Licit: Administering Usage Licenses in Federated
Environments

Prashant C. Kediyal and Munindar P. Singh, Fellow, IEEE

Abstract—We address the problem of usage license administration in federated settings. This problem arises whenever organizations, such as
educational or research groups or institutions, share resources for business and scientific reasons. In such settings, each user’s usage of a licensed
resource is typically supported by the user’s organization. License administration involves satisfying legal requirements while applying organizational
strategies for effective resource usage, and carrying out suitable accounting and audit controls.

We propose an approach, Licit, wherein an agent represents each resource sharing site and administers licenses in collaboration with other agents.
We show how to represent a variety of usage licenses formally as executable policies and provide a simple information model using which each party
can specify both the attributes involved in its licenses and how to resolve them. Our architecture naturally accommodates a variety of site-specific
(i.e., custom) strategies for license administration. Licit has been implemented in a popular open source framework for virtual computing, and yields

performance results indicating its practical feasibility.

Index Terms—IT administration, grid computing, cloud computing, usage licenses, XACML

1 INTRODUCTION

Computing infrastructure is expensive to acquire, main-
tain, support, and administer. For this reason, recent
advances in distributed computing under the rubrics
of grid computing and cloud computing [1] promise
significant gains in resource usage efficiency and staff
productivity. Scientific and educational computing are
two important settings where the above-mentioned ad-
vances can apply [2]. For example, research groups
in different institutions can contribute their otherwise
unused resources to a common pool with the under-
standing that they would benefit from the common
pool when they need additional resources. In higher-
education settings, university departments and labs are
able similarly to share their resources. In K-12 education,
school districts are finding that maintaining separate
computing infrastructures individually for each school
is prohibitively expensive. In all these cases, the goal is
to improve resource usage through federation.

Our motivation becomes more apparent in connec-
tion with emerging kinds of scientific workflows. Tra-
ditionally, workflows have been thought of as limited
to individual organizations. However, recent research
has begun to show a shift toward federated settings.
For example, Blake and Huhns [3] motivate web-scale
workflows built on top of distributed services. Likewise,
Lu and Zhang [4] and Zhang et al. [5] motivate scientific
workflows that not only involve multiple collaborators
but also cut across organizational boundaries.

To realize such cross-organizational workflows pre-
sumes that resources can be shared effectively. However,
existing techniques have no support for ensuring that

o The authors are with the Department of Computer Science, NC State
University, Raleigh, NC 27695. E-mail: {pckediya,singh}@ncsu.edu

permissions, especially, resource usage licenses, prop-
agate correctly. Armbrust et al. [6] identify software
licenses as a key challenge of realizing cloud comput-
ing. We are pursuing a research program of develop-
ing approaches for the policy-based administration of
resources in federated environments. Specifically, we ad-
dress the challenge of accounting for and administering
software usage (and not consider software development
or digital media sharing) licenses in federated environ-
ments.

To develop the above ideas further, consider a simple,
but real, example of a federated computing environ-
ment. Some North Carolina institutions—including NC
State University (NCSU: our institution) and NC Central
University (NCCU)—federate some of their computing
resources through the Virtual Computing Lab (VCL),
an open source cloud infrastructure [7], [2], [8]. Their
motivation is that they need to provide their respective
users (students and faculty) virtual access to hosted
applications such as Matlab, and federating resources
enables handling peak loads better. The challenge here
is that each institution’s site license covers usage by only
its own faculty and students. Yet the applicable license
must be accounted for correctly even when requests from
one institution users are instantiated at VCL installations
across the federation. One might imagine that scenarios
such as the above could be avoided if each institution
simply obtained computing hardware from the other and
handled its licenses independently of the other. How-
ever, to accomplish this, the site that is currently hosting
a user from another site must be able to (1) confirm that
such a (suitably authenticated) guest user is legitimate
and that any requirements on the usage session are met,
and (2) be able to preempt the guest when necessary.
That is, we need a way by which federated parties may
collaborate effectively while preserving their autonomy.

A variation of the above scenario arises where a
university or a company obtains a site license but de-
partments within the university or company share the
cost and benefits of the license, and administer their own
computing resources. Such cases are routine practice
today. However, statically allocating licenses among the
departments would clearly not be effective, and would
obviate most benefits of obtaining a site license.

The common problem is that wherever parties feder-
ate, we need a way to account for usage licenses appro-
priately. Doing so is nontrivial because of the following
challenges. First, in practice, usage licenses might in-
volve considerations such as the number of concurrent
users allowed. Thus the parties must communicate the
relevant information or convey appropriate decisions to
one another. Second, each site may apply potentially
subtle strategies to administering its licenses, even when
its users are engaging through one of its collaborators.
For example, a concurrent users license merely states
the upper bound on the number of concurrent user
seats; how to prioritize requests or allocate such seats is
entirely up to the licensee. A practically viable approach
should support such flexibility. Third, each host must be
able to retain control over its resources and consequently
be able to express site policies regarding how it collab-
orates with others. For example, NCSU may decide to
share resources with NCCU all day but only after-hours
with another institution in the federation.

1.1 Approach in Brief

We propose Licit , an approach that addresses the forego-
ing challenges via license, scheduling, and site policies,
respectively. A license policy states the terms between the
licenser and licensee, for example, a license to use 100
concurrent instances of Matlab. A scheduling policy states
how the licensee chooses to opportunistically exploit the
license, for example, by preempting members of one role
in favor of another. Specifically, the licensee might prefer
teachers over students so that the oldest (or newest)
instance in use by a student is terminated if necessary to
fulfill a request made by a teacher. A site policy protects
the interest of a particular provider by capturing its
preferences when it makes its resources available in a
federation. For example, NCSU may share its resources
with NCCU but limit access by NCCU students during
the NCSU exam week—so as to give a higher priority to
NCSU students during that time.

Licit applies policy-based agents—computationally
representing each site—to collaboratively administer us-
age licenses. Licit involves agents who play two im-
portant roles in an ongoing engagement: licensee, who
currently owns the license on the desired resource and
with whom the current user is affiliated, and host, who
provides the computational infrastructure over which
the user (as a guest) would interact with the resource.

Agents implemented over services are a natural match
[9] for the present problem for the following reasons.

Each site in a federation is (at least notionally) au-
tonomous and heterogeneous in that it may administer
its licenses according to its local strategies and based
on its local information model. Potentially, the sites
may adopt distinct strategies and informations model.
Further, to enforce certain usage constraints based on
history and state [10] or potentially in anticipation of
demand, each party would need to monitor events and
behave proactively—and thus each of the parties must
be able to entertain interrupts from others.

We adopt a policy-based approach as the underlying
framework for the specification of agents and their inter-
actions. Policies yield greater perspicuity and modularity
than procedural representations and have been used in
a variety of settings, most commonly access control [11].
We do not propose a new policy language or engine. The
Licit approach is implemented over existing technolo-
gies. We show how to represent licenses, license adminis-
tration strategies, and resource allocation considerations
as policies. Licit agents can exchange policies with each
other. For each agent, we organize the various policies
(local as well as those received from peers and express
their constraints) in a simple hierarchical structure that
yields the desired computations in a natural manner.

1.2 Contributions

We develop a policy-based approach for administer-
ing federated computing environments, such as those
enabled through the expansion of cloud computing
technologies. The novelty of the Licit approach lies in
its treatment of policies in a federated setting. Licit is
framed in the context of usage licenses for software
applications, and can be seen as demonstrating ser-
vice computing techniques to support further services.
However, the basic ideas of both licensing and of Licit
apply to resources in general—including databases, data
streams, sensors, and so on—that could potentially be
subject to a usage license.

1.3 Organization

The rest of this paper is organized as follows. Sec-
tion 2 formalizes the problem domain by laying out
various license types, scheduling strategies, the infor-
mation model, and the states in the life cycles of a
license and of a usage session. Section 3 provides a
technical view of the system in detail, including its
architecture, the representation of a license as a policy,
concepts of a scheduling policy, and the organization
of policies at a site. Section 4 presents an evaluation
of our implementation’s performance demonstrating its
feasibility in practical settings. Section 5 discusses the
relevant literature and some future directions.

2 FORMALIZING USAGE LICENSES

We describe the structure and elements of a usage li-
cense that formalizes a license that a licensee site would

have obtained for the benefit of its user community. We
propose a simple information model using which a site
can specify a vocabulary needed for evaluating its usage
licenses, i.e., determining whether a particular user re-
quest is valid according to a specific license. We begin
with a classification of the license types gathered from
interviews with academic IT experts and which arise
commonly in modern practice. From this classification,
we determine a base vocabulary that can be used to
state licenses. Table 1 captures the commonly occurring
usage license types. These examples illustrate a nearly
comprehensive list of licenses encountered in practice,
and hint at the type of licenses supported by Licit.

TABLE 1
Examples of commonly occurring usage licenses.

This license covers usage ...

® by faculty

® by anyone from Engineering

® by a person physically present within a certain geographic area
defined by zip code or by distance from the offices of the
licensing institution

® for research; or for a noncommercial purpose; or in an ed-
ucational activity (thus excluding business purposes of the
university)

® if permitted by a specified licensing server

® for one year

® of Matlab

® for a maximum of 100 hours

® by up to 100 students or faculty at any time

® for a maximum of 100 times

® on a specific machine

® on a machine located within a certain geographic area

® on a Linux platform

® on a machine owned by a specific owner

® on a machine with a maximum of four processors

2.1 An Information Model for License Attributes

Figure 1 presents an information model for the attributes
that may feature in licenses. The policy representation
of a license specifies the predicates that operate on
these attributes. Each site would use this information
model to specify its custom vocabulary of attributes. The
main benefit of developing an information model is to
overcome the challenge of heterogeneity, specifically, to
enable a site in a federation to interpret the terms in a
vocabulary that has been specified by another site.

A license vocabulary comprises attributes, each of ex-
actly one data type. The attributes involved in a license
describe the subject (prospective user), resource, action,
environment, and sometimes the license identifier. An
example of an attribute that describes the constraints on
a license—identified by a license identifier—is cumulative
usage. The environment attribute may indicate one or
more of the following: start or end time, and the iden-
tifier for the node on which resource is to be deployed.
An example of an environment type attribute, ie., an
attribute that describes the node, is number of processors.
We introduce another entity type, context, to include
attributes that characterize an association of more than

(o5}

associates
Context (Licit)
Organization [<-belongs-to— Vocabulary
License ID (Licit)
specified-in
|
Subject (XACML)
Licit Agent <resolved-by—| Attribute
<L Resource (XACML)
Dataty - T Action (XACML)
atatype y nformation
(XacML) [hastype entity <
Environment (XACML)

Fig. 1. Aninformation model for license attributes.

one of the subject, resource, action, or environment. An
example is the attribute permitted usage, which describes
permission of a subject to perform an action on a re-
source in an environment.

In a significant break from current approaches to
license administration [12], [13], [14], in our model, an
attribute is resolved by an agent (i.e.,, host, user, or
licensee) instead of a service location. This is unavoid-
able in a federated setting, since the location at which
to resolve any attribute associated with the host, such
as the number of processors, is known only at runtime.
This is because the host and thereby the node at which
the requested resource is deployed is also known only
at runtime. The agent-based solution enables such late-
binding of attributes to values because the licensee can
simply ask the appropriate agent, in this case the host,
to resolve attributes such as number of processors. To
this end, the licensee would provide values of some
attributes to determine the value of a requested attribute.
For example, to determine the number of processors of
a node, the licensee must provide the value for the
identifier attribute of the node.

We can now express a base vocabulary that includes
the attributes that feature in the license types of Table 1.
Table 2 classifies these attributes based on the entity
to which each applies. Read the first row of Table 2
as follows: The attribute role describes the subject and
is resolved by the licensee; example values for role
are “faculty” and “student.” Read the subsequent rows
following the same pattern.

Some attributes may be particular to the licensee and
must be resolved by it. Some licenses may be based on
information that can only be provided by the user, e.g.,
a user’s acceptance of the terms regarding the purpose of
use. We include these with the licensee.

Licit is not limited to the above attributes, and a site
may introduce additional attributes as needed. Whether
a site uses the above or its site-specific attributes, it needs
to specify the agent each attribute is resolved by so that
a licensee would contact that agent to request values for
those attributes.

Let us consider how an attribute vocabulary may
be used. Suppose Alice, a computer science student at

TABLE 2
Classification of attributes that feature in common licenses.

Attribute Describes Possible values Resolved by
Role Subject faculty; student Licensee
Department Subject computer science Licensee
User’s IP address Subject’s context 192.168.2.1 Licensee

User location
Purpose
Permitted usage
Period
Concurrent usage
Cumulative usage
Counted usage
Node name

Node location

Node operating system

Node ownership

Subject’s context
Subject’s intention
Request’s context
License’s context
License’s context
License’s context
License’s context
Compute resource
Compute resource
Compute resource
Compute resource

on campus; zip code
research; educational

Licensee or User
Licensee or User

Node type Compute resource

true or false Licensee
for one year Licensee
by up to 100 users Licensee
up to 100 hours by a group Licensee
five times Licensee
on a specific machine Host
zip code Host
on Linux platforms Host
on a departmental machine Host
with no more than four processors Host

NCCU (licensee), requests a usage session with Matlab
at NCSU (host). The host finds that a node is available so
it forwards the request to the licensee. The licensee finds
that its license for Matlab involves checking the subject’s
attribute department and the number of processors of the
node on which Matlab will be deployed. Therefore, the
licensee requests the value of this attribute for Alice
from its own (NCCU's) attribute service, which returns
“computer science.” Next, because the vocabulary states
that this attribute is resolved by the host, the licensee
requests the value of number of processors from the host
(NCSU) instead of its own attribute service. Based on the
above information, the licensee finds that it can provide
access to Alice.

It is to be noted that the challenge of determining a
value for an attribute rests with the attribute service.
A site may introduce any apparently idiosyncratic at-
tributes that make sense for its local needs. All it needs
to do is ensure that the attribute service can resolve such
attributes for the entity (e.g., licensee or host) involved.
For example, a site may introduce an ad hoc attribute
“social-influence” with values “high” and “low” and
use this attribute within a policy to decide which users
are to be accorded special treatment in accessing certain
resources. The attribute service on its part may calculate
a value for social influence by querying a social network
website. This ad hoc example is meant to illustrate that
Licit can work in a wide range of settings.

2.2 License and Usage Session Life Cycles

We model each license as an object with a life cycle. Not
surprisingly, different types of licenses exhibit different
life cycles and constrain possible enactments in different
ways. Additionally, we model a usage session as an
object with a life cycle of its own.

In Figure 2, the usage session’s life cycle starts when a
guest user’s request is accepted so that the provisioning
of resources may begin. The usage session at this point
becomes Active. A usage session may be suspended,
thereby making it Dormant, and a suspended session

Suspend
Resume

Initiate

End

End

Fig. 2. A usage session involving a licensed resource.

in use

(Suspend or

in use

Suspend or
" End session .
Initiate or resume session
Resume session Initiate session
End session
available available
Withdraw
. authorization Withdraw
Authorize authorization
usage Authorize
usage
null null

Fig. 3. Life cycles of a concurrent-usage (left) and a single-
usage license (right).

resumed, thereby making it Active once again. The user
can end the session from either Dormant or Active state.
Note that in Figures 2 and 3 the license life cycle is
interlinked with the usage session so that it is affected
by all events that affect the usage session.

Let us now consider a concurrent users license. In
Figure 3, Null means the license does not exist at the
host. Once a license is provided to the host it becomes
Awailable. Once a guest user’s request is accepted so that

the provisioning of resources may begin the license is
In Use. When the user suspends a usage session, the
corresponding license becomes Auvailable (for use). When
the suspended session is resumed, the license is In Use.
Finally, the license may be withdrawn.

The above life cycles are described in terms of state
diagrams. In general, different license types support
different state diagrams. For example, as Figure 3 shows,
a Single Usage license remains [n Use when the session is
suspended and becomes Null when the associated usage
session ends. A suspended session may be resumed,
making the session Active

In Licit, the state of a license is maintained by the
licensee even as the usage-sessions are instantiated in
a distributed manner at the various hosts. Doing so
enables us to support the use case where a host denies
access to a user because of the host’s local policies. In
this case, the user can try elsewhere.

2.3 Scheduling Strategies

Often an organization must optimize its license usage
according to its local needs. Usage licenses often pro-
vide a lot of flexibility in this regard. For example, a
typical license would specify the maximum number of
concurrent users. It would not specify which users, if
any, are to be accorded priority over others. Suppose
NCSU has obtained a license for 100 concurrent users.
NCSU could arbitrarily reserve 10 of the licensed seats
for faculty and only allow up to 90 student users. (Such a
static allocation is not necessarily optimal but may well
be sufficiently effective for the needs of a licensee: In
any case, it is the licensee’s prerogative to allocate license
seats according to its local strategies.) Alternatively, sup-
pose all 100 seats are taken. Now, if a request arrives
from another prospective user, NCSU has many choices,
including these:

o Deny the request.

o Preempt one of the current users to free up a license
seat, using a variety of strategies to choose which of
the current users would be preempted: For example,

— The one who has used the resources the most.

— The one who has the longest running session
(for fairness).

— The one who has the shortest running session
(to waste the least amount of work).

— The one with the lowest organizational rank.

o Suspend one of the current users to temporarily free
up a license seat using a variety of strategies such
as the above; when a license seat becomes available,
resume one of the (potentially multiple) suspended
users according to a suitable strategy.

o Delay the request, holding it in a queue, and serve
the request when a seat frees up; apply any of nu-
merous possible disciplines to maintain the queue.

The above examples seek to illustrate the rich variety
of strategies that an organization may apply while it

respects a usage license. In current practice, these strate-
gies are hardwired or handled in an ad hoc manual
manner, which is expensive and would not scale to
large federations. In this context, Li et al. [15] point
out the need for a scheduling mechanism that accounts
for requests distributed beyond the local domain. We
address the above need by formalizing a scheduling
strategy for a license as a policy, thereby abstracting it
out of the code and making it reusable. The licensee
checks the applicable scheduling strategy in deciding
upon a request.

When a new request arrives that results in a need for
scheduling, we need to carry out a comparison of the
request with all the other requests authorized by the
same license. In a federated setting, however, sessions
associated with various requests may be distributed
over various hosts. In such a scenario, performing a
federation-wide comparison or prioritization to deter-
mine the session associated with the lowest priority
request (according to whatever is the stated scheduling
strategy) requires the agents to cooperatively maintain
an annotated index of distributed instances. Section 3.3
describes a simple scheme to address this challenge.

3 TECHNICAL APPROACH: AGENTS AND POLICIES

The demands of the autonomy and heterogeneity of the
sites involved in federated license administration drive
us toward an architecture based on agents and policies.
Each site is represented computationally by an agent
who stores and applies the policies of the site. The agent
of each site deals with local users as well as with a
local runtime environment. The runtime environment at
each site manages the resources in consideration under
the control of the site’s agent. Additionally, the agent at
each site also plays the role of a licensee that provides
license and scheduling decisions. The agents have no
direct control over other agents, because each agent is
autonomous, reflecting the real-world autonomy of the
participants in a federation. However, the agents can
communicate requests and decisions to each other.

Based on the foregoing, the following scenario de-

scribes how a typical episode of license administration
might proceed.

o The licensee creates policies pertaining to the spe-
cific license of interest along with a vocabulary that
describes the attributes referenced in the policies.
The description includes the agent who would re-
solve each attribute along with other supporting
information.

» Using hierarchical site policies, a licensee and host
create a service agreement wherein the host would
support the licensee’s users for a particular resource
(i.e., executable image). They also configure them-
selves with information on how to contact each
other.

A user requests permission to use a resource at the
host site that the runtime environment forwards to
the Licit agent.

o The host’s agent applies its site policies to determine
how to proceed. In particular, the host’s agent may
use a policy decision point (PDP), realized over
a policy engine, to make the decision regarding
whether to permit the initiation of the usage session.
The PDP obtains the requisite information from an
attribute service. If the host grants the request, it
forwards the request to the user’s licensee for a
license check.

o The licensee, in a manner similar to that of the host,
uses a PDP to perform a license check. Here the
licensee may request its own attribute service or (in-
directly) that of the host to resolve some attributes
so as to reach a decision.

o If a conflicting demand exists and a scheduling pol-
icy applies, the licensee uses the scheduler that—as
described in Section 2.3 and Section 3.3—determines
how to prioritize between the current request and
other running instances. If, according to the schedul-
ing policy, some instance needs to be terminated
then the licensee notifies the appropriate host’s
agent. The host’s agent in turn notifies the runtime
environment.

o If the decision to the current request is favorable and
a scheduling policy exists that applies to it now, or
may apply to it in the future, then, before replying,
the licensee records information such as (1) the re-
quest identifier, (2) the host at which the request will
be instantiated, and (3) the normalized value of the
attribute specified in the ranking criteria—described
in detail in Section 3.3. Thus, the licensee builds an
active-requests log that serves as an annotated index
to the distributed instances.

e If the host receives a favorable decision, it asks
the runtime environment to make the requested
resource available to the user.

o The runtime environment produces a cryptographic
token, which the agent conveys to the user.

o The user interacts with the runtime environment
directly using the above cryptographic token.

Figure 4 depicts the main elements of our proposed
architecture. These modules are installed at each site
to enable it to participate in federated license admin-
istration. The user (or, rather, the user’s agent) requests
initiating, terminating, and suspending usage sessions.
The user agent may also decide to request another host
if its preferred host fails. Additionally, the user may
provide values for specific attributes if requested.

The attribute service abstracts over a variety of mech-
anisms for obtaining values for any attributes of interest
needed to evaluate the request with respect to the li-
cense. Such attributes pertain to the user, to the user’s
context, to the host, to ongoing interactions relevant to
usage licenses, to the states of relevant licenses, and even
to legacy license managers such as FlexNet, which we
revisit in Section 5.1.

The Licit agent is the cornerstone of our approach as
it acts as the host or the licensee, depending on the con-

Run-Time Environment

Provisioning
Agent

Licit Agent
N

u
Schedule
Store

Licit

User Agent Scheduler

Attribute
Service

Attribute

Vocabula
Finder v

Store
v

Fig. 4. Anillustration of our architecture. Here the PDP refers to
a policy decision point, which is the standard policy architecture
component that applies policies to determine a decision as to
allow or deny the given action.

text. The Licit agent comprises the attribute finder that
uses the vocabulary to direct queries to the appropriate
attribute service, the PDP that interprets licenses and
site policies stated in XACML, and the scheduler that
evaluates the scheduling policy.

3.1 Background on XACML and Scheduling Policies

Each XACML policy primarily considers four entities of
interest: (1) subject (the entity that initiates the request);
(2) resource (the entity to be used, such as instantiable
software, as in our setting); (3) action (which the subject
would perform on the resource); and (4) environment
(which gathers other relevant information about the
computational or user context, such as time and date).
We adopt the eXtended Access Control Markup Lan-
guage (XACML) [16], which has emerged as the leading
standard for stating policies. XACML 2.0 (XACML) sup-
ports defining attributes and matching predicates and is
sufficient for the scope of Licit. We did not find any
new feature available in XACML 3.0 [17] necessary for
our purposes. Therefore, to increase the generality of
our approach, we assume only the weaker XACML 2.0
language.

3.2 Capturing Licenses as Policies

XACML provides the following elements: policy sets,
policies, rules, and conditions. A policy set comprises other
policy sets or policies; a policy comprises rules; and, a
rule comprises conditions. In Licit, we use the XACML
elements as follows. We group all the usage licenses for
an organization in a single all-enclosing policy set. A
policy set or policy elements in the enclosing set express

a license for a single resource. Although Licit does not
limit the type of action, in our setting, the only relevant
action that can be performed on the resource is “execute”
because the resources here are installed software images.
Constraints on the action are specified by rules that
include the specific conditions under which the action
is licensed.

The following snippets illustrate our XACML repre-
sentation for licenses. The snippets when put together
specify NCCU'’s license that states that any user from
NCCU is permitted to execute MATLAB, but only on a
node running “Windows 7” that has no more than two
processors.

» As mentioned above, policy sets group all licenses
for an organization. Hence, in the example be-
low, the match criterion in the policy set element
specifies that subject:org-id, a standard XACML at-
tribute meaning the subject’s organization, must
equal “NCCU.” Thus policies in this policy set apply
to a request from anyone from NCCU.

<PolicySet PolicySetld="NCCU:LICENSES”>
<SubjectMatch
Matchld="function:string —equal”>
<AttributeValue> NCCU </ AttributeValue>
<SubjectAttributeDesignator
Attributeld="subject:org—id” />
</SubjectMatch>
</PolicySet>

« Enclosed in the policy set above, another policy set
element specifies a license for a single resource. In
the example for a MATLAB license listed below,
the policy set specifies that resource:prettyname, an
attribute declared in the licensee’s vocabulary, must
be tested for string equality with the name (here,
“MATLAB”) of the resource to which this license
applies.
<PolicySet

PolicySetld="NCCUMATLAB:LICENSE”
<ResourceMatch
Matchld="function:string —equal”>
<AttributeValue>MATLAB</ AttributeValue>
<ResourceAttributeDesignator
Attributeld= "resource:prettyname”/>
</ResourceMatch>
</PolicySet>

o Enclosed in the policy set element from the pre-
vious listing, the policy element here corresponds
to the license for a group of users to carry out an
action. The group of users may be defined using the
SubjectMatch element as shown in the first listing.
However, since the example license is for all users
from NCCU, we only need specify that the attribute
action-id, a standard XACML attribute, must have the
value “execute.”

<Policy
Policyld="MATLAB:LICENSE:TO:EXECUTE ">
<ActionMatch
Matchld="function:string —equal”>
<AttributeValue>execute</AttributeValue>

<ActionAttributeDesignator
Attributeld="action:action—id” />
</ActionMatch>
</Policy>

Finally, the rule element specifies the Condition and
Effect that determines whether to permit or deny a
request if the stated conditions are met. In the Licit
approach, the effect is always to permit because it
is only when an action is permitted under some
condition that it is included in the license. The
condition element specifies a conjunction or disjunc-
tion of nestable Boolean functions that operates on
attributes and values. The example below specifies a
condition to check that the operating system (given
by the attribute node:0S) equals “Windows 7” and
the number of processors (given by the attribute
node:processors) does not exceed two.

<Rule Effect="Permit” Ruleld="CommitRule”>
<Condition Functionld="function:and”>
<Apply
Functionld="integer —less —than—or—equal”>
<SubjectAttributeDesignator
Attributeld="node:processors” />
<AttributeValue>2</AttributeValue>
</Apply>
<Apply
FunctionIld="function:string —equal”>
<SubjectAttributeDesignator
Attributeld="node:0S” />
<AttributeValue>Windows 7
</ AttributeValue>
</Apply>
</Condition>
</Rule>

In special cases, for example, of licenses based on
concurrent users that require accounting, the policy
element above includes an obligation element. The
obligation requires the licensee to count the license’s
usage when the license evaluation results in grant-
ing the permission.
<Obligations>
<Obligation
Obligationld="count_license”
FulfillOn="Permit”>
<AttributeAssignment
Attributeld="1license_id”
DataType="XMLSchema#string ">TC—010
</AttributeAssignment>
</Obligation>
</Obligations>

A request is processed as follows. The subject’s
organization determines which top-level policy set
to use. The request is evaluated against the next
level policy set that specifies the resource requested.
Finally, the action requested and possibly other
attributes of the subject determines the applicable
policy where relevant conditions in the rule deter-
mine the effect. If the license contains an obligation,
the licensee creates a checked-out record that corre-
sponds with the in-use state in a license’s life-cycle.

o Since XACML combines the outcomes of all the
policies that apply, we need to consider the case that
Alice may be able to use MATLAB either because
she is enrolled as a student in Engineering or is
employed as a staff member in Science. Thus, we
disjoin multiple licenses by setting PolicyCombiningAl-
gld to “permit overrides,” because Alice must not be
denied access to MATLAB just because she does not
have access to some other resource. Similarly, at the
rule level, we always set RuleCombiningAlgld to “permit
overrides,” because we want a usage request to be
granted if it is permitted under any rule.

<PolicySet PolicySetld="NCCUMATLAB:LICENSE”
PolicyCombiningAlgld=
”policy —combining—algo:permit—overrides”>

<Policy Policyld="MATLAB:LICENSE:TO:EXECUTE”
RuleCombiningAlgld=
“rule—combining—algo:permit—overrides”>

3.3 Expressing Strategies as Policies

A scheduling strategy identifies the license to which it
applies. Given the currently active sessions, the strategy
determines whether the incoming request should be
rejected or a response to it delayed. Or, whether one of
the active sessions should be preemptively suspended
or ended after some time to free the license needed to
accept the incoming request.

Since a XACML response can only be permit or deny,
we need to go beyond XACML to treat strategies prop-
erly. All scheduling policies can be grouped together for
an organization, as we showed above for the licenses.
Further, each scheduling policy must include—what is
known in XACML terms as—the target that includes
exactly one LicenselD element that identifies the license to
which the policy applies. However, beyond this, licenses
and scheduling policies differ. As seen in the listing
below, scheduling policies hold additional information.
In particular, a scheduling policy contains information
regarding the ranking criteria and the preemptive action
to take after some time on the lowest priority request
determined by the policy.

We capture priorities among requests through a sim-
plified representation of the ranking criteria based on the
values of a specified attribute, for which we provide a
list of values, sorted from least to highest priority. For
example, we may assert that priority is determined by
the attribute Role using a list (student, faculty), which
indicates that a request from a student is ranked lower
than that from a faculty member.

<SchedulingPolicies>
<OrganizationName>NCCU</OrganizationName>
<Policy>
<LicenseID>TC—-010</LicenselD>
<PreemptiveAction>
<Action>End</Action>
<Time>0</Time>
</PreemptiveAction>

<RankingCriteria>
<Criterion>
<Attributeld>role</Attributeld>
<ListOfValues>
<Value>student</Value>
<Value>professor</Value>
</ListOfValues>
<SortOrder>Ascending</SortOrder>
</Criterion>
</RankingCriteria>
</Policy>
<SchedulingPolicies>

Notice that Licit separates licenses from strategies,
although both licenses and strategies are represented
computationally as policies. This separation facilitates
authoring and reuse of licenses and strategies.

Scheduling proceeds as follows. Upon receiving a
request, the licensee first checks the license to determine
whether the request is legal with respect to any of
the stated licenses. If so, the licensee checks whether a
scheduling policy applies to the request. A rescheduling
policy (specified using XACML and different from a
scheduling policy) for a license is identical to the license
in all respects except that the action is reschedule instead
of execute and there is no check for constraints related
to the attribute concurrent users. Thus, a rescheduling
policy presupposes that the request was denied only due
to constraints on concurrent users and that rescheduling
could help. The licensee then looks at the scheduling
policy and it determines whether and, if so, which of
the current users to preempt.

As Sections 2.3 and 3 describe, requests may be dis-
tributed at hosts anywhere in the federation. Due to com-
munication overhead and reliability concerns, it would
generally be inadvisable for the licensee to attempt to
prioritize among requests by coordinating with several
hosts at the time when a decision on a new request is to
be made. To avoid having to communicate with multiple
parties, we provide an index sorting mechanism. The
index is sorted using a normalized value calculated as
follows: Before granting any request, the licensee always
locally stores a normalized value of the ranking criterion
for the request. For example, if the criterion is based on
attribute Role and is specified by (student, faculty) and
the request is from a student, the normalized value is
one. It is simply the ordinal position of the value of the
attribute in the list. Similarly, if the value is a date, the
normalized value is the time in milliseconds from the
Unix epoch (00:00:00 UTC on 1 January 1970). This list
of normalized values then becomes a locally available
index that a comparator can easily sort, ensuring both
speed and reliability.

3.4 Structuring Policies for Enactment

As explained above, we capture the local preferences of a
site, the various licenses, and the strategies to be applied
during license administration as policies. Further, so
as to uniformly accommodate the above policies, we
organize them hierarchically using XACML's Reference

element. As seen in Figure 5, at the root level are the
local policies of a site viewed as a host. These apply to
every request and are stored in the same policy set. An
example local host policy might be “Take no requests
between 10:00 AM and 12:00 PM.” Policies at the next
level down capture the host’s business relationships with
various licensees. An example host policy pertaining to
a licensee might be “Take no requests from NCCU on
weekends.” These policies are stored in separate policy
sets, one for each licensee. Once the host has enforced
its policies, it forwards the user request to the licensee,
which then performs a license check and applies any
scheduling policies. All licenses from a licensee are held
in the same policy set, as explained earlier.

NCSU’s Federation-Wide Policies

v
NCCU-Specific
Policies

ceades

A 4
NCSU-Specific
Policies

\ 4
UNC-Specific
Policies

v v v v
. H ‘ ‘BloHPhyHEng‘ ‘ ‘

Fig. 5. Representation of hierarchical policies.

4 IMPLEMENTATION AND EVALUATION

We have applied our approach in formalizing the entire
set of licenses illustrated in Table 1. Each license type is
captured via a templatic policy that can be instantiated
for an instance of that license type that yield an exe-
cutable policy. We have also formalized as policies some
sample scheduling strategies based on time information
about sessions, such as their duration.

4.1 Policy Engine

Our policy engine is adapted from an open-source
XACML implementation provided by Oracle (previously
Sun) [18]. Specifically, we implement the following ab-
stract classes. One, the Policy Finder loads policies from a
data store. Currently, the data store is a directory in the
file system. This class enables enforcing a hierarchical
application of policies that protects the host’s interest, as
Section 3.4 describes. Two, the Attribute Finder resolves
the attributes that occur in a XACML policy. Three, the
Scheduler maintains the index to the distributed instances
and loads, interprets, and enforces scheduling policies.
However, neither the scheduling policies are expressed
in XACML nor the Scheduler is part of the XACML
specifications, it is mentioned here only to list the three
important modules that enable policies in our approach.
Our implementation enables each agent to interpret the
attributes occurring in policies based on the information
model described in Section 2.1 above.

Upon receiving a request, the policy engine deter-
mines the applicable license. For each attribute that the
license references (here, the subject’s department), the
policy engine indirectly contacts the attribute service via
the agent who is supposed to resolve the attribute. The
policy engine then computes a decision based on the
attribute values it obtains.

4.2 Realizing Licenses on Apache VCL

Apache VCL, an Apache top level project [8], is an open-
source toolkit for managing a cloud environment for
sharing computational resources among collaborating
organizations [7]. VCL is widely deployed in academic
settings wherein users (mostly students or researchers)
can execute software images for preallocated amounts of
time.

When a user signs in, the VCL portal offers a list
of resources that the user may request. The user may
request the next available time slot or specify an ac-
ceptable interval. Taking into consideration ownership
and licensing, the VCL portal determines the machine on
which to provision the request. VCL currently performs
only a rudimentary usage license check. We enhance it
by replacing its license checking module with a request
to our agent, that in turn treats the VCL Daemon (VCLD)
as the resource framework that would provision the
necessary resources to instantiate the request.

4.3 Performance Evaluation

Licit is a distributed approach wherein each license eval-
uation and associated scheduling decision is based on
data aggregated by from one or more agents distributed
across the federation. In such a setting, simply estab-
lishing correctness is insufficient because the system is
unusable if it does not scale to handle thousands of users.
Below we describe pertinent performance tests centered
on the load understood as the number of concurrent re-
quests made for resources. Note that concurrent requests
is a significantly clearer requirement than concurrent
users in the system since users may request resources
at different times.

To evaluate the performance of our functional proto-
type, we set up the host and licensee on different ma-
chines with simulated users and an attribute authority
running on the same machine as the licensee. Thus,
this setup models a scenario where a user from one
organization requests compute resources from a host
elsewhere such that the host has to go back to the
licensee to check on licenses before making a resource
instance available. For each machine we used the default
configuration of the JBoss Application Server™ v4.2.3
with Java Runtime Environment™ 5.0.22. The machines
we used had 3.37 GB RAM with two Intel Xeon™ 1.66
GHz dual core processors and ran the Windows XP
Professional (version 2002) operating system.

To cover functional tests, we consider licenses based
on conditions and attributes from Table 2 that fall under
one or more of the following classes:

o Host-resolved (e.g., Node OS).

o Licensee-resolved (e.g., Department).

o State-based (e.g., Counted).

o Rescheduled (e.g., Concurrent users).

o Combining host- and licensee-resolved attributes.

o Attributes aggregated from multiple sources.

Next, for each license, we designed two requests such
that one would result in a permit and one in a deny
decision. Thus, we had 20 test cases in all from ten
licenses that cover the criteria stated above. Beyond
establishing correctness, the functional test cases help us
evaluate the performance of our implementation.

Using the TestNG framework [19], we created a test
suite that simulates a user by sequentially submitting the
test cases in a single invocation of a thread. We simulated
concurrent requests by increasing the number of threads.
In TestNG terms, a test group is an abstraction that calls
a test method. Among other parameters, this test group
can be configured with invocation count that determines
how many times the test method will be invoked and the
number of threads that will complete the invocation. We
created ten groups with the number of threads set to one,
two, four, and so on up to 512, and the invocation count
set to 256. Thus each group simulated a different number
of concurrent requests. All the groups called the same
test method 256 (invocation number) times, irrespective
of the number of threads. Since the test method itself
made 20 requests corresponding to the 20 test cases, each
run of a group made 5,120 (256 times 20) requests for
decisions. One cycle of testing ran the ten groups.

For each request, we logged its start and end times,
test case name, decision, and the number of active
threads. Since the positive and negative test cases were
named appropriately, a simple visual inspection of the
output, sorted on the test case name, was sufficient to
verify the correctness of our implementation in permit-
ting and denying requests.

The evaluations of the requests do not all require
the same amount of computations. For example, a li-
cense based on the role of the user alone requires no
accounting. By contrast, a license based on the number
of concurrent users may require accounting and possibly
rescheduling. We created ten additional licenses based
on the concurrent users attribute. From these licenses, we
fashioned two additional cycles of tests: one where the
licenses only had to be accounted for and another that
required rescheduling as well. In each of the three cycles,
we initialized the licensee’s PDP with 4,000 licenses in
all, including the licenses related to the test cases.

For the data in Figure 6, we calculated the reciprocal
throughput for n concurrent requests as the ratio of the
elapsed time to the number of requests in that run. We de-
fine the elapsed time as the time taken between the first
submission among the n requests and the response re-
ceived on the completion of the n'" request. We observe

10

125 o
o 3
g i
v
= '
2. 100| g
'5 1 .
E ' - ¢- No accounting
1 .
,EQ‘ ¥ -t Accounting
't .
7 B —o— Rescheduling
S &
ol
=
Rer
|9}
2 50
s\\ - -

1 2 4 8 16 32 64 128256 512
Number of concurrent requests

Fig. 6. Relationship between reciprocal throughput and number
of concurrent requests (shown in a log scale).

that, as the concurrent load on the system increases, the
throughput improves and then levels off. We observe
that throughput improves significantly for up to four
concurrent requests and then levels off, possibly because
the machines used had four cores in total.

= 12800 $
E 6400

]

£

2 1600

g

S

Q.

n

o 400

&

S P - - No accounting
g 100 '__I = -t~ Accounting

< l —o— Rescheduling

1 2 4 8 16 32 64 128256512
Number of concurrent requests

Fig. 7. Relationship between average response time and the
number of concurrent requests. Both axes are in the log scale.

For Figure 7, the average response time was calculated
over the entire population of samples collected from each
run of a test group. In the graph, error bars for +1
standard deviation—calculated using the STDEV function
in Microsoft Office Excel—from the average response
time are shown: The standard deviation in these runs
is on the order of 35% of the mean value. We see that
the response time increases linearly with the number of
concurrent requests.

It is worth considering the practical impact of these
results. It is clear that increasing the number of concur-
rent requests increases the response time. However, our
experiments consider a particularly demanding setting

wherein multiple users make quasi-simultaneous requests.
Specifically, we generated peak request rates of greater
than 60 per millisecond. A bursty load from a laboratory
session for a university course would generally not have
that many user requests hit the servers within the same
millisecond. To validate the above intuition, we analyzed
usage data obtained from NCSU’s VCL installation over
the entire semester of Spring 2012. We found that there
were only six cases of two requests placed within the
same second and there were zero cases of three or more
requests placed within the second. Thus our tests exceed
the needs of current usage patterns by a wide margin.

The longer response time seen in Figure 7 occurs
because our test suite creates a sustained load of simul-
taneous requests that leads to a request queue building
up. Thus, each decision request is simply spending time
waiting to be processed. In any case, in cases where
our system failed, it simply discarded the decisions
and resumed normal operation when the bursty load
subsided and more manageable loads resumed.

It is to be noted that some implementations of
XACML, including the one in Python that one of the
authors occasionally contributes to [20] and the one in
Java that we used for our evaluation [18], process the
policies such that the performance suffers linearly with
the number of policies in the system. Perhaps in antici-
pation, XACML specifications [16] suggest an approach
for policy indexing wherein the policies are stored in
a database and the PDP queries only the applicable
policies before evaluating them. In Licit’s case this is
the approach we took so that we cached the policies
and indexed them by organization name, resource name,
and action. Since all requests carry this information, the
applicable policies can be easily retrieved.

Recently, Liu et al. [21] and others [22] have also tried
to address the problem of linear performance. Our ap-
proach could be ported to any XACML implementation
in principle. However, the above two implementations
are still quite weak and lack sufficiently strong support
in terms of bug fixes and continuing enhancements.
Further, the lack of a standard API for XACML addi-
tionally complicates the porting task. Note that our
implementation is open source and interested parties are
welcome to port it to the XACML implementation of
their choice.

4.4 Reproducibility of Results

Our entire code base is available as an open source
project at http:/ /www.opensource.ncsu.edu/LICIT.

In addition, the experimental setup described above
for performance evaluation is available as an instantiable
image. Readers are welcome to contact the authors to
obtain access to that image.

5 DiscussioN

We find that a policy-based approach to federated us-
age license administration works naturally. It helps us

11

capture the local concerns of each site while supporting
collaborations between them. Whereas existing compu-
tational approaches for policies concentrate on low-level
matters such as access control, we need policies dealing
with the construction of cross-organizational partner-
ships. Thus Licit, by handling usage licenses well, can
provide a well-grounded entry point into the study of
policies in cross-organizations broadly.

Our approach makes licensing-relevant interactions
explicit within a federation. Thus it can naturally support
richer forms of accounting of licenses, such as where
the licenses are being used and by users with what
attributes. Such accounting can provide valuable insight
needed for system administration, especially, in fine-
tuning the strategies through which resources are allo-
cated by an organization.

We are in discussions regarding moving our imple-
mentation of Licit into production.

5.1 Relevant Literature

FlexNet Manager [12] is the industry leader in software
usage license administration. It enables a software ven-
dor to specify licenses in terms of the features of its
product and helps a user organization monitor its license
usage for various software products. Licit is more flexible
than FlexNet and supports specifying licenses based on
selected attributes of the subject, resource, action, and
environment. Licit not only supports a customizable
vocabulary, if necessary, it can also work on top of an
existing FlexNet installation. Additionally, we support
specifying attributes, such as number of processors, which
are resolved by an host agent known only at run time
(see Section 2.1). FlexNet does not support scheduling
of licenses, which is supported in Licit. Further, Licit
does not require software vendors to embed a license
agent into their software. Instead, Licit handles license
administration modularly through an external agent,
which moreover can comply with the local needs of each
site. The terms of each usage license can be negotiated
between the software vendor who provides the resource
and the licensee. A policy can be authored for each
license, although most practical licenses would follow
the templates illustrated by the examples of Table 1.

Competing research approaches for license adminis-
tration are centralized. For example, in connection with
TeraGrid, Ogawa et al. [23] propose an architecture and
approach for licenses that hands over the tasks of license
administration totally to the service provider. In other
words, the service provider obtains the licenses and
merely bills the user. Although the licenses and the
computational resources may be obtained from different
vendors, the two are conflated by the service provider.
The user organization is thus unable to communicate
or employ its existing licenses. Further, the user orga-
nization is unable to apply its strategies for reallocating
resources among its various users.

Perry and colleagues [24], [25], [26] also propose
policy-based licenses. However, these works do not sup-

port federated settings and do not provide a systematic
vocabulary with which to specify licenses. Further, un-
like Zhao and Perry [24], we do not require an ontology
for licenses. We apply the XACML standard to state
licenses as policies. Importantly, Noorian and Perry [27]
describe patterns of licenses that corroborate the license
types we presented in Section 2.

The European Union’s SmartLM project [28], [14] rec-
ognizes the same situation as Licit, namely, that the
challenge of licensing is the main obstacle to the ex-
pansion of cyberinfrastructure technologies. However,
SmartLM’s technical approach is different from Licit’s
in some key respects. SmartLM emphasizes service level
agreements between a user organization and a provider.
In this respect, SmartLM is similar to Ogawa et al.’s
approach, as described above, and different from Licit.
Licit supports cases where the licenses belong to the
user organization—that is, they are prepaid. The Licit
approach, although not the current implementation, can
also accommodate cases that require incremental pay-
ment for licenses. Further, Licit includes support for
licenses for being transmitted under the control of the
licensee (user) organization, whereas SmartLM appears
to treat licensing in a manner that hides considerations
of licensing from the user organization. In SmartLM, the
orchestration service coordinates between licensee and
host but only for the coordinated allocation of licenses
and resources.

More generally, however, SmartLM does not support
federation in that it provides neither an interaction
model using which heterogeneous sites can communi-
cate nor an information model for the bases underlying
license application. As we showed above, there are nat-
ural situations in current practice where the licensee and
host must cooperate to resolve the value of a particular
attribute. A telling example is the attribute number of
processors. Thus SmartLM does not handle some impor-
tant types of licenses that Licit accommodates. Also,
a scheduling mechanism that compares distributed re-
quests is missing.

GenLM [29] deals with the broad problem of licensing
in grid and cloud environments. However, GenLM takes
a quite different stance from that taken in Licit. In
GenlLM, a user sends a request (including a claimed
license) to a provider (host in our terminology) and
the host contacts the licensor to determine if the user
has claimed a valid license. GenLM’s technical contri-
butions are in how it handles the messaging protocols,
especially with regard to encryption and digital sig-
natures. In contrast, we treat the above as established
infrastructure. Our contribution is in how licenses are
administered in terms of each host’s policies and each
licensee’s strategies, which could depend on attributes
not included in the license itself. Hence, we include a
flexible information model using which a licensee could
specify its own vocabulary.

GenLM addresses the challenge of lost messages by
forcing a handshake in the spirit of the two-phase com-

12

mit protocol for distributed transactions. We take an
optimistic approach. Specifically, in Licit, if a message
that checks in a license is lost, the state of the license
at the licensee may spuriously get stuck in in use. We
address this problem through a simple mechanism of
leases wherein a license expires by default after a time
period (specified by the user) for which the session is
expected to last, unless it is renewed in the meantime.
Our agent-based architecture supports another solution,
namely, one in which the licensee conducts periodic
checks with hosts: this is not yet implemented in Licit.

Kung et al. [30] posit four desirable features of in-
frastructure that supports authentication, authorization,
and accounting. First, the infrastructure must allow sub-
jects from one organization to use resources in another.
Second, the infrastructure must be resilient to security
attacks. Third, the infrastructure must facilitate usage via
single-sign-on technologies. Fourth, the infrastructure
must support heterogeneity. In our setting, resilience is
achieved through the lower-level virtualization technolo-
gies and single-sign-on is provided by the federation
through existing methods. We can safely assume that we
would entertain only requests that originate from within
the federation. The Licit approach clearly supports Kung
et al.’s first and fourth requirements, especially due to
our use of the XACML standard.

The Rights Expression Language [31] (REL) includes
elements—agents, resources, rights, constraints, and
requirements—that correspond to subject, resource, ac-
tion, rules and conditions, and obligation in XACML.
Thus XACML and thereby Licit are equivalent in expres-
siveness to REL. However, Licit provides scheduling,
ad hoc specification of vocabularies, and late binding
of values to attributes like number of processors that are
resolved by the host. These features are essential in the
self-service federated environment that is the setting for
Licit.

A reduced profile of REL, such as Open Data Rights
Language (ODRL) [13], can also be used to express
the licenses described in the earlier sections. However,
agents do not figure in the ODRL model. At best,
ODRL provides the context element, Service, to identify a
location—not an agent—that would resolve an attribute.
And, as we showed in Section 2.1, doing so is not
sufficient in federated settings. Although the URI meant
to define a Service in ODRL can also be used to name
an agent, ODRL did not intend for the semantics to be
such. In any case, to accommodate our scenario, ODRL
would need to be extended to support important licenses
available in Licit, such as the concurrent use license.
Dahlem et al. [32] agree on the need to extend ODRL
to express software usage licenses.

The body of work by Gangadharan and colleagues on
extending ODRL and presenting a sophisticated analysis
of service licenses [33] and license composition [34] is
valuable. If necessary, their insights can be incorporated
into Licit due to XACML’s equivalence in expressiveness
with REL. Interestingly, Gangadharan et al. [35] affirm

the need for consumer-specified licenses in federations
but address it at the level of subsumption between
provider and consumer specifications. More recently,
Truong et al. [36] call for a participatory effort toward
standardization of terms for modeling data contracts.
We conjecture that our vocabulary-based declarative ap-
proach could play well as a low-level mechanism that
enables consumers to address challenges in realizing
consumer-specified licenses. Related to the above is Con-
way et al.’s [37] approach for data governance using the
iRODS system. Our approach could facilitate expanding
such work to federated environments, where there are
of necessity multiple loci of policy application.

5.2 Directions

Each organization may potentially use its own strategies
for dealing with different license types. However, in
practice each organization would converge to a few
“best practice” strategies that its administrators find
acceptable and which interact well with the strategies
adopted by the organizations with which it interacts.
An important future direction is to enhance Licit in
two respects. First, for most system administrators, Licit
should come ready with a small number of strategies,
judged to be sound by us and validated with our target
user community. Licit will include a simple dashboard
by which a system administrator may specify (i) which
existing strategy to use for which specific license (de-
pending on its license type); and (ii) any parameters to
be specified for that strategy. For example, a possible
strategy may be to limit the amount of time each user
is alloted on an application when its usage load goes
above a specified threshold—the parameters would be
the usage load threshold and the time alloted to each
user. Second, Licit should provide a simple enactment
tool that supports simulating the usage of different
resources as well as the messages sent and received
based on specified strategies. In this manner, system
administrators could determine if the strategies they
choose are unstable or imperfect in other ways.

The development of policy-based approaches for var-
ious system administration tasks is a major trend in in-
dustry and academia. Over the last few years, a number
of policy approaches have been proposed for resource
management in the Grid, for example, by Dumitrescu
et al. [38] and Wasson and Humphreys [39]. Such ap-
proaches are valuable but they largely disregard cross-
organizational aspects. Udupi and Singh [40], [41] use
the term governance for a way to administer resources in a
cross-organizational setting, and develop a policy-based
approach for governance. Udupi and Singh propose a
more expansive architecture than we use in Licit, though
license administration is a particularly important variety
of governance. Udupi and Singh’s architecture includes
a Policy Organization Point (POP), which supports the
modification of organizational relationships. Although
we follow Udupi and Singh’s approach in conceptual

13

terms, in the interest of developing a robust, ready-to-
deploy system, in Licit, we have omitted the machine
representation of extensive organizational relationships
and reasoning and modifications about such representa-
tions.

Indeed, Licit demonstrates a particularly important
and immediate example of the problem of governance of
federated systems, which is drawing the attention of sev-
eral researchers [9]. Specifically, Singh [42] has recently
developed a representation for cross-organizational “so-
ciotechnical” systems based on normative relationships
such as commitments, authorizations, prohibitions, pow-
ers, and sanctions. These normative relationships help
characterize a federated system declaratively in concep-
tual terms by providing a basis for capturing the interac-
tions of autonomous parties. Each relationship provides
a basis for the policies of the interacting parties. We hope
to investigate the enhancement of Licit to accommodate
such broader, normative, forms of governance in cross-
organizational settings.

ACKNOWLEDGMENTS

This work was supported partially by the NCSU ITng
initiative. We benefited from discussions with Matthew
Arrott, Wayne Clark, Aaron Peeler, Josh Thompson,
David Thuente, and Mladen Vouk. In particular, Aaron
Peeler provided us statistics regarding VCL usage. We
are also indebted to the anonymous reviewers for helpful
comments.

REFERENCES

[1] I T. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” CoRR, vol. abs/0901.0131,
2009, http:/ /arxiv.org/abs/0901.0131.

[2] H. E. Schaffer, S. F. Averitt, M. 1. Hoit, A. Peeler, E. D. Sills, and
M. A. Vouk, “NCSU'’s virtual computing lab: A cloud computing
solution,” IEEE Computer, vol. 42, no. 7, pp. 94-97, Jul. 2009.

[3] M. B. Blake and M. N. Huhns, “Web-scale workflow: Integrating
distributed services,” IEEE Internet Computing, vol. 12, no. 1, pp.
55-59, Jan. 2008.

[4] S. Lu and]J. Zhang, “Collaborative scientific workflows,” in
Proceedings of the 7th IEEE International Conference on Web Services
(ICWS). Los Angeles: IEEE Computer Society, 2009, pp. 527-534.

[5] J.Zhang, D. Kuc, and S. Lu, “Confucius: A scientific collaboration
system using collaborative scientific workflows,” in Proceedings
of the 8th IEEE International Conference on Web Services (ICWS).
Miami: IEEE Computer Society, 2010, pp. 575-583.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp. 50-58, Apr 2010.

[71 M. Vouk, S. Averitt, M. Bugaev, A. Kurth, A. Peeler, H. Shaffer,
E. Sills, S. Stein, and J. Thompson, “Powered by VCL-using
virtual computing laboratory (VCL) technology to power cloud
computing,” in Proceedings of the 2nd International Conference on
Virtual Computing Initiative, Research Triangle Park, NC, May
2008, pp. 1-10.

[8] Apache, “Virtual Computing Laboratory (VCL),” 2012, an Apache
Software Foundation top level project: http:/ /vcl.apache.org/.

[9] F Brazier, F. Dignum, V. Dignum, M. N. Huhns, T. Lessner,
J. Padget, T. Quillinan, and M. P. Singh, “Governance of services:
A natural function for agents,” in Proceedings of the 8th AAMAS
Workshop on Service-Oriented Computing: Agents, Semantics, and
Engineering (SOCASE), 2010, pp. 8-22.

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. Park and R. Sandhu, “The UCON 4 pc usage control model,”
ACM Transactions on Information Systems and Security, vol. 7, no. 1,
pp. 128-174, Feb 2004.

M. Winslett, “Policy-driven distributed authorization: Status and
prospects,” in Proceedings of the 8th IEEE International Workshop
on Policies for Distributed Systems and Networks. Bologna: IEEE
Computer Society, June 2007, pp. 12-18.

Flexera, “License administration guide,”

[33]

[34]

http:/ /www.globes.com/support/utilities / LicenseAdministration.pdf.

R. Jannella, “Open data 2002,
http:/ /www.w3.org/TR/odrl/.

C. Cacciari, D. Mallmann, C. Zsigri, F. D’Andria, B. Hagemeier,
A. Rumpl, W. Ziegler, and J. Martrat, “SLA-based management
of software licenses as web service resources in distributed envi-
ronments,” in Proceedings of the 7th International Workshop on Grid
Economics and Business Models, ser. LNCS, vol. 6296. Ischia, Italy:
Springer, August 2010, pp. 78-92.

J. Li, O. Wéldrich, and W. Ziegler, “Towards SLA-based software
licenses and license management in grid computing,” in From
Grids to Service and Pervasive Computing, T. Priol and M. Vanneschi,
Eds. New York: Springer, 2008, pp. 139-152.

OASIS, “eXtensible Access Control Markup Language (XACML)
version 2.0 specification document,” OASIS Standard, Feb. 2005,
http://docs.oasis-open.org/xacml/2.0/access-control-xacml-2.
0-core-spec-os.pdf.

——, “eXtensible Access Control Markup Language (XACML)
version 3.0 specification document,” OASIS Standard,
Aug. 2010, http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-cs-01-en.pdf.

Oracle, “Sun’s XACML
http:/ /sunxacml.sourceforge.net.
C. Beust, “TestNG: Next
http:/ /testng.org/doc.

P Kershaw, “NDG
security.ceda.ac.uk/wiki/XACML.
A. X. Liu, F Chen, J. Hwang, and T. Xie, “Designing fast and
scalable xacml policy evaluation engines,” IEEE Transactions on
Computers, vol. 60, pp. 1802-1817, 2011.
Anonymous, “Enterprise Java
http://code.google.com/p/enterprise-java-xacml/.
H. Ogawa, S. Itoh, T. Sonoda, and S. Sekiguchi, “GridASP: An
ASP framework for grid utility computing,” Concurrency and
Computation: Practice and Experience, vol. 19, no. 6, pp. 885-891,
2007.

Q. Zhao and M. Perry, “An ontology for autonomic license
management,” in Proceedings of the 4th International Conference on
Autonomic and Autonomous Systems, March 2008, pp. 204-211.

Q. Zhao, Y. Zhou, and M. Perry, “Policy-driven licensing model
for component software,” in Proceedings of the 4th IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks,
Lake Como, Italy, June 2003, pp. 219-228.

——, “Agent design of SmArt license management system using
Gaia methodology,” in Proceedings of the 3rd International Confer-
ence on Autonomic and Autonomous Systems. ~ Washington, DC:
IEEE Computer Society, 2007, pp. 9-15.

L. Noorian and M. Perry, “Autonomic software license man-
agement system: An implementation of licensing patterns,” in
Proceedings of the 5th International Conference on Autonomic and
Autonomous Systems. Los Alamitos, CA: IEEE Computer Society,
2009, pp. 257-263.

European-Commission, “SmartLM project web pages,” Feb 2008,
http:/ /www.smartlm.eu.

M. Dalheimer and E-J. Pfreundt, “GenLM: License management
for grid and cloud computing environments,” in Proceedings of
the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid. Shanghai: IEEE Computer Society, May 2009, pp.
132-139.

H.-T. Kung, F. Zhu, and M. lansiti, “A stateless network ar-
chitecture for inter-enterprise authentication, authorization and
accounting,” in Proceedings of the 3rd International Conference on
Web Services, Las Vegas, Nevada, USA, June 2003, pp. 235-242.
R. G. Gonzalez, “A semantic web approach to digital rights man-
agement,” Ph.D. dissertation, Universitat Pompeu Fabra, 2005.
D. Dahlem, I. Dusparic, and J. Dowling, “A pervasive applications
rights management architecture (PARMA) based on ODRL,” in
Proceedings of the 1st International ODRL Workshop, April 2004, pp.
45-63.

rights language,” Sept

implementation,”

generation Java testing,”

XACML,” http:/ /ndg-

XACML,”

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

14

G. R. Gangadharan and V. D’Andrea, “Service licensing:
conceptualization, formalization, and expression,” Service Oriented
Computing and Applications, vol. 5, pp. 37-59, 2011. [Online].
Available: 10.1007/s11761-011-0079-6

G. R. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella,
“Service license composition and compatibility analysis,” in Pro-
ceedings of the 5th International Conference on Service Oriented
Computing, ser. LNCS, vol. 4749. Vienna: Springer Berlin /
Heidelberg, 2007, pp. 257-269.

G. R. Gangadharan, H.-L. Truong, M. Treiber, V. D’Andrea,
S. Dustdar, R. Iannella, and M. Weiss, “Consumer-specified ser-
vice license selection and composition,” in Proceedings of the
7th International Conference on Composition-Based Software Systems.
Madrid: IEEE Computer Society, 2008, pp. 194-203.

H.-L. Truong, G. Gangadharan, M. Comerio, S. Dustdar, and
F. De Paoli, “On analyzing and developing data contracts in
cloud-based data marketplaces,” in Proceedings of the Asia-Pacific
Services Computing Conference, Dec. 2011, pp. 174-181.

M. Conway, R. Moore, A. Rajasekar, and J.-Y. Nief, “Demonstra-
tion of policy-guided data preservation using iRODS,” in Proceed-
ings of the IEEE International Symposium on Policies for Distributed
Systems and Networks (POLICY). Pisa: IEEE Computer Society,
Jun. 2011, pp. 173-174.

C. L. Dumitrescu, M. Wilde, and I. Foster, “A model for usage
policy-based resource allocation in grids,” in Proceedings of the 6th
International IEEE Workshop of Policies for Distributed Systems and
Networks (POLICY), 2005, pp. 191-200.

G. Wasson and M. Humphrey, “Toward explicit policy manage-
ment for virtual organizations,” in Proceedings of the 4th Interna-
tional IEEE Workshop of Policies for Distributed Systems and Networks
(POLICY), 2003, pp. 173-182.

Y. B. Udupi and M. P. Singh, “Multiagent policy architecture
for virtual business organizations,” in Proceedings of the 3rd IEEE
International Conference on Services Computing (SCC). Chicago:
IEEE Computer Society, 2006, pp. 44-51.

, “Governance of cross-organizational service agreements: A
policy-based approach,” in Proceedings of the 4th IEEE International
Conference on Services Computing (SCC). Salt Lake City: IEEE
Computer Society, 2007, pp. 36—43.

M. P. Singh, “Norms as a basis for governing sociotechnical
systems,” ACM Transactions on Intelligent Systems and Technology
(TIST), pp. 1-21, 2013, to appear; available at http://www.csc.
ncsu.edu/faculty /mpsingh/papers.

Prashant C. Kediyal has over 10 years of software
engineering experience primarily from working in the
banking and insurance industry. He is now a Ph.D.
student in the Department of Computer Science,
North Carolina State University, Raleigh. His research
interests include multiagent and policy-based sys-
tems, service-oriented architecture, and governance.

Munindar P. Singh Munindar P. Singh is a Profes-
sor in the Department of Computer Science, North
Carolina State University, Raleigh. His research inter-
ests include multiagent systems and service-oriented
computing with a special interest in the challenges
of trust, service selection, and business processes
in large-scale open environments. His books include
the coauthored Service-Oriented Computing (Wiley,
2005). Singh is the Editor-in-Chief of the ACM Trans-
actions on Internet Technology and was the Editor-
in-Chief of the IEEE Internet Computing from 1999

to 2002. He is a member of the editorial boards of IEEE Internet Computing,

Autonomous Agents and Multiagent Systems, Journal of Atrtificial Intelligence
Research, and the ACM Transactions on Intelligent Systems and Technology.

