durations relative
to one another in different scenarios, even those that
begin at the same world and time. The intension of
an atomic proposition is the set of worlds and times
where it is true; that of an action is, for each agent
x, the set of subscenarios in the model in which an
instance of it is done (from start to finish) by z; e.g.,
(S,t,t") € [a]” means that agent z does action a in the
subscenario of S from time ¢ to ¢'. T assume that ]
respects B; ie., a € B, 4(2). The following coherence
conditions on models are imposed: (1) at any time, an
action can be done in at most one way on any given
scenario; (2) subscenarios are uniquely identified by the
times over which they stretch, rather than the scenario
used to refer to them; (3) there is always a future time
available in the model; and (4) something must be done
by each agent along each scenario in the model, even
if it is a dummy action. Restrictions on [] can be used
to express the limitations of agents, and the ways in
which their actions may interfere with those of others;
e.g., at most one person enters an elevator at a time—
i.e., in the model, if one person takes a step (a basic
action) into an elevator, no one else takes a step into
it at that time. The habits of agents can be similarly
modeled; e.g.,  always brakes before turning.

The formal language is CTL* (a propositional
branching time logic [?]), augmented with operators
[1, (], K’, K and quantification over basic actions. []
depends on actions (as defined); (] on trees and strate-
gies (to be defined); K’ is a simple version of know-how;
and K is proper know-how. The agent is implicit in K’
and K. The semantics is given relative to intensional
models: it is standard for CTL*, but is repeated for A
and F to make explicit their connection with the other
operators, which are also considered below.

4 Reactive Know-how

As will soon become clear, it is useful to define
know-how relative to a ‘tree’ of actions. A ‘tree’ of
actions consists of an action (called its ‘root’), and a
set of subtrees. The idea is that the agent does ‘root’
initially and then picks out one of the available subtrees
to pursue further. An agent, 2, knows how to achieve
p relative to a tree of actions iff on all scenarios where
the root of the tree is done, either p occurs or z can
choose one of the subtrees of the tree to pursue, and
thereby achieve p. The definition requires p to occur
on all scenarios where the root is done. The agent gets
to “choose” one subtree after the root has been done.
This is to allow the choice to be based on how the a-
gent’s environment has evolved. However, modulo this



choice, the agent must achieve p by forcing it to occur.
This definition is intuitively most natural when applied
to models that consist only of “normal” scenarios (see
[?] for a discussion). It is important to note that the
tree need not be represented by the agent—it just en-
codes the selection function the agent may be deemed
to be using in picking out its actions at each stage
(it could possibly be implemented as table lookup—a
kind of symbolic representation). When a tree is finite
in depth, it puts a bound on the number of actions
that an agent may perform to achieve something. S-
ince intuitively know how entails the ability to achieve
the relevant proposition in finite time, this restriction
is imposed here. The definitions do not really depend
on the tree being of finite breadth, but that too would
be required for finite agents.

Formally, a tree is either (1) (), the empty tree or (2)
(root, (subtrees)), where ‘root’ is as described above,
and ‘subtrees’ is a non-empty set of trees. ‘“Tree’ refers
to a tree of this form. Intuitively, (tree]p is true iff the
agent can use ‘tree’ as a selection function and thereby
force p to become true. If we wish, we can impose a
restriction that for all trees the empty tree 0 is always
in ‘subtrees’ to ensure that the agent does as little work
as possible—i.e., so that the agent can stop acting as
soon as the right condition comes to hold.

o M ':w,t ([@DP iff M Izw,t p
o M [y (tree)p iff (35, : S € Sy A (S, 8, 1) €

[root]) A (VS S € Su: A3 : (St,t) €
[root])— (It (S,t,t")y € [root] A (Isub €
tree.subtrees : M =y ¢+ (sub)p)))

Now we can define know-how as follows:
M Eu ¢ K'p iff (Jtree : M =, 4 (tree)p)
o M ':w,t Kp iff M ':w,t (K’p)/\(flS - S S Swyt/\(Vt’ :

V€ S5 M oy p))

This definition seems to require that the agent be
able to make the right choices at the level of basic
actions—it would attribute know-how to an agent even
if it may not be able to do so, just if it has the right
set of basic actions. Thus it can be applied only purely
externally on agents that are somewhat rigidly struc-
tured, so that they have only those basic actions that
they will in fact choose from while acting. But then it
de-emphasizes the inherent autonomy of complex in-
telligent agents. At the same time, it is not acceptable
to require that agents explicitly represent and inter-
pret shared plans. In §6, this will motivate us to look
at abstract strategies that need not be explicitly rep-
resented, but which can characterize the coordinated
behavior of intelligent agents.

5 Axioms for Reactive Know-how

Now I present an axiomatization for the definition of K’
given above and a proof of its soundness and complete-
ness. It is clear that the definition of K is non-normal
[?, p. 114]; e.g., we have —Ktrue. In order to take care
of this complication, I present the axiomatization in

two stages—here 1 axiomatize K’ (which is normal),
and then in §8, motivate and consider K.

I now describe the formal language in which the ax-
iomatization will be given. Loosely following standard
dynamic logic (DL) [?], T introduce a new modality
for actions. For an action a and a formula p, let [a]p
denote that on the given scenario, if a is ever done s-
tarting now, then p holds when a is completed. Let
(a)p abbreviate —[a]—p. Let A and E be the path- or
scenario-quantifiers of branching temporal logic [?]. A
denotes “in all scenarios at the present time,” and E
denotes “in some scenario at the present time”—i.e.,
Ep = =A—p. Thus Ala]p denotes that on all scenarios
at the present moment, if a is ever done then p hold-
s; 1.e., it corresponds to the necessitation operator in
DL and E{a)p to the possibility operator in DL. The
advantage of defining [a]p over scenarios rather than s-
tates (as in DL) is to simplify the connection to times.
pUq denotes “eventually ¢, and p until q.” Fp denotes
“eventually p” and abbreviates “trueUp.” Formally,
we have
o M =5y [alp iff (3t

(S,t,t/> € |[a]] AM IZSJ’ p)

It is easy to see that ([a]p A [a]lg) = [a](p A q).
o My, Apiff (VS:S €Sy — M sy p)

o Ms:pift M =y p, if pis not of the form [a]g or

(a)q, and w is the unique world such that S € S, ;.
o M EsypUgiff (' ¢/ <tAMEsy gAYVt <

t<t— M IZS,t” p))

Then we have the following axiomatization (except
for the underlying operators such as [] and A).

1. p— K'p
2. (Ja : E{a)true A Ala]K'p)— K'p

E(a)true means that a is a basic action of the agent

at the given time.

(S,t,¢) € [a])— (T’

These axioms, though they refer to only one action,
allow any number of them—the agent achieves p triv-
ially when it is true, and knows-how to achieve it when-
ever there is an action he can do to force it to hold
trivially. Axiom 2 can be applied repeatedly.

Theorem 1 The above axiomatization is sound and
complete for K’.

Proof.

Construct a model branching time model, M. The
indices of M are notated as (w,?) and are maximally
consistent sets of formulae that obey the usual con-
straints for [a]p, Ala]p, etc. (i.e., they contain all the
substitution instances of the theorems of the underly-
ing logic). Furthermore, these sets are closed under
the above axioms.

Soundness: For axiom 1 above, soundness is triv-
ial from the definition of (@)p. For axiom 2, let
(Ja : E{a)true A Ala]K’p) hold at (w,t). Then (3S,t" :
S e Syt AN (S tt) € [a) A (VS S € Sy p A (T -
(S,t,t") € [a])— (3t - (S,t,t') € [a] AM E=uw v K'D)).
At each (w,t'), (tree’ : M =y 4 (tree’)p). Define

‘tree’ as (a, ({tree’|tree’ is a tree used to make K'p



true at any of the (w, ') in the above quantification})).
Thus M |y ¢ (tree)p, or M Eu ¢ K'p.

Completeness: The proof is by induction on the
structure of the formulae. Only the case of the oper-
ator K’ is described below. Completeness means that
M Eu+ K'p implies K'p € (w,t). M [, K'p iff
(Jtree : M |=w,¢ (tree)p). This proof is also by in-
duction, though on the structure of trees using which
different formulae of the form K'p get satisfied in the
model. The base case is the empty tree . And
M =y (0)p iff M =y ¢ p. By the (outer) inductive
hypothesis on the structure of the formulae, p € (w,1).
By axiom 1 above, K'p € (w,t) as desired.

For the inductive case, M |=y ¢ (tree)p iff (3S,¢ :
S €8Sy A(St,t") € [root]) A (VS : S € Sy ATt :
(S,t,t") € [root])— (Ft' : (S,t,t') € [root] A (Fsub €
tree.subtrees : M =, ¢ (sub)K’p))). But since ‘sub’
is a subtree of ‘tree,” we can use the inductive hy-
pothesis on trees to show that this is equivalent to
(3S,t S € Sui AN (S t,t) € [root]) A(VS : S €
Swe A (T 2 (S,t,t') € [root])— (T : (S,t,t) €
[root] A M |Ew K'p)). But it is easy to see that
(3S,t" + S € St A(S,t,t') € [root]) iff E{root)true.
And (using the definition of []) the second conjunc-
t holds iff Afroot](K'p). Thus M =, (tree}p iff
M =y ¢ (Froot : E{root)true A Afroot](K'p)). But since
the axiomatization of the underlying logic is complete,
(Jroot : E(root)true A Afroot](K'p)) € (w,t). Thus by
axiom 2, K'p € (w,t). Hence we have completeness. O

6 Strategies and Strategic Know-how

Even for situated agents, and especially for complex
ones, it is useful to have an abstract description of
their behavior at hand. Such descriptions, I call s-
trategies. Strategies correspond to plans in traditional
systems, and to the architectural structure of reactive
agents, as instantiated at a given time. In the formalis-
m, they are taken to be of the form of regular programs
[?7]. A strategy is simply the designer’s description of
the agent and the way in which it behaves. An agent
knows how to achieve p, if it can achieve p whenever
it so “intends” —strategies are a simple way of treat-
ing intentions. I now let each agent have a strategy
that it follows in the current situation. Intuitively, an
agent knows how to achieve p relative to a strategy Y,
iff it possesses the skills required to follow Y in such a
way as to achieve p. Thus know-how is partitioned in-
to two components: the “ability” to have satisfactory
strategies, and the “ability” to follow them. Strategies
abstractly characterize the behavior of agents as they
perform their actions in following their strategies. As
described below, these actions are derived from the tree
(as used in §4) characterizing their selection function
for each substrategy.

Let Y be a strategy of agent x; ‘current(Y) the
part of Y now up for execution; and ‘rest(Y')’ the part
of Y remaining after ‘current(Y)’ has been done. I
will define strategies, ‘current,” ‘rest’ and the strategy-

relative intension of a tree (i.e., [Jy) shortly, but first
I formalize know-how using the auxiliary definition of
know-how relative to a strategy. Extend the notation
to allow (] to be applied to strategies. (Y])p means
that if the agent can be said to be following strategy
Y, it knows how to perform all the substrategies of Y
that it may need to perform, and furthermore that it
can perform them in such a way as to force the world
so as to make p true. Basically, this allows us to have
the know-hows of an agent to achieve the condition-
s in different substrategies strung together so that it
has the know-how to achieve some composite condi-
tion. This is especially important from the point of
view of designers and analyzers of agents, since they
can take advantage of the abstraction provided by s-
trategies to design or understand the know-how of an
agent in terms of its know-how to achieve simpler con-
ditions. Even formally, this latter know-how is purely
reactive as in §4 (see Theorem 2).

o My (skip)pif M Ewep

o M =y, (Y)p iff (3 tree: (IS, : (S, t) €

[tree]current(v)) A (VS 1S € Sy A (Tt 2 (S,8, 1) €

[[tree]]current(Y))_> (Elt/ . <S,t,t/> S [[tree]]current(Y) A

M =y o (rest(Y))p)))

This definition says that an agent,  knows how to
achieve p relative to strategy Y iff there is a tree of
actions for it such that it can achieve the ‘current’ part
of its strategy by following that tree, and that on all
scenarios where it does so it either achieves p or can
continue with the ‘rest’ of its strategy (and knows how
to achieve p relative to that). Now K'p may be defined
as given below. Kp is unchanged relative to K'p.

o MEw:Kpift (Y : M =y (YD)

Define a strategy, Y, recursively as below. These
definitions allow us to incorporate abstract specifica-
tions of the agent’s actions from the designer’s point
of view, and yet admit the purely reactive aspects of
its behavior in case 1 below.

0. skip: the empty strategy

do(p): a condition to be achieved

Y1;Ys: a sequence of strategies

if p then Y7 else Ys: a conditional strategy

while p do Y7: a conditional loop

By definition, ‘skip; Y’ =Y, for all Y. The ‘curren-
t” part of a strategy depends on the current situation.
For case 0, ‘current(Y)’ is ‘skip’; for case 1, it is ‘Y’
itself; for case 2, it is ‘current(Y7)’; for case 3, if p
holds in the current situation, it is ‘current(Y7),” else
‘current(Ys)’; for case 4, if p holds (in the current sit-
uation), it is ‘current(Y7),” else ‘skip.” The ‘rest’ of a
strategy is what is left after the current part is per-
formed. For cases 0 and 1 ‘rest(Y")’ is ‘skip’; for case 2,
it is ‘rest(Y71); Y2’; for case 3, if p holds, it is ‘rest(Y7),’
else ‘rest(Y3)’; for case 4, if p holds, it is ‘rest(Y7); while
p do Y7, else ‘skip.’

Since ‘current(Y)’ is always of the form ‘skip’ or
‘do(p),” [tree]current(y) is invoked (for a given tree) on-
ly for cases 0 and 1, and is defined for them below.

s Q0 N =



The expression ﬂtree]]current(y) denotes a restricted in-
tension of ‘tree’ relative to an agent (implicit here) and
the substrategy it is achieving by following ‘tree’—in
the sequel, I refer to it as the strategy-relative intension
of ‘tree.” This expression considers only those subsce-
narios where the success of the given substrategy is as-
sured, i.e., forced, by the agent—fortuitously success-
ful subscenarios are excluded. Briefly, [[tree]]current(y) i
the set of subscenarios corresponding to executions of
‘tree’ such that they lead to the strategy ‘current(Y’)’
being forced. Here t,t' € S; the world is w.

<S;t;tl> € [[tree]]current(Y) iff
0. current(Y') = skip is achieved by the empty tree; i.e.,

tree = () and ¢t = ¢'.

1. current(Y) = do(p): ‘Tree’ follows ‘do(p)’ iff the a-
gent can achieve p in doing it.

if tree = 0 then t = ¢/ AM [y pelse M [y,

(treedp A (3" =t < " < t' A(S L") €

[root] A (Isub : sub € tree.subtrees A (S,t",t) €

HSUb]]current(Y)))

Now for some intuitions about the definition of
know-how relative to a strategy. The execution of a
strategy by an agent is equivalent to its being unrav-
eled into a sequence of substrategies of the form do(p).
The agent follows each by doing actions prescribed by
some tree. Thus the substrategies serve as abstraction-
s of trees of basic actions. In this way, the definition
of know-how exhibits a two-layered architecture of a-
gents: the bottom layer determining how substrategies
of limited forms are achieved, and the top layer how
they are composed to form complex strategies.

7 Axioms for Strategic Know-how

Since strategies are structured, the axiomatization of
know-how relative to a strategy must involve their
structure. This comes into the axiomatization of (Y )p.
Many of these axioms mirror those for standard DL
modalities, but there are important differences:

1. (skiplp=p

2. (Y1;Y2)p = () (Ya)p

3. (if ¢ then Y7 else Ya)p = (¢— (Vi)p) A (—g— (Y2)p)
4. é[while q) do Y1}p = (¢— (Y1)} (while ¢ do Yi]p) A
5. ([d(q)(q)]l;)p = (¢gAp)V (mg A (Fa E(a)true A

Ala]{do(g))p))

Theorem 2 The above axiomatization is sound and
complete for any model M as described in §3, with
respect to the definition of K’ relative to a strategy.

Proof.

Soundness: The proof is not included here to save
space. However, it quite simple for cases 1 through 4;
for case 5, it follows the proof in Theorem 1.

Completeness: As in §5, construct a model whose
indices are maximally consistent sets of sentences of the
language. Completeness is proved here only for formu-
lae of the form (Y])p, and means that M ., ¢ (Y])p
entails (Y)p € (w,t), the corresponding point in the

model. Let {Y])p. The proof is by induction of the
structure of strategies. M =, ; (skip)p iff M ¢ p.
But this is ensured by axiom 1. Similarly, M |=, ¢+ (if
q then Y7 else Ys)p iff there exists a tree that follows
current(if ¢ then Y7 else Y3) and some further proper-
ties hold of it. But ¢ implies that current(if ¢ then Y3
else Y2) = current(Y7) and —¢ implies that it equals
current(Y>). Similar conditions hold for the function
‘rest.” Therefore, by axiom 3, M |=, 4 (if ¢ then Y7 else
Yo)p iff (if ¢ then M =, 1 (Yi)p else M =y ¢ (Y2)p).
By induction, since Y; and Y3 are structurally smaller
than the above conditional strategy, we have that {if ¢
then Y] else Ya])p € (w,t). The case for iterative strate-
gies is analogous, since axiom 4 captures the conditions
for ‘current’ and ‘rest’ of an iterative strategy.

The case of {do(q)]p turns out to be quite simple.
This is because the right to left direction of axiom 5
is entailed by the following pair, which are (almost)
identical to the axioms for reactive know-how given in
§5. Completeness for this case mirrors the proof of
completeness given there and is not repeated here.

* (¢ Ap)— (do(q))p
e (Ja : E{a)true A Ala]({do(q))p)— (do(g)]p

Surprisingly, the trickiest case turns out to be that of
sequencing. When Y7 = skip, the desired condition for
the axiom 2 follows trivially. But in the general case,
when Y7 # skip, the satisfaction condition for (Y1; Y2])p
recursively depends on that for (rest(Y:);Ys))p. How-
ever, this strategy does not directly feature in axiom 2.
Also, rest(Y7);Y2 may not be a structurally smaller s-
trategy than Y7;Ys (e.g., if Y7 is an iterative strategy,
rest(Y1) may be structurally more complex than Y7).
However, we can invoke the fact that here (as in s-
tandard DL), iterative strategies are finitary; i.e., they
lead to only a finite number of repetitions. Thus we
can assume that for any strategy, ¥ # skip, world, w
and time ¢, the execution tree in the model (i.e., as in-
duced by < and restricted to the execution of Y') has a
finite “depth,” i.e., number of invocations of ‘current.’
If Y is followed at w, ¢, then the ‘rest(Y")’ is followed at
those points where ‘current(Y’)’ has just been followed.
The depth of ‘rest(Y)’ = (depth of Y) — 1. The depth
of ‘skip’ is 0. Thus the depth is a metric to do the
necessary induction on. The remainder of the proof is
quite simple. Thus for all cases in the definition of a
strategy, M =y ¢ (Y])p entails (Y]p € (w,t). O

8 Consequences

Formal definitions are supposed to help clarify our in-
tuitions about the concepts formalized. The above ax-
iomatizations do just that. Some of their consequences
are listed and proved below. These consequences are
important and useful since they help us better delin-
eate the properties of the concept of know-how. While
the reactive and strategic definitions K’ are signifi-
cantly different in their implementational import, they
share many interesting logical properties.



Theorem 3 K'p A AG(p— ¢q)— K'g
Proof Idea. This follows from the corresponding
result for [a]p mentioned in §5. O

Theorem 4 K'K'p— K'p

Proof Idea. Construct a single tree out of the trees
for K'K'p. O

This seems obvious: if an agent can ensure that it
will be able to ensure p, then it can already ensure p.
But see the discussion following Theorem 6.

While K’ captures a very useful concept, it is some-
times preferable to consider a related concept, which
is captured by K. K is meant to exclude cases such
as the rising of the sun (assuming it is inevitable)—
intuitively, an agent can be said to know how to achieve
something only if it is not inevitable anyway. K can be
axiomatized simply by adding the following axiom
3. Kp= (K'p A -AFp)

However, this also makes the logic of K non-normal,
i.e., not closed under logical consequence. This is be-
cause the proposition entailed by the agent’s given
know-how may be something inevitable. Therefore,
despite Theorem 3, the corresponding statement for
K fails. Indeed, we have

Theorem 5 —Ktrue
Proof. We trivially have AFtrue, which by axiom 3
entails -Ktrue. O

Theorem 6 p— —Kp

Proof. Trivially again, since p— AFp. O

Le., if p already holds then the agent cannot be fe-
licitously said to know how to achieve it. By a simple
substitution, we obtain Kp— —KKp, whose contraposi-
tive is KKp— —Kp. This is in direct opposition to The-
orem 4 for K’, and is surprising, if not counterintuitive.
It says that an agent who knows how to know how to
achieve p does not know how to achieve p, simply be-
cause if it already knows how to achieve p it may not
know how to know how to achieve it. This too agrees
with our intuitions. The explanation for this paradox
is that when we speak of nested know-how (and in nat-
ural language, we do not do that often), we use two
different senses of know-how: K for the inner one and
K’ for the outer one. Thus the correct translation is
K'Kp, which entails K’p as desired. If p describes a
condition that persists once it holds (as many p’s in
natural language examples do) then we also have Kp.

9 Conclusions

I presented two sound and complete logics for non-
reductive and intuitive definitions of the know-how of
an intelligent agent situated in a complex environment.
This formalization reveals many interesting properties
of know-how and helps clarify our intuitions. It also
simplifies the application of the concept of know-how
to the design and analysis of situated intelligent agents.
Of special technical interest is the operator expressed
by (]} that is different from those in standard Dynamic
Logic. This operator provides the right formal notion

with which to capture the know-how of an agent whose
behavior is abstractly characterized in terms of strate-
gies. The differences between the reactive and strate-
gic senses of know-how are mainly concerned with the
complexity of the designs of the agents to whom they
may be attributed. The power of the strategic sense
arises from the fact that it lets an agent act, and a
designer reason about it, using “macro-operators.”

References
Agre, Philip and Chapman, David; 1987. Pengi: An
implementation of a theory of activity. In AAAIL 268—
272.

Chellas, Brian F.; 1980. Modal Logic. Cambridge
University Press, New York, NY.

Emerson, E. A.; 1990. Temporal and modal logic.
In Leeuwen, J.van, editor, Handbook of Theoretical
Computer Science, volume B. North-Holland Publish-
ing Company, Amsterdam, The Netherlands.

Hewitt, Carl; 1988. Organizational knowledge pro-
cessing. In Workshop on Distributed Artificial Intel-
ligence.

Konolige, Kurt G.; 1982. A first-order formalism of
knowledge and action for multi-agent planning. In
Hayes, J. E.; Mitchie, D.; and Pao, Y., editors, Ma-
chine Intelligence 10. Ellis Horwood Ltd., Chichester,
UK. 41-73.

Kozen, Dexter and Tiurzyn, Jerzy; 1990. Logics of
program. In Leeuwen, J.van, editor, Handbook of The-
oretical Computer Science. North-Holland Publishing
Company, Amsterdam, The Netherlands.

Moore, Robert C.; 1984. A formal theory of knowl-
edge and action. In Hobbs, Jerry R. and Moore,
Robert C., editors, Formal Theories of the Common-

sense World. Ablex Publishing Company, Norwood,
NJ. 319-358.

Morgenstern, Leora; 1987. A theory of knowledge and
planning. In IJCAL

Rosenschein, Stanley J.; 1985. Formal theories of
knowledge in Al and robotics. New Generation Com-
puting 3(4).

Singh, Munindar P.; 1990. Towards a theory of situ-
ated know-how. In 9th Furopean Conference on Ar-
tificial Intelligence.

Singh, Munindar P.; 1991a. Group ability and struc-
ture. In Demazeau, Y. and Muller, J.-P., editors, De-
centralized Artificial Intelligence, Volume 2. Elsevi-
er Science Publishers B.V. / North-Holland, Amster-
dam, Holland. 127-145.

Singh, Munindar P.; 1991b. Towards a formal theo-

ry of communication for multiagent systems. In In-
ternational Joint Conference on Artificial Intelligence

(IJCAI).



