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Abstract

This paper considers a distributed system of software agents
who cooperate in helping their users to find services, provided
by different agents. The agents need to ensure that the ser-
vice providers they select are trustworthy. Because the agents
are autonomous and there is no central trusted authority, the
agents help each other determine the trustworthiness of the
service providers they are interested in. This help is rendered
via a series of referrals to other agents, culminating in zero or
more trustworthy service providers being identified.
A trust network is a multiagent system where each agent po-
tentially rates the trustworthiness of another agent. Thispaper
develops a formal treatment of trust networks. At the base isa
recently proposed representation of trust via aprobability cer-
tainty distribution. The main contribution of this paper is the
definition of two operators,concatenationandaggregation,
using which trust ratings can be combined in a trust network.
This paper motivates and establishes some important proper-
ties regarding these operators, thereby ensuring that trust can
be combined correctly. Further, it shows that effects of mali-
cious agents, who give incorrect information, are limited.

Introduction
In electronic markets, due to the high uncertainty about qual-
ity and reliability of the products and services offered by oth-
ers, it is crucial for agents to compute the trustworthinessof
the other agents before initiating any service request. Simi-
lar considerations apply in Web-based information systems,
in general: agents must be able to compute how much trust
to place in others with whom they might have had no prior
experience.

The mechanisms that support finding trust estimations are
called reputation systems. There are two kinds of reputation
systems: centralized and distributed. Centralized reputa-
tion systems include collaborative filtering (social informa-
tion filtering) systems (Breese, Heckerman, & Kadie 1998;
Resnicket al. 1994; Dellarocas 2004), and online reputation
systems (Dellarocas 2004). Distributed reputation systems
include peer-to-peer (P2P) systems (Aberer & Despotovic
2001; Xiong & Liu 2004) and referral systems (Yu & Singh
2002; 2003).
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Collaborative filtering approaches select resources based
on the relationships between agents as modeled by the sim-
ilarity or dissimilarity between their subjective judgments.
For example, GroupLens (Resnicket al. 1994) helps users
find netnews articles based on how their past ratings corre-
late with other users’. Online reputation systems (Dellarocas
2004) build the reputation for an object by aggregating be-
liefs from agents about a specified agent. One of the most
successful examples is eBay. After each transaction, buyers
and sellers can rate each other. A participant’s reputation
is the sum of these ratings over the last six months. The
centralized approaches do not scale well and they all have a
single point of failure, so they are not appropriate in a dis-
tributed system.

Peer-to-peer systems and referral systems are built for dis-
tributed environments. They enable peers to share their ex-
periences with each other. Trust is captured by the neighbor-
hood relation. Referral systems maintain and use trust for
recommendation. Various mathematical approaches have
been used to combine trust ratings in these systems. Tradi-
tional methods in combining the trust from the referrals are
not efficient in dealing with malicious agents who provide
biased information.

Challenges. A reputation system for an open environment
should support the following features. First, agents may join
or leave an open environment arbitrarily. Second, the agents
need not be cooperative. An agent may give biased infor-
mation on its own experience. It may also provide many
witnesses whose ratings of the intended target are biased.

Contributions. This paper uses a probabilistic theory of
evidence to represent the trust between agents in terms of
referrals and the quality of service obtained. To support an
agent computing trust in a service provider with which it
has no direct interactions, this paper defines operators to de-
termine trust by concatenating and aggregating paths from
an agent to the given service provider. The underlying ar-
chitecture of a distributed system is common to several ap-
proaches, and not novel to this paper. This paper formalizes
some key properties of the concatenation and aggregation
operators. Lastly, this paper shows how our operators miti-
gate the effects of deception by some agents.



Technical Framework
This section introduces the necessary mathematical tools for
our approach: (1) probability certainty distributions. and (2)
the construction of a path algebra.

Trust and Certainty
This discussion is summarized from (Wang & Singh 2006).
Let 〈r, s〉 be a binary event withr positive outcomes ands
negative outcomes.

Definition 1 The posterior probability of a binary event af-
ter 〈r, s〉 is given by (Casella & Berger 1990, p. 298):

fr,s(x) =
xr(1 − x)s

∫ 1

0
xr(1 − x)sdx

The following is a motivating example for the definition
of certainty adopted here. Consider randomly picking a ball
from a bin that containsN balls colored white or black.
Supposep is the probability that the ball randomly picked
is white. If we have no knowledge about how many white
balls there are in the bin, we can’t estimatep with any con-
fidence. Thus, our certainty (notatedc) is 0. If we know that
exactlym balls are white, then we have perfect knowledge
about the distribution. We can estimatep = m

N
with c = 1.

However, if all we know is that at leastm balls are white
and at leastn balls are black, then we have partial knowl-
edge. Herec = m+n

N
. The following definition reflects the

above intuitions (Wang & Singh 2006).

Definition 2 Letc(r, s) be the certainty based on the binary
event〈r, s〉, then

c(r, s) =
1

2

∫ 1

0

|fr,s(x) − 1|dx

wherefr,s(x) is as in Definition 1

Instead of modeling the binary events by a pair(p, q), the
probability of positive and negative outcomes, we model the
binary event〈r, s〉 by a belief(b, d, u), whereb, d andu
represent the probability of positive outcomes, negative out-
comes, and uncertainty, respectively. Here,b = c r+1

r+s+2
,

d = c s+1

r+s+2
, andu = 1 − c wherec is the certainty based

on the binary event. The certainty lies in[0, 1], with c = 1
andc = 0 indicating perfect knowledge and ignorance, re-
spectively.

Definition 3 Define the evidence space

E = {(r, s)|r > 0, s > 0}

and the belief space

B = {(b, d, u)|b > 0, d > 0, u > 0, b+ d+ u = 1}

LetZ = (B,D,U) be a transformation fromE to B such
thatZ(r, s) = (B(r, s), D(r, s), U(r, s))

B(r, s) = c r+1

r+s+2

D(r, s) = c s+1

r+s+2

U(r, s) = 1 − c

(1)

wherec is defined in Definition 2.

Definition 2 also ensures that the transformationZ is a
bijection betweenE andB (Wang & Singh 2006). LetZ−1 :
B 7→ E be the inverse transformation, define

Z−1 = (R,S) (2)

whereR : B 7→ ℜ+ andS : B 7→ ℜ+. For any(r, s) ∈ E,
we haveZ−1(Z(r, s)) = (r, s)

Path Algebra
We use the idea ofpath algebrafrom the generalized tran-
sitive closure literature (Richardson, Agrawal, & Domingos
2003) for our computation of the merged trust. Path algebra
provides a means to talk about trust propagation and aggre-
gation. Below we formalize it in our terms.

Definition 4 Let G = (V,E) be a graph. For each edge
e(i, j) ∈ E, wherei is the source andj is the destination,
define the label associated with the edge asL(e(i, j)) ∈ L.
HereL is the range of the labels, for example,R for real
numbers,R2 for vectors. The edgee(i, j) together with the
labelL(e(i, j)) is called anedge tuple.

Definition 5 A path from nodei to nodej is denoted by
P (i, j), which is the concatenation of an ordered set of la-
beled edgesek(vk, vk+1), for k = 1, · · · , n, wherei = v1
andj = vn+1. Define the label associated with the path as
L(P (i, j)) ∈ L. The label associated with the path is com-
puted as a function of the labels associated with the edges
in the path through the concatenation operator⊗. The path
together with its label is called apath tuple.

Definition 6 A path-setfrom nodei to nodej, denoted by
ψ(i, j), is the set of all paths fromi to j in the given graph
G = (V,E). ψ(i, j) = {Pk(i, j)}, for k = 1, · · ·,m. Define
the label for thepath-setasL(ψ(i, j)) ∈ L, which should
be computed as a function of all the labels of the paths in
ψ(i, j) through an aggregation operator⊕. A path-setto-
gether with its label is called apath-settuple.

Definition 7 Concatenation operator⊗ : L×L 7→ L. This
accommodates the propagation of trust along a path.

Definition 8 Aggregation operator⊕ : L × L 7→ L. This
accommodates combining trust from different paths.

Propagating Trust
Say an agentAr does not have adequate evidence to deter-
mine whether to trust an agentAg. Ar could obtain evidence
from other agents, i.e.,witnesses, who have experience with
Ag. The mechanism of finding witnesses is irrelevant here:
a possible approach is based on referrals (Yu & Singh 2002).
Ar can evaluate the trustworthiness ofAg by combining the
trust inAg placed by those witnesses. In general,Ar would
not have direct experience with the witnesses, and would
need witnesses for them, and so on: so this would be a case
of propagating trust.

We use the term “reference” to generalize over a referral
or another means for an agent to indicates its level of trust in
another agent. A reference could correspond to a URI on a
web page or even to a reference in a specialized application
or vocabulary such as Friend of a Friend (FOAF).



Definition 9 A referencer to Aj by Ai is represented by
〈Ai, Aj ,Mij〉, whereMij represents the trust inAj placed
byAi.

Definition 10 A trust network TN(Ar , Ag, A,R,W ) is an
acyclic directed graph rooted atAr, whereA is a finite set
of agents{A1, A2, . . . , AN}, R is a finite set of references
{r1, r2, . . . , rn}, andW is a set of witnesses forAg.

A referral network, which is a kind of a trust network, can
be constructed as described in (Yu & Singh 2002).

Merge and Combine Trust Ratings
Given a trust network, we adapt the two operators used in
the path algebra to merge the trust.

Assume agentA has a trustM1 in agentB’s references
andB has a trustM2 in agentC. SupposeM1 = (b1, d1, u1)
andM2 = (b2, d2, u2). As proposed by Jøsang (Jøsang
1998),A disbelievesB’s references means thatA thinksB
is uncertain about agentC ’s trustworthiness. We defineA’s
trust inC due to the reference fromB to beM = M1⊗M2.
Here⊗ is theconcatenation operator.

Definition 11 Concatenation operator⊗ (Jøsang 1998).
SupposeM1 = (b1, d1, u1) andM2 = (b2, d2, u2) are two
belief functions, we defineM = M1 ⊗M2 = (b, d, u) as:

b = b1b2
d = b1d2

u = 1 − b1b2 − b1d2

(3)

Assume agentsA andB have trustM1 andM2, respec-
tively, in Ag. The combined trust ofA andB in Ag is
captured via theaggregation operator⊕, as inM1 ⊕M2.
SupposeA hasr1 positive experiences ands1 negative ex-
periences withAg, andB hasr2 positive experiences ands2
negative experiences withAg. Then the combined evidence
will be r1 + r2 positive experiences ands1 + s2 negative
experiences withAg.

In order to combine the beliefsM1 andM2, we first trans-
form the two beliefs to two bodies of evidence in the ev-
idence space, combine them, then map the combined evi-
dence back to belief space.

Definition 12 Aggregation operator⊕. LetZ = (B,D,U)
be the transformation from evidence space to belief space as
defined in Definition 3 andZ−1 = (R,S) is the inverse of
Z. SupposeM1 = (b1, d1, u1) andM2 = (b2, d2, u2). Then
M1 ⊕M2 = M = (b, d, u) where

b = B(r1 + r2, s1 + s2)
d = D(r1 + r2, s1 + s2)
u = U(r1 + r2, s1 + s2)
r1 = R(b1, d1, u1), r2 = R(b2, d2, u2)
s1 = S(b1, d1, u1), s2 = S(b2, d2, u2)

(4)

For a given trust network TN(Ar, Ag, A,R,W ), we com-
bine beliefs as following. For any agentAi ∈ A, sup-
pose {B1, B2, . . . , Bm} are the neighbors ofAi. Sup-
pose the trust ratings thatAi assigns toB1, . . . , Bm are
M1,M2, . . . ,Mm. Suppose that all the neighbors have
already obtained their trust ratings inAg, let these be

M ′

1,M
′

2, . . . ,M
′

m. Then we obtain the trust ofAi in Ag,
M , by

M = (M1 ⊗M ′

1) ⊕ (M2 ⊗M ′

2) ⊕ · · · ⊕ (Mm ⊗M ′

m)

If the neighbor has not obtained the trust inAg, we can
run the algorithm recursively to obtain the trust from merg-
ing and combining the trust from the neighbor’s neighbors,
since all the leaves in the trust network are the witnesses
who have their trust values inAg computed from their direct
interactions withAg. So the trust ratings can be merged in
a bottom up fashion, from the leaves of the trust network up
to its rootAr.

Properties of the Operators
In order to combine the trust ratings in a meaningful way
and to deal with deception caused by malicious agents, we
desire certain properties of our approach. We motivate and
prove that the concatenation operator⊗ and aggregation op-
erator⊕ satisfy the following properties. The proofs of the
theorems are given in the appendix.

Theorem 1 The concatenation operator⊗ is associative.

This property enables us to merge the trust in a bottom up
fashion. For example, consider the pathAr → B → C →
Ag, (see Figure 1). Suppose it is the only path fromAr to
Ag in the trust network. The trust ofAr in B is M1, the
trust ofB in C isM2 and the trust ofC in Ag isM3. If we
mergeM1 andM2, we will get the trust ofAr in C, which
isM1 ⊗M2, when we merge it withM3, we get the trust of
Ar in Ag, which is(M1⊗M2)⊗M3. If we do it bottom up,
then we mergeM2 andM3 and get the trust ofB in Ag and
then merge it withM1 and get the trust ofAr in Ag which
isM1 ⊗ (M2 ⊗M3). Certainly we expect these two results
are the same, that is(M1⊗M2)⊗M3 = M1⊗ (M2⊗M3).
This means⊗ should be associative.

321 MMM
gACBrA

Figure 1: Path in a trust network

Theorem 2 The aggregation operator⊕ is associative.

This is required to aggregate trust ratings across indepen-
dent paths. SupposeAr has three neighborsB,C andD
who are the only witnesses ofAg, (see Figure 2). The trust
ratings ofB,C andD in Ag areM ′

1,M
′

2 andM ′

3, respec-
tively. Suppose the trust ratings ofAr in B,C andD are
M1,M2 andM3, respectively. Then according to the algo-
rithm to find the trust ofAr toAg. We first concatenate the
trust ratings,M1 ⊗ M ′

1, M2 ⊗ M ′

2 andM3 ⊗ M ′

3. Then
we aggregate them. There are different ways to aggregate
them. We can aggregateM1 ⊗M ′

1 with M2 ⊗M ′

2 and then
with M3 ⊗M ′

3, or we aggregateM2 ⊗M ′

2 with M3 ⊗M ′

3,
and then withM1 ⊗ M ′

1. These should be the same. So
we require((M1 ⊗M ′

1) ⊕ (M2 ⊗M ′

2)) ⊕ (M3 ⊗M ′

3) =
(M1⊗M

′

1)⊕((M2⊗M
′

2)⊕(M3⊗M
′

3)). That is,⊕ should
be associative.
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Figure 2: Associativity of⊕

Theorem 3 The aggregation operator⊕ is commutative.

This is required to aggregate trust ratings across paths that
are not ordered. For example, supposeAr has two neighbors
B andC, who are the only witnesses. The trust ratings ofB
andC in Ag areM ′

1 andM ′

2. (see Figure 3). Suppose the
trust ratings ofAr inB, andC areM1, andM2, respectively.
After concatenating the trust ratings, we obtainM1 ⊗M ′

1,
andM2⊗M

′

2. We have two ways to aggregate them:(M1⊗
M ′

1) ⊕ (M2 ⊗M ′

2), or (M1 ⊗ M ′

1) ⊕ (M2 ⊗M ′

2), these
should be the same. That is,(M1 ⊗M ′

1) ⊕ (M2 ⊗M ′

2) =
(M1 ⊗M ′

1) ⊕ (M2 ⊗M ′

2). So⊕ should be commutative.

C

2

2
1

1

r

M’M’

M
M

B

A

Figure 3: Commutativity of⊕

Concatenation operator⊗ should not distribute over the
aggregation operator⊕. If ⊗ were to distribute over the
aggregation operator⊕, along with the properties mentioned
above, then thepath-algebradefined will be awell-formed
decomposable path problem. Surprisingly, this property is
not desirable. The reason is as follows. Let’s consider two
cases, as shown in Figure 4.

Case 1.SupposeAr has a neighborB, and it is the only
neighbor ofAr. B has referred two witnessesC andD,
which are the only witnesses toAg. Suppose the trust of
Ar in B isM1, the trust ratings ofB in C, andD areM4

andM5, respectively, and the trust ratings ofC andD in
Ag areM6 andM7, respectively. Then according to our
algorithm, the merged trust ofAr to Ag isM1 ⊗ (M2 ⊕
M3), whereM2 = M4 ⊗M6 andM3 = M5 ⊗M7.

Case 2.SupposeAr has two neighborsB andC. B re-
ferredD andC referredE. LetD andE be the only two
witnesses ofAg. Suppose the trust ratings ofAr in B and
C is the same, namely,M1. Suppose the trust ofB in D
is M4, and the trust ofC in E is M5. The trust ratings
of D andE in Ag areM6 andM7, respectively. Then
according to our algorithm, the merged trust ofAr toAg

is (M1 ⊗M2)⊕ (M1 ⊗M3), whereM2 = M4 ⊗M6 and
M3 = M5 ⊗M7.

In Case 1, the two witnesses are referred by the same agent,
but in Case 2 the two witnesses are referred by two different
agents. So we expect they are different.

Case 2

M

M M

M M

M M

M M M M

1

1 1

54
4 5

6 7
6 7

r
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Case 1

A

B

C D

A

B C

D E

Figure 4: Nondistributivity of⊗ over⊕

Theorem 4 The concatenation operator⊗ does not dis-
tribute over the aggregation operator⊕.

The impact of malicious agents should be limited.

Theorem 5 LetZ = (B,D,U) andZ−1 = (R,S) be de-
fined as in Definitions 2 and 3. LetMi = (bi, di, ui), 0 ≤
i ≤ n. Let M = M0 ⊗ (M1 ⊕ M2 ⊕ · · · ⊕ Mn), and
M ′ = ( b0

2
, b0

2
, 1 − b0). We have

R(M) + S(M) ≤ 2R(M ′) (5)

The theorem is interpreted as follows.M ′ is the trust with
certaintyb0. The binary event corresponding toM ′ has an
equal number of positive outcomes and negative outcomes,
which isR(M ′). By Theorem 2 in (Wang & Singh 2006),
when the total number of outcomes is fixed, the certainty is
minimized when the number of positive outcomes equals the
number of negative outcomes. Since the certainty ofM is
less thanb0, in effect the binary event corresponding toM
has fewer total number of outcomes than the binary event
corresponding toM ′.

Suppose the malicious agentB recommendsn bad wit-
nesses toA. LetMi = (bi, di, ui), 1 ≤ i ≤ n be the trust in
Ag placed by those witnesses.M0 is the trust inB placed by
A. Theorem 5 shows that the effect of those bad witnesses
through the recommendation ofB is less than a body of ev-
idence, which has a total number of2R(M ′) experiences.

For example, supposeA’s trust inB is (b0, d0, u0). Con-
sider the following numerical examples of how certainty



propagates. Recall thatb0 is the weight of the belief ofA
in B’s trustworthiness.

Case 1.B lies toA that he knows 100 witnesses and each
witness had 1 million positive experiences with the target,

Case 2.The 100 witnesses are referred by 100 different
agents in whomA places the same trust as inB.

If b0 = 0.25, then in case 1, inA’s view, B’s recommen-
dation is the same as of an honest agent who tellsA that
he only has one positive experience with the target, while in
case 2, the impact is the same as of an honest agent who tells
A that he has 100 positive experiences with the target.

If b0 = 0.7, then in case 1, inA’s view,B’s recommen-
dation is the same as of an honest agent who tellsA that
he only has9.2 positive experiences with the target, while
in case 2, the impact is the same as of an honest agent who
tellsA that he has 916 positive experiences with the target.

If b0 = 0.9, then in case 1, inA’s view,B’s recommen-
dation is the same as of an honest agent who tellsA that
he only has46 positive experiences with the target, while in
case 2, the impact is the same as of an honest agent who tells
A that he has 4,600 positive experiences with the target.

If b0 = 0.99, then in case 1, inA’s view,B’s recommen-
dation is the same as of an honest agent who tellsA that
he only has91 positive experiences with the target, while
in case 2, the impact is the same as of an honest agent who
tellsA that he has 9,100 positive experiences with the tar-
get. From the above examples, we can readily see that our
method limits the impact of a malicious agent who intro-
duces a large number of biased witnesses.

Discussion
This paper treats reputation management as a well-defined
path algebra problem. Each agent only needs to maintain
the trust ratings for its neighbors and to use referral networks
and path algebra to merge and combine the trust ratings and
obtain the trust in the service provider with which it has no
direct interactions. Our algorithm scales well, since the trust
ratings are merged in a bottom up fashion.

The underlying notion of a reference associated with a
trust rating is extremely general. It accommodates refer-
rals, neighborhood relationships in peer-to-peer computing,
symbolic references across information resources, and po-
tentially even physical neighborhood relationships such as
on certain kinds of ad hoc networks.

Literature
Richardsonet al. (2003) have studied the trust management
for the semantic web. Each user maintains trust in a small
number of other users. A user’s trust in any other user can
be computed by using the existing web of trust recursively.
Richardsonet al. first enumerate all paths between the user
and every other user who has a local based belief in a given
statement, then calculate the belief associated with each path
by using a predefinedconcatenation functionalong each
path and the belief held by the final user, and those beliefs
associated with all paths can be combined by using a prede-
finedaggregation function. Since Richardsonet al. use the

path algebra interpretation on the whole network, it is not
appropriate in a distributed network where agents in the net-
work are autonomous, since the topology may change con-
stantly and some agents may not be cooperative.

Yu and Singh (2002), (2003) have studied distributed rep-
utation management in a social network of agents where the
agents cooperate with each other in finding trustworthiness
of the other agents. Yu and Singh build their work on re-
ferral networks. They use Dempster-Shafer theory to rep-
resent the agent’s trust on the service provider. When an
agent wants to find the trustworthiness of a service provider,
it uses the referral network to find witnesses, and combines
the beliefs of those witnesses regarding the service provider.
Yu and Singh assign weights to each witness to detect and
penalize deceptive agents. There are some limitations to this
approach. First, a service with medium quality is treated
as unknown quality, not as a known medium quality. Sec-
ond, suppose some witnesses are found. Let’s consider two
cases. In one case, all witnesses are referred by the same
agent, while in the other case, all witnesses are referred by
different agents. We should expect more evidence from the
second case. By assigning weights to each witness these two
cases are not differentiated.

Huynh et al. (2004) introduced a trust model, FIRE,
which has four components: interaction trust, role-based
trust, witness reputation, and certified reputation. FIRE in-
corporates all those components to provide a combined trust.
Referrals were used to obtain the witnesses, each witness is
assigned a weight. But we have not seen any work on the
biased information referred by the malicious acquaintances.
Further, it does not scale well since a weight for each witness
needs to be maintained.

Jøsanget al. (2003) analyzed transitive trust topologies,
specified three basic topology dimensions: trust origin, trust
target and trust purpose. They also described principles for
recommendation, measuring and computing trust based on
those topologies. Whereas detailed mathematical computa-
tion formula for computation of the combined trust has not
been found in his work. Jøsanget al. used cryptography to
provide authenticity and integrity of referrals, but key man-
agement is still a major and largely unsolved problem on the
Internet today.

Conclusions
Although our concatenation and aggregation operators are
intuitively obvious, and similar to what other researchers
have followed, their technical definitions are different. One
advantage of these technical definitions is that they are based
on an approach to trust that we recently introduced (Wang &
Singh 2006). That approach treats trust in terms of probabil-
ities of probabilities, and is thus more principled than ad hoc
heuristic approaches, which are prevalent in the literature.
The second advantage of the definitions of operators that we
propose here is that they support further intuitive properties
of the propagation of trust in a network, and avoid the un-
desirable property of distributing concatenation over aggre-
gation. The third advantage of our definitions is that they
limit the impact of a malicious agent, who might otherwise
produce false witnesses to corrupt the assignment of trust.



We are building a testbed to evaluate our work empiri-
cally.
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Proofs of Theorems
Proof of Theorem 1The concatenation operator⊗ is asso-
ciative.

SupposeM1 = (b1, d1, u1), M2 = (b2, d2, u2), M3 =
(b3, d3, u3),M1×(M2×M3) = (b, d, u), and(M1×M2)×

M3 = (b′, d′, u′), Then
b = b1(b2b3) = b1b2b3 and
b′ = (b1b2)b3 = b1b2b3, so we have
b = b′

d = b1(b2d3) = b1b2d3 andd′ = (b1b2)d3 = b1b2b3, so we
haved = d′, and
u = 1 − b− d = 1 − b′ − d′ = u′

Which completes the proof.
Proof of Theorem 2
Aggregation (⊕) is associative. Since the belief space is
equivalent to the evidence space. So the aggregation op-
erator in the belief space is equivalent to the plus operatorin
the evidence space by our definition, and the plus operator
is associative, so the aggregation operator in the belief space
is also associative.
Proof of Theorem 3
Aggregation (⊕) is commutative.

Since the belief space is equivalent to the evidence space.
Since the aggregation operator in the belief space is equiva-
lent to the plus operator in the evidence space by our defini-
tion, and the plus operator is commutative, so the aggrega-
tion operator in the belief space is also commutative.
Proof of Theorem 5
AssumeM1 ⊕M2 ⊕ · · · ⊕Mn = (b, d, u). Then
M = (b0b, b0d, 1 − b0b− b0d)
Let the equivalent event corresponding toM be(r, s), where
r = R(M) ands = S(M). Definec(r, s) be the certainty
associated with the binary events(r, s), then
c(r, s) = b0b + b0d ≤ b0. By Theorem 2 in (Wang & Singh
2006), we have
c( r+s

2
, r+s

2
) ≤ c(r, s) ≤ b0. sinceR(M ′) = S(M ′), so

c(R(M ′), R(M ′)) = b0
2

+ b0
2

= b0. So
c( r+s

2
, r+s

2
) ≤ c(R(M ′), R(M ′)) and by Theorem 1 in

(Wang & Singh 2006), we haver+s
2

≤ R(M ′), that is
R(M) + S(M) ≤ 2R(M ′).


