
1

Specifying and Verifying Cross-Organizational
Business Models: An Agent-Oriented Approach

Pankaj R. Telang and Munindar P. Singh, Fellow, IEEE

Abstract—Cross-organizational business processes are the norm in today’s economy. Of necessity, enterprises conduct their business in cooperation
to create products and services for the marketplace. Thus business processes inherently involve autonomous partners with heterogeneous software
designs and implementations. Therefore, it would be natural to model such processes via high-level abstractions that reflect the contractual
relationships among the business partners. Yet, in today’s IT practice, cross-organizational processes are modeled at a low level of abstraction in
terms of the control and data flows among the participants. This paper makes the following contributions. First, it proposes a simple, yet expressive
declarative way to specify business models at a high level based on the notion of commitments. Second, it shows how such a high-level model
maps to a conventional operational model. Third, it provides a basis for verifying the correctness of the operational representations with respect to
the declarative business model using existing temporal model checking tools. This paper validates the above claims using the well-known Quote To
Cash business process, e.g., as supported by vendors such as SAP and applied in large enterprises. In this manner, this paper helps bridge the gap
between high-level business models and their IT realizations.

Index Terms—Methodologies, patterns, specification, model checking.

F

1 INTRODUCTION

No enterprise is an island. In the modern economy, espe-
cially, enterprises are best understood as participating in
business ecosystems where they carry out subtle interac-
tions with one another. A business process describes how
an enterprise conducts some element of its business. We
are particularly interested in cross-organizational business
processes, which involve the aspects of business that cut
across enterprise boundaries.

A distinguishing feature of cross-organizational busi-
ness processes is that they involve the interactions of
mutually independent (autonomous and heterogeneous)
business partners [1]. For this reason, agents provide
a natural metaphor with which to model the partners
that engage in a cross-organizational business process
[2]. The business relationships among the partners are
key both to characterize a narrow and correct interface
among them and to enable them to alter their internal
implementations with minimal effect on each other.

In contrast, with only a few notable exceptions, much
of the existing technical work on business models em-
phasizes low-level or operational details of the inter-
actions. Existing approaches specify the control and
data flow among the business partners, but they fail
to specify their business relationships. Even standards
such as BPEL [3] and WS-CDL [4] mandate the exchange
of messages in an unnecessarily restrictive temporal
order, while failing to capture the business intent of the
interactions. Such business relationships are known to

• The authors are with the Department of Computer Science, NC State
University, Raleigh, NC 27695. E-mail: {prtelang,singh}@ncsu.edu

Manuscript received 03 Jun. 2010; revised 16 Nov. 2010; accepted 25 Dec.
2010; published online XX Jan. XXXX.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2010-16-0082.
Digital Object Identifier no. 10.1109/TSC.2011.XX.

business analysts and motivate the specification of the
processes. Therefore, losing track of the relationships
in the operational perspective is unfortunate: losing the
notion of business correctness by which to judge oper-
ational execution complicates the creation and mainte-
nance of each partner’s software systems. For example,
in a simple purchasing scenario, the business intent is for
the buyer and seller to exchange goods for payment. The
order in which the goods and the payment are brought
about is unimportant, and either operational ordering is
correct at a business level.

Part of the reason for the above is the lack of suitable
business modeling approaches. We review the literature
in Section 6, but we summarize the situation here. Recent
business modeling approaches talk of high-level con-
cepts but are not sufficiently technical or operational-
izable. In contrast, the traditional approaches such as
BPEL talk of operational notions but lack high-level
concepts. Accordingly, to fill the above gap, we propose
a high-level approach for specifying cross-organizational
business models. Commitments [1], [5], [6], [7] are an
extensively studied notion in agent research, and can
help specify the essence of business interactions in a
natural manner. A commitment abstracts from opera-
tional details, minimally constraining business execu-
tions. Through a set of well-defined operations, com-
mitments enable modeling complex cross-organizational
business relationships.

In our approach, a business model is a high-level spec-
ification of how (cross-organizational) business is to be
conducted. We develop reusable, composable patterns
that business analysts can employ to develop a business
model for a desired scenario. First, a model composed
from these patterns serves as a formal specification that
can be used to verify an operational model defined in
any technical standard: for concreteness, we adopt UML

2

2.0 sequence diagrams [8] here. Second, organizations
frequently migrate their business process implementa-
tions to newer technologies to benefit from the improve-
ments those technologies offer. In such a case, a business
model provides a basis for establishing the correctness
of the new implementation.

An operational model captures the interactions that re-
alize a business model. By verification, we mean checking
if a given operational model satisfies a given business model.
It is important to perform such verification during the
early phases of development to prevent costly rework
during the later phases in case of misalignment between
the two models.

Our verification approach can be used in multiple
methodologies. In the simplest methodology, a business
analyst would develop a business model (e.g., by com-
posing business patterns from a library). An IT analyst
would develop an operational model for implementing
the business model. Our approach (based on an auto-
mated verification tool) is to verify that the operational
model satisfies the business model prior to creating or
modifying the implementation. In case verification fails,
the tool generates an execution scenario that exemplifies
the failure. Based on this scenario, the business or IT
analyst would modify one or both of the two models
and iterate. In a top-down methodology, the operational
model would be generated from the business model, and
then verified as above. The top-down methodology may
be used in a disciplined setting where the specifics of
the processes are known from previous experience. In a
bottom-up methodology, the business model would be
induced from an existing operational model based on an-
alyst insights. This is necessary when no business model
exists. In either methodology, business and operational
models would then be compared as above.

Contributions: The key contributions of this paper
are as follows. First, it proposes a simple, yet expressive
declarative way to specify business models at a high
level based on the notion of commitments. Second, it
shows how such a high-level model maps to a con-
ventional operational model. Third, it provides a basis
for verifying the correctness of the operational represen-
tations with respect to the declarative business model
using existing temporal model checking tools. This paper
validates the above claims using the well-known Quote
To Cash business process, e.g., as supported by vendors
such as SAP and applied in large enterprises.

Organization: Section 2 introduces our
commitment-based business metamodel and shows
the main patterns of business interactions, as expressed
in our model. Section 3 evaluates our patterns by
applying them on a real-world quote-to-cash business
process. Section 4 presents our approach for formalizing
our business patterns in temporal logic in a manner
as to enable model checking. Section 5 evaluates our
verification approach by applying it on the same quote-
to-cash process. Section 6 reviews the related research.
Section 7 summarizes our results. The online appendix

describes a way to map a UML sequence diagram to
NuSMV, an additional pattern, and a second case study.

2 APPROACH: METAMODEL AND PATTERNS

We concern ourselves with business models that involve
two or more participants. The business partners, ab-
stracted as roles, participate in a business relationship. The
participants create, manipulate, and satisfy commitments
in each relationship. They execute tasks for each other
that enable them to achieve their respective goals.

Three distinct phases characterize business execution.
First, in the agreement phase, participants enter into an
agreement, and create commitments toward each other.
Second, in the assembly phase, the participants delegate
or assign commitments to others. A participant may
delegate a commitment to gain competence or price
advantages. Third, in the enactment phase, participants
execute tasks to satisfy their commitments.

executes

requires

refers to

Agent

Commitment

plays

has

Goal

specifies

debtor creditor

Role
Business

Relationship
Task

Fig. 1. A commitment-based business metamodel.

The following are the main concepts of our business
metamodel, as shown in Figure 1, adopted from [9].
Agent: a computational representation of a business

partner. An agent has goals, and executes business
tasks. For each business relationship in which an
agent participates, it enacts one or more roles.

Role: an abstraction over agents that helps specify a
business relationship in templatic form. Each role
specifies the commitments expected of the agents
who play that role along with the tasks they must
execute to function in that role.

Goal: a state of the world that an agent desires to
be brought about, i.e., an achievement goal [10].
An agent achieves a goal by executing appropriate
tasks or negotiating with other agents to have them
execute appropriate tasks.

Task: a business activity viewed from the perspective of
an agent.

Commitment: an element of a contractual business rela-
tionship. A commitment C(DEBTOR, CREDITOR, an-
tecedent, consequent) denotes that the DEBTOR com-
mits to the CREDITOR to bring about the consequent

3

if the antecedent begins to hold [7]. A commitment,
when active, functions as a directed obligation from
a debtor to a creditor. However, unlike a traditional
obligation, a commitment may be manipulated, e.g.,
delegated, assigned, or released.

Business relationship: a set of interrelated commit-
ments among two or more roles that describe how
they carry out the given business process.

violated

conditional
antecedent

terminated

cancel

detached

cancel ∨

consequent_timeout

commitment

null

create

expired

antecedent_timeout
create ∧ antecedent

pending

suspendreactivate

consequent

satisfied

release

Fig. 2. The life cycle of a commitment (based on [11]).

Since the notion of commitment is central to our
approach, we describe commitments in greater detail
now. Figure 2 shows the life cycle of a commitment as
a state diagram based on [11]. The rounded rectangles
represent the states, and the directed edges represent the
transitions. The label on a rectangle is the commitment
state, whereas the label on an edge is an action or an
event that causes the transition. The edge is directed
from the start state to the end state of the transition.
At runtime, commitments arise between agents, but at
design-time we specify them between roles.

A commitment can be in one of the following states:
null, conditional, expired, detached, satisfied, pending, ter-
minated, or violated. Before a commitment is created, it
is null. Only a debtor may create a commitment. By
default, a commitment is conditional, meaning that its
antecedent is not true. For a conditional commitment,
an antecedent timeout may occur if neither its antecedent
nor its consequent is brought about within a specified
time period. In that case, the commitment expires. In our
treatment, an expired commitment cannot be reactivated
and remains forever expired. If the antecedent of a
conditional commitment is brought about prior to the an-
tecedent timeout (even immediately upon creation), then
the commitment is detached. Similar to an antecedent
timeout, for a detached commitment, a consequent time-
out may occur if its consequent is not brought about,
causing the commitment to be violated. Alternatively, the
debtor may cancel a detached commitment, thereby also
violating it. Conversely, if the consequent of a detached
commitment is brought about prior to the consequent
timeout, it is satisfied. After a commitment is satisfied,
if its antecedent is brought about, it remains satisfied.
A commitment can be placed in the pending state, i.e.,
suspended, as explained below. A pending commitment
may be reactivated. A commitment is terminated if the

debtor releases the creditor from the commitment, or
cancels a conditional commitment.

Note that for ease of modeling, we write the an-
tecedent and consequent timeouts separately, but in-
corporate them into the antecedent and consequent,
respectively, in the formalization. That is, we can
write the corresponding commitment as C(DEBTOR,
CREDITOR, antecedent∧¬antecedent timeout, consequent∧
¬consequent timeout).

2.1 Business Model Patterns

Being able to manipulate commitments yields the flex-
ibility needed in open interactions. A pattern, in the
present setting, is a recipe for modeling recurring busi-
ness scenarios in terms of manipulations of commit-
ments. This section describes a key set of such patterns,
adopted from [9], which could seed a potential business
model pattern library. Section 3 demonstrates the effec-
tiveness of this simple set of patterns on the Quote To
Cash business process.

We use the attributes name, intent, motivation, imple-
mentation, and consequences to describe our patterns [12].
Here the consequences of a pattern allude to the practical
consequences of applying the pattern, i.e., the assump-
tions underlying the model.

We express a pattern in terms of commitments, where
each commitment references roles and tasks. A pattern
would be instantiated by the agents who adopt the
specified roles. A set of commitments fully specifies a
pattern. A pattern diagram illustrates the progression of
the commitments in a typical execution. The diagrams
use the notation of Figure 1, and additionally show two
directed edges for each commitment: from the debtor
to the commitment and from the commitment to the
creditor. The subscript on a commitment indicates its
state: C for conditional, D for detached, S for satisfied,
and P for pending. The expired and violated states do
not appear in the pattern diagrams since the diagrams
illustrate normal execution, that is, an execution in which
none of the commitments expire or are violated.

2.1.1 Conditional Offer Pattern

This is the simplest possible pattern. It merely views a
commitment (as described in Figure 2) as an offer.

Proposer Client

Proposer Client

consequent

antecedent
CC

create(C)

C(PROPOSER, BENEFICIARY, antecedent, consequent)

Fig. 3. The conditional offer pattern.

Intent: A proposer conditionally offers to execute a task
for a client.

Motivation: For example, a conference committee mem-
ber commits to a program chair to review a paper

4

that the program chair requests the member to
review. The chair makes no converse commitment.

Implementation: A commitment is created in which the
proposer is the debtor, the client is the creditor, the
consequent is the task that the proposer executes,
and the antecedent is a condition that brings the
commitment into force. Figure 3 shows this pattern.

Consequences: This pattern presumes a benefit to the
proposer from the antecedent of the commitment.

2.1.2 Commercial Transaction

Partner 1

create(C1)

create(C2)

consequent

antecedent
C1C

antecedent

consequent
C2C

Partner 2 Partner 1 Partner 2

C1 C(PARTNER 1, PARTNER 2, antecedent, consequent)
C2 C(PARTNER 2, PARTNER 1, consequent, antecedent)

Fig. 4. Commercial transaction.

Intent: This pattern expresses a value exchange between
two trading partners. The trading partners negotiate
and, upon agreeing, commit to executing certain
tasks for each other.

Motivation: A typical situation would be where a seller
and a buyer agree to exchange goods for payment
or, generally, to barter goods or services.

Implementation: A pair of reciprocal commitments be-
tween the trading partners treated symmetrically
specify the pattern. Figure 4 shows this pattern.

Consequences: In general, the antecedents and conse-
quents of the commitments are composite expres-
sions. Importantly, we need a mechanism to ensure
progress by in essence breaking the symmetry, e.g.,
via a form of concession [13].

2.1.3 Outsourcing

Intent: An outsourcer delegates a task to a subcon-
tractor, typically because the outsourcer lacks the
necessary capabilities or expects some other benefit,
such as reduced costs or a lower risk of failure.

Motivation: Many business organizations outsource
noncore activities. Consider a customer who signs
up for cable television service. The cable operator
commits to the customer for performing the instal-
lation. Instead of staffing its entire service area di-
rectly, the cable operator outsources the installation
task to its local partners in various regions.

Implementation: The outsourcer has a commitment C1

towards its client to execute a task. The outsourcer
and the contractor negotiate, and agree that the
contractor will create the commitment C2 to execute
the task if the outsourcer pays. Conversely, the
outsourcer commits to paying the contractor if the

payoff

create(C2)

create(C3)

create(C4)

task

antecedent
C1C

Outsourcer

Client

Contractor

Outsourcer Contractor

create (C2)

payoff
C3C

payoff

create (C2)
C4C

task

antecedent
C1C Client

Outsourcer Contractor

create (C2)

payoff
C3S

payoff

create (C2)
C4S

task

antecedent
C1P

Client

task

Τ
C2C

C1 C(OUTSOURCER, CLIENT, antecedent, task)
C2 C(CONTRACTOR, CLIENT, >, task)
C3 C(OUTSOURCER, CONTRACTOR, create(C2), payoff)
C4 C(CONTRACTOR, OUTSOURCER, payoff, create(C2))

Fig. 5. Outsourcing.

contractor creates C2. Note that the antecedent of
this commitment is true (>), which means that it is
detached. We say that the commitment C2 covers the
commitment C1. Eventually when the contractor cre-
ates C2 the original commitment becomes pending.
Figure 5 shows this pattern.

Consequences: The commitment from the outsourcer is
pending and must either be discharged or reacti-
vated depending on how the contractor performs.

2.1.4 Standing Service Contract

create (C1)

create (C2)

payoff

Create(C3)

payoff

create (C3)
C1C

create (C3)

payoff
C2C

service [i]

request [i] ^ ¬expired ^

i < maxInstance

C3C

create (C3)

payoff
C2S

payoff

create (C3)
C1S

Consumer Provider

Consumer Provider

Consumer Provider

C1 C(CONSUMER, PROVIDER, create(C3), payoff)
C2 C(PROVIDER, CONSUMER, payoff, create(C3))
C3 C(PROVIDER, CONSUMER, request[i] ∧ ¬expired
∧(i ≤ maxInstance), service[i])

Fig. 6. Standing service contract.

Intent: A provider sells a long-lived service to a con-
sumer. The service can be bounded by a combina-
tion of duration and the total number of requests.

Motivation: A business service such as building main-
tenance refers to (potentially) numerous service in-
stances. Whenever the faucet leaks (within specified
limitations), a plumber will be sent to fix it.

Implementation: The provider and consumer negotiate,
and upon agreement, create a pair of commitments

5

C1 (the consumer commits to paying the service
provider if the service provider commits to pro-
vide service), and C2 (the converse of C1). Com-
mitment C3 is the standing service contract. In C3,
the provider commits to the consumer to serve each
request prior to expiration up to a fixed number of
requests. Figure 6 shows this pattern.

Consequences: Each service request should take a
bounded amount of effort.

2.1.5 Applying the Patterns

Our patterns capture recurring business scenarios in a
natural manner. A business modeler analyzes a sce-
nario description to identify its agents (e.g., FedEx),
tasks (e.g., shipping), and business-specific roles (e.g.,
Shipper). The modeler develops the business model by
successively applying the relevant patterns, identifying
each applicable patterns based on its specified intent. To
apply each pattern, the modeler associates each business
role (e.g., Shipper) with the appropriate pattern role
(e.g., Contractor) and the tasks with the antecedents and
consequents of the relevant commitments.

The patterns compose naturally when the business
roles referenced by the patterns overlap. Our graphical
representation emphasizes the composition by showing
one node for each business role, thereby highlighting
the interrelationships among the commitments from the
composed patterns.

3 EVALUATION: APPLYING THE PATTERNS

This section evaluates our proposed methodology on
the Quote To Cash (QTC) business process. It is loosely
based on the public descriptions of Cisco System’s QTC
implementation. Cisco is in the business of selling net-
working products and services. The QTC process encom-
passes all of the key business activities that begin from a
customer requesting a quote, and end in Cisco receiving
cash from the customer.

Customer

create(C1)

create(C2)

create(C3)

shipGoodsE

payR
C3C

Reseller Customer Reseller
install

payR
C2C

payR

install ^ shipGoodsE
C1C

C1 C(CUSTOMER, RESELLER, install ∧ shipGoodsE, payR)
C2 C(RESELLER, CUSTOMER, payR, install)
C3 C(RESELLER, CUSTOMER, payR, shipGoodsE)

Fig. 7. Commercial Transaction: Customer purchases the goods
and the installation service from the reseller.

Some of the key partners in this process are customers,
resellers, distributors, logistics providers, banks, contract
manufacturers, and service providers. These participants
engage in a number of complex interactions for trans-
acting business. The resellers and the distributors serve
as sales channels. A customer purchases goods either

create(C6)

Customer Reseller
install

payR
C2C

payR

install ^ shipGoodsE
C1C

Distributor

shipGoodsE

payR
C3P

Customer Reseller
install

payR
C2C

payR

install ^ shipGoodsE
C1C

Distributor

payD

create (C6)
C4D

create (C6)

payD
C5S

shipGoodsE

Τ
C6C

payD

create (C6)
C4C

create (C6)

payD
C5C

shipGoodsE

payR
C3C

C4 C(RESELLER, DISTRIBUTOR, create(C6), payD)
C5 C(DISTRIBUTOR, RESELLER, payD, create(C6))
C6 C(DISTRIBUTOR, CUSTOMER, >, shipGoodsE)

Fig. 8. Outsourcing: Reseller outsources the shipping of the
goods to the distributor.

directly from Cisco, or from a reseller. In addition to
selling the goods, a reseller also provides value-added
services of installing and configuring the goods. A re-
seller purchases goods either from a distributor, or from
Cisco. A distributor always purchases goods from Cisco.
Unlike a reseller, a distributor may purchase goods,
and stock the goods in its warehouse. To build its
products, Cisco utilizes a set of contract manufacturers,
and for shipping a set of transportation providers. The
participants use different banks and credit companies for
making payments.

Next we apply our approach to a fragment of the
QTC process. To satisfy a business goal, a customer
desires to install Cisco products. The customer selects a
suitable reseller for the purchase. The commercial transac-
tion pattern models this scenario. The customer and the
reseller negotiate the purchase price. Upon agreement,
they create commitments C1,C2, and C3, as Figure 7
shows. The customer commits (C1) to the reseller to
pay if the reseller ships and installs the goods, and the
reseller commits to the customer to ship (C2) and install
(C3) the goods if the customer pays. Note that we model
the commitment to ship (C2), and the commitment to
install (C3) as separate commitments since the reseller
outsources the shipping (C3) to a distributor, but installs
the goods by itself (C2).

The reseller outsources to a distributor its commitment
C3 to the customer to ship the goods. Figure 8 applies
the outsourcing pattern to this scenario. The reseller and
the distributor negotiate, and upon agreement, create C4

and C5. The reseller commits (C4) to the distributor to
pay if the distributor commits to (C6) ship the goods to
the customer. The distributor conversely commits (C5)
to create C6 if the reseller pays the distributor. When
the distributor creates C6, C5 discharges, C4 detaches,

6

create(C9)

shipGoodsE

payR
C3P

Customer Reseller
install

payR
C2C

payR

install ^ shipGoodsE
C1C

Distributor

payD

create (C6)
C4D

create (C6)

payD
C5S

shipGoodsE

Τ
C6C

Shipper 1

payS

create (C9)
C7C

create (C9)

payS
C8C

shipGoodsE

payR
C3P

Customer Reseller
install

payR
C2C

payR

install ^ shipGoodsE
C1C

Distributor

payD

create (C6)
C4D

create (C6)

payD
C5S

shipGoodsE

Τ
C6P

Shipper 1

payS

create (C9)
C7D

create (C9)

payS
C8S

shipGoodsE

Τ
C9C

C7 C(DISTRIBUTOR, SHIPPER1, create(C9), payS)
C8 C(SHIPPER1, DISTRIBUTOR, payS, create(C9))
C9 C(SHIPPER1, CUSTOMER, >, shipGoodsE)

Fig. 9. Outsourcing: Distributor outsources shipping to a ship-
per.

and C3 transitions to the pending state. The reseller
may pay (payD) the distributor either before or after
the distributor commits (C6) to shipping the goods to
the customer. Figure 8 shows a possible progression in
which the distributor commits.

Distributor

create(C10)

create(C11)

payX

shipGoodsD
C10C

shipGoodsD

payX
C11C

Cisco Distributor Cisco

C10 C(DISTRIBUTOR, CISCO, shipGoodsD, payX)
C11 C(CISCO, DISTRIBUTOR, payX, shipGoodsD)

Fig. 10. Commercial Transaction: Distributor buys goods from
Cisco.

Figure 9 shows another scenario modeled by the out-
sourcing pattern. If the distributor has the goods in stock,
it outsources the shipping of the goods to a shipper.
The distributor commits (C7) to the shipper to pay if the
shipper commits (C9) to ship the goods to the customer.
The shipper conversely commits (C8) to create C9 if the
distributor pays the shipper. The shipper satisfies C8

by creating C9, which detaches C7, and causes C6 to
transition to the pending state.

If the distributor lacks the stock of goods that it
needs to ship to the customer to satisfy C9, it purchases
the goods from Cisco. Figure 10 shows how the com-
mercial transaction pattern models this purchase. Upon
successful negotiation, the distributor and Cisco create

create(C14)

payX

shipGoodsD
C10C

shipGoodsD

payX
C11C

Distributor Cisco Shipper 2

payS2

create(C14)
C12C

create(C14)

payS2
C13C

payX

shipGoodsD
C10C

shipGoodsD

payX
C11P

Distributor Cisco Shipper 2

payS2

create(C14)
C12D

create(C14)

payS2
C13S

shipGoodsD

Τ
C14C

C12 C(CISCO, SHIPPER2, create(C14), payS2)
C13 C(SHIPPER2, CISCO, payS2, create(C14))
C14 C(SHIPPER2, DISTRIBUTOR, >, shipGoodsD)

Fig. 11. Outsourcing: Cisco outsources shipping.

the reciprocal commitments C10 and C11. The distributor
commits (C10) to Cisco to pay if Cisco ships the goods
to the distributor. Conversely, Cisco commits (C11) to the
distributor to ship the goods if the distributor pays Cisco.

create(C17)

Customer

create(C15)

create(C16)

payX1

create(C17)
C15C

create(C17)

payX1
C16C

Cisco

Customer Cisco

payX1

create(C17)
C15D

create(C17)

payX1
C16S

Customer Cisco

service [i]

request [i] ^ ¬expired ^

i < maxInstance

C17C

C15 C(CUSTOMER, CISCO, create(C17), payX1)
C16 C(CISCO, CUSTOMER, payX1, create(C17))
C17 C(CISCO, CUSTOMER, reqService[i] ∧ ¬expired,

service[i])

Fig. 12. Service Contract: Customer contracts with Cisco.

In Figure 11, Cisco outsources the shipping of the
goods to the distributor, to a shipper. The outsourcing
pattern models this scenario, and the figure shows the
commitments that are created.

Figure 12 shows how the service contract pattern
applies to the scenario in which the customer buys a
service contract from Cisco. The customer commits (C15)
to Cisco to pay if Cisco creates the service commitment
C17. Cisco commits to the customer to create the service
commitment C17 if the customer pays Cisco. Here C17

means that Cisco commits to the customer to provide

7

shipGoodsE

payR
C3P

Customer Reseller
install

payR
C2C

payR

install ^ shipGoodsE
C1C

Distributor

payD

create (C6)
C4D

create (C6)

payD
C5S

shipGoodsE

Τ
C6P

Shipper 1

payS

create (C9)
C7D

create (C9)

payS
C8S

shipGoodsE

Τ
C9C

payX

shipGoodsD
C10C

shipGoodsD

payX
C11P

Cisco Shipper 2

payS2

create(C14)
C12D

create(C14)

payS2
C13S

shipGoodsD

Τ
C14C

payX1

create(C17)
C15D

create(C17)

payX1
C16S

service [i]

request [i] ^ ¬expired ^

i < maxInstance

C17C

Fig. 13. The Quote To Cash (QTC) business process expressed as a business model.

service on the goods if the customer requests the service
prior to its expiration. The customer can request the
service multiple times. To satisfy C17, Cisco needs to
provide service for each of those requests as long as the
request is made prior to C17’s expiration.

The above exercise shows how one can naturally
construct a business model for a scenario by applying
our patterns. Figure 13 combines Figures 7, 8, 9, 10, 11,
and 12 to show the complete model of Cisco’s QTC
process. Note that commitments C1 through C17 fully
specify the model. Figure 13 shows the state of each
commitment in a possible progression of this model.

4 VERIFICATION

We seek to build tools to verify if an operational model
correctly supports a business model. Leading methods
for verification include model checking, theorem prov-
ing, and manual testing. Theorem proving in general
cannot be fully automated, and exhaustive test coverage
with the manual testing is infeasible. Model checking
provides a happy middle since it automatically and ex-
haustively verifies if a model satisfies a stated property.

Figure 14 shows the main components of our verifica-
tion approach. We map a business model to a temporal
logic specification regarding the progression of the states
of the relevant commitments. As explained above, we
capture a business model as an aggregation of business
patterns. We can map each pattern to a CTL specification,

Business

Model

Business

Interactions

Pattern CTL

Specification

FSM in NuSMV

Input Language

NuSMV

Model Checker

Transform

(Appendix)

Formalized

(Section 4.2)
Formalized

(Section 5)

Model CTL

Specification

Success?Done Yes ModifyNo

1*

* 1
Patterns

Patterns

(Section 5)

Fig. 14. Our approach in conceptual terms.

and can compose a CTL specification for a business
model based on the specifications for the patterns that
the model aggregates. UML 2.0 sequence diagrams cap-
ture operational interactions, which we map to FSMs
specified in the NuSMV input language (as described
in the online appendix of this paper).

8

4.1 Technical Background

We now review temporal logic and model checking con-
cepts [14] that are required for our technical approach.

Computation Tree Logic (CTL)

CTL is a temporal logic that conceptualizes time as
having a tree-like structure branching into the future.
The Backus-Naur Form for CTL formulae is:
φ ::= ⊥ | > | p | (¬φ) | (φ∧φ) | (φ∨φ) | (φ→ φ) | AXφ |

EXφ | AFφ | EFφ | AGφ | EGφ | A[φUφ] | E[φUφ]
where p is an atomic proposition. The logical operators

¬,∧,∨, and → have the usual meanings of negation,
conjunction, disjunction, and implication, respectively.
The symbols ⊥ and > mean false and true, respectively.
Each temporal operator of CTL is a pair of symbols:
a path quantifier and a linear-time operator. The path
quantifier can be either A, meaning along all paths, or E,
meaning along at least one path. The linear-time operator
can be X, meaning in the next state, G, meaning in
all future states, F, meaning in a future state, and U,
meaning until.

Thus, AXp means on all paths, p holds in the next state,
EGp means there exists a path on which p holds in all
states, and AG(x → AFy) means that on all paths if x
holds in state s, then on all paths, emanating from s, y
holds in some future state.

New Symbolic Model Checker (NuSMV)

Temporal logic model checking is a family of techniques
that automatically verify if a model characterizing all
possible executions of a system satisfies a given specifi-
cation. NuSMV is a well-known tool for model checking
CTL specifications with respect to a temporal model ex-
pressed as a finite state machine. The rest of this section
introduces the syntax of the NuSMV input language that
our approach uses.

The VAR keyword declares a state variable of the finite
state machine. We mainly use Boolean variables (0 (false)
or 1 (true)). For example,

VAR reqQuote : boolean ;
response : boolean ;

declares two Boolean variables, reqQuote and response.
The DEFINE keyword is a macro that declares a symbol

for an expression. For example,

DEFINE condi t ion := reqQuote & response ;

means that condition expands to reqQuote & response.
The CONSTANTS keyword declares symbolic con-

stants. For example,

CONSTANTS NULL, CONDITIONAL;

defines NULL and CONDITIONAL as symbolic constants
that other NuSMV statements can use.

A MODULE declaration in NuSMV is a parameterized
construct that contains multiple declarations, constraints,
and specifications. A VAR declaration instantiates a mod-
ule with specified arguments. For example,

MODULE commitment (c rea te , ant , con ,
ant t , con t)

defines a module with five Boolean parameters. Here,
create activates the commitment, and ant, con,
ant_t, and con_t respectively denote its antecedent,
consequent, antecedent timeout, a consequent timeout.
And,

MODULE main
VAR C1 : commitment (quoteResponse , pay ,

goods , 0 , 0) ;

asserts that variable C1 in the main module instantiates
the commitment module. That is, C1 is a commitment

An ASSIGN constraint assigns initial values to the state
variables. For example:

ASSIGN i n i t (reqQuote) := 0 ;

A TRANS constraint specifies the transition relation of
the operational model in terms of the current and next
state values of the state variables. For example,

TRANS reqQuote & ! response & next (response)
= 1 & next (reqQuote) = reqQuote ;

defines a transition from a state in which reqQuote holds
and response does not hold to a state in which both
reqQuote and response hold.

The CTLSPEC keyword defines a CTL specification,
which NuSMV would check. For example:

CTLSPEC AG(order−> AF ship) ;

In our approach, NuSMV verifies if an operational
model FSM satisfies the business model CTL specifica-
tion. If the FSM fails to satisfy the CTL specification,
NuSMV generates a counterexample, which shows an
execution that violates the specification. In that event,
the modeler may choose to modify either or both of the
business and the operational model.

4.2 Patterns Formalized

We formalize a business model pattern as a set of CTL
specifications. These specifications capture the essence of
the pattern in terms of how the commitments progress
during the business execution. The subsections below
formalize each pattern from Section 2.1.

4.2.1 Conditional Offer Pattern Formalization

In a business execution, each commitment must progress
according to the life cycle that Figure 2 shows. For each
of the seven states in the commitment life cycle, we
develop a CTL formula that specifies all legal transitions
from that state. These exhaustively cover all possible
transitions from within the commitment life cycle.

1) If a commitment is null in the current state, then
in the next state it may be null, conditional, or
detached.
AG(NULL →

AX(NULL ∨ CONDITIONAL ∨ DETACHED))

9

2) If a commitment is conditional in the current state,
then in the next state it may be conditional, expired,
satisfied, detached, or terminated.
AG(CONDITIONAL →

AX(CONDITIONAL ∨ EXPIRED ∨ SATISFIED
∨DETACHED ∨ TERMINATED)

3) If a commitment is detached in the current state,
then in the next state it may be detached, satisfied,
violated, or terminated.
AG(DETACHED →

AX(DETACHED ∨ SATISFIED ∨ VIOLATED
∨TERMINATED))

4) If a commitment is pending in the current state,
then in the next state it may be pending, condi-
tional, or detached.
AG(PENDING →

AX(PENDING ∨ CONDITIONAL ∨ DETACHED))

5) A satisfied commitment remains satisfied.
AG(SATISFIED → AX(SATISFIED))

6) An expired commitment remains expired.
AG(EXPIRED → AX(EXPIRED))

7) A violated commitment remains violated.
AG(VIOLATED → AX(VIOLATED))

8) A terminated commitment remains terminated.
AG(TERMINATED → AX(TERMINATED))

Further, for business compliance, unless the creditor
releases the debtor, the debtor must satisfy a detached
commitment.

9) AG(DETACHED → AF (SATISFIED ∨ TERMINATED))
Listing 1 shows a fragment of the NuSMV module for

this pattern.

Listing 1. NuSMV module for the offer pattern.� �
1 MODULE commitment (c rea te , antecedent ,
2 consequent , suspend , r e a c t i v a t e , r e l e a s e ,
3 cancel , ant t , con t)
4
5 CONSTANTS NULL,CONDITIONAL, EXPIRED ,PENDING,
6 DETACHED, SATISFIED , VIOLATED,TERMINATED;
7
8 DEFINE
9 s t a t u s :=

10 case
11 ! c r e a t e & ! antecedent & ! consequent &
12 ! suspend & ! r e a c t i v a t e & ! a n t t &
13 ! r e l e a s e & ! cance l & ! con t :NULL;
14
15 c r e a t e & ! antecedent & ! consequent &
16 ! r e l e a s e & ((! suspend & ! r e a c t i v a t e)
17 | (suspend & r e a c t i v a t e)) & ! a n t t &
18 ! cance l & ! con t :CONDITIONAL;
19
20 c r e a t e & ! antecedent & ! consequent &
21 ! r e l e a s e & ((! suspend & ! r e a c t i v a t e) |
22 (suspend & r e a c t i v a t e)) & a n t t &
23 ! cance l & ! con t : EXPIRED ;
24
25 c r e a t e & antecedent & ! consequent &
26 & ! r e l e a s e & ((! suspend & ! r e a c t i v a t e)
27 | (suspend & r e a c t i v a t e)) & ! a n t t &
28 ! cance l & ! con t :DETACHED;

29
30 c r e a t e & antecedent & ! consequent &
31 ! r e l e a s e & ((! suspend & ! r e a c t i v a t e) |
32 (suspend & r e a c t i v a t e)) & ! a n t t &
33 (cance l | con t) : VIOLATED ;
34
35 c r e a t e & consequent & ! r e l e a s e &
36 ! a n t t & ! con t : SATISFIED ;
37
38 c r e a t e & ! consequent & suspend &
39 ! r e a c t i v a t e & ! r e l e a s e &
40 ! a n t t & ! con t :PENDING;
41
42 c r e a t e & ! consequent & ! a n t t &
43 ! con t & ((! suspend & ! r e a c t i v a t e)
44 | (suspend & r e a c t i v a t e)) & (r e l e a s e |
45 (! antecedent & cance l)) :TERMINATED;
46
47 esac ;
48
49 CTLSPEC
50 AG(s t a t u s =NULL−>AX(s t a t u s =NULL|
51 s t a t u s =CONDITIONAL | s t a t u s =DETACHED)) ;
 	

We use the MODULE declaration to specify the pattern
in a reusable manner. Line 1 declares the module with
parameters of create, antecedent, consequent, antecedent
timeout, and consequent timeout. Lines 5–6 use the
CONSTANTS keyword to declare the commitment states
as symbolic constants. Lines 8–47 compute the state of
the commitment based on the input parameters. Lines
49–51 use the CTLSPEC keyword to declare the CTL
specifications. Note that this is NuSMV encoding of the
CTL specification 1 from the above list. We omit the
NuSMV listings for the remaining patterns to save space.

I

C

create

D

antecedent_timeout

D S

pay goods

pay
E

D D

pay

Path 1: Violates CTL
formula # 3

S

goods

!

Path 2: Satisfies all
CTL formulae

"

Path 3: Satisfies all
CTL formulae

"

Path 4: Violates CTL
formula # 9

!

Fig. 15. Example: Verifying the conditional offer pattern.

Next, we demonstrate how verification works. Con-
sider the commitment C(SELLER, BUYER, pay, goods): a
seller commits to a buyer to shipping the goods if the
buyer pays. Figure 15 shows possible executions of an
operational model. A circle depicts a state, and its label
shows the state of the commitment. Above each state,
the figure shows the action or event that holds in that
state. Further, it labels the paths that satisfy or violate the
conditional offer CTL specifications above. For example,
Path 1 violates Specification 3 from above since the
commitment transitions from the detached to the expired
state.

10

4.2.2 Commercial Transaction Pattern Formalization

The commercial transaction pattern consists of a pair
of reciprocal commitments as Figure 4 shows. The CTL
specifications of the conditional offer pattern individu-
ally apply to each of the commitment.

In this pattern, if one commitment is satisfied, it
detaches the other commitment, and vice versa. The CTL
specifications that specify this part of the pattern are:

1) AG(DETACHED1 ↔ SATISFIED2)
2) AG(DETACHED2 ↔ SATISFIED1)

4.2.3 Outsourcing Pattern Formalization

Figure 5 shows the four commitments that are part of
the outsourcing pattern. Among these, C3 and C4 are
the reciprocal commitments between the outsourcer and
the contractor. The CTL specifications of the commercial
transaction pattern apply to these commitments, and
the CTL specifications of the conditional offer pattern
individually apply to commitments C1 and C2.

The CTL specifications unique to this pattern are:
1) If the outsourcer updates the commitment C1 to

be pending, then on all paths the contractor must
eventually create the outsourced commitment C2.
AG(PENDING1 → AF(¬NULL2))

2) If the contractor satisfies C2, then it satisfies the
outsourcer’s commitment C1.
AG(SATISFIED2 → SATISFIED1)

3) If the contractor violates the commitment C2, then
the outsourcer’s commitment C1 is reactivated.
AG(VIOLATED2 → AF(¬PENDING1))

4.2.4 Service Contract Pattern Formalization

Figure 6 shows the service contract pattern consisting of
three commitments. Of these, the CTL specifications of
the commercial transaction pattern apply to C1 and C2,
which are reciprocal commitments between the provider
and the consumer.

The standing service commitment C3 applies to mul-
tiple service request instances. If the consumer sends a
service request prior to its expiration, and if the request
count is smaller than the upper bound, then the provider
creates a new detached commitment to service that re-
quest. The provider creates a new commitment for each
service request. The CTL specifications of the offer com-
mitment pattern apply to each of these commitments.

5 EVALUATION: APPLYING VERIFICATION

This section applies the verification approach to the QTC
business process introduced in Section 3. Figures 16, 22,
and 23 (from the online appendix) show the sequence di-
agrams that model the operational interactions between
the QTC participants. The participant roles shown as
lifelines on these diagrams map to the model roles from
Figure 13.

Figure 16(a) captures the quoting interactions. The
customer requests a quote from the reseller to purchase

and install the desired goods. The reseller requests a
quote from the distributor for the goods. Upon receiving
a quote from the distributor, the reseller sends a quote to
the customer. The customer responds, and either accepts
the quote or requests a new quote with an additional
discount. The reseller responds similarly to the distrib-
utor. The quote and the response interactions continue
until either the customer accepts the quote, or the itera-
tion count exceeds five. We notate the meaning of the
messages below the diagram as message → create(C),
where C is the commitment that the message creates. The
customer’s acceptance of the reseller’s quote creates C2

and C3. And the reseller’s acceptance of the distributor’s
quote creates C5. These commitments are defined in the
QTC business model of Figure 13.

In Figure 16(b), the customer sends an order to the
reseller, and the reseller in turn sends an order to the
distributor. This message sequence is guarded by the
customer’s quote accept message that appears in Fig-
ure 16(a). The customer’s purchase order sent to the re-
seller creates C1, the reseller’s purchase order sent to the
distributor creates C4, and the distributor’s confirmation
sent to the customer creates C6.

Figure 16(c) shows the quoting interaction between the
distributor and the shipper. The quote sent by the ship-
per to the distributor creates C7, the quote acceptance
sent by the distributor to the shipper creates C8, and the
confirm ship request message sent by the shipper to the
customer creates C9.

In Figure 16(d), the shipper ships the goods to the cus-
tomer. This sequence is guarded by the shipper’s confirm
ship request message to the customer. By shipping the
goods to the customer, the shipper satisfies C9, which in
turn satisfies the pending commitments C6, and C3. For
brevity, we use the name of each task (e.g., shipGoodsE)
in the business model as the name of the message (e.g.,
shipGoodsE) that completes the task. This is not necessary
in our approach. It would be a simple matter to use
different names but we would have to map each message
to the corresponding task.

Similarly, Figures 22 and 23 (in the online appendix)
show the remaining sequence diagrams for QTC. Fig-
ures 22(e), (f), (g), and (h) show product quoting, ship
quoting, shipping, and service quoting, respectively. Fig-
ure 23(i) shows the customer’s request for service, and
Figures 23(j) and (k) show various payment and install
interactions. These diagrams show the commitments
that the messages create. In some sequence diagrams,
commitments are satisfied as their consequent is brought
about.

The patterns that constitute the QTC business model
of Figure 13 yield a total of 200 CTL specifications. The
QTC sequence diagrams of Figures 16, 22, and 23 yield
an FSM that has 12,600 states and 12,600 transitions. On
a computer with 2.66 GHz Intel Core 2 Duo processor,
and 4 GB memory, NuSMV verifies the QTC model in
0.1 seconds. The sequence diagrams from this section
satisfy the QTC business model from Figure 13. Figure 17

11

Loop 5

Customer Reseller

reqQuoteCR

quoteRC

responseCR

[responseCR != accept]

Distributor

reqQuoteRD

[responseCR = accept] → [responseRD = accept]

[responseCR = accept] → create(C2), create(C3)

[responseRD = accept] → create(C5)

quoteDR

responseRD

orderCR → create(C1)

orderRD → create(C4)

confirmOrderDC → create(C6)

Customer Reseller

orderCR

Distributor

orderRD

ackOrderDR

ackOrderRC

[responseCR = accept]

confirmOrderDC

[responseRD = accept]

Distributor Shipper 1

reqQuoteDS

quoteSD

acceptDS

[confirmOrderDC]

Customer

shipGoodsE

Shipper 1 CustomerReseller Distributor

goodsReceivedSD

goodsReceivedDR

[confirmShipReqSC]

confirmShipReqSC

goodsReceivedCS

(a) A customer requests a quote from a

reseller, and the reseller requests for a quote

from a distributor.

(b) The customer sends an order to the

reseller, and the reseller sends an order

to the distributor.

quoteSD → create(C7)

acceptDS → create(C8)

confirmShipReqSC → create(C9)

(c) The distributor requests a quote from

a shipper.

(d) The shipper ships goods to the

customer.

Fig. 16. Operational interactions in a QTC implementation.

shows a partial screen shot of NuSMV output. It shows
several specifications that the model satisfies. For exam-
ple, the highlighted specification is NuSMV equivalent to
a specification from the unilateral commitment pattern:
AG = (NULL → AX(NULL∨CONDITIONAL∨DETACHED)).
The output shows that the model satisfies this spec-
ification for commitment C1. We now present a few
variations of these sequence diagrams that fail to satisfy
the specification.

Potential Violations

Because the above model is verified successfully, we
consider some (imaginary) potential violation scenarios
to further demonstrate our approach.

Scenario 1: Failure to confirm the order

If we remove the confirmOrderDC message from the se-
quence diagram of Figure 16(b), the distributor fails to

confirm the order, thus violating these specifications:

1) AG(DETACHED → AF(SATISFIED)) for C5: The
NuSMV counterexample shows an execution in
which C5 detaches since the reseller pays the dis-
tributor. However, C5 never satisfies since the dis-
tributor never confirms the order, that is, never
creates C6. Therefore, the distributor violates C5.
At a business level, this situation is undesirable
since the reseller pays the distributor to create a
commitment to ship the goods to the customer, but
the distributor fails to create that commitment.

2) AG(VIOLATED5 → AF(¬PENDING3)): In the oper-
ational model, the (original) commitment C3 be-
comes pending when reseller accepts the distrib-
utor’s quote (responseRD = accept). By not sending
the confirmOrderDC message, the distributor violates
the (outsourced) commitment C5. But C3 stays
pending, and it is not reactivated. At a business

12

level, this is undesirable since the reseller who is
responsible for satisfying C3 fails to reactivate it
after the outsourced commitment is violated.

Scenario 2: Failure to ship the goods

Here we remove the shipGoodsE message from the se-
quence diagram of Figure 16(d), that is, the shipper fails
to ship the goods to the customer. Figure 18 shows a par-
tial screen shot of the NuSMV output, highlighting that
the model violates the specification AG(DETACHED →
AF(SATISFIED)) for commitment C6. The model also vi-
olates the same specification for commitment C9. In the
counterexample produced by NuSMV, the commitments
are detached, but are never satisfied since their conse-
quent shipGoodsE is not brought about. Note that the
specification AG(DETACHED → AF(SATISFIED)) is not vi-
olated for C3 although it has the consequent shipGoodsE.
This is because, as Figure 23(j) shows, the customer does
not pay the reseller until the goods are received. Since
shipGoodsE is removed, the customer never receives the
goods and, therefore, C3 never detaches.

Fig. 17. Screen shot of NuSMV output indicating satisfaction.

Fig. 18. NuSMV output showing violation: failure to ship goods.

Runtime Violations

The above examples demonstrate how our approach
detects commitment violations in an operational model

at design time. However, a participant may violate
a commitment at runtime. To handle such cases, the
business model may employ the penalty pattern [11].
For example, if the reseller ships the goods but the
customer fails to pay $10 within 15 days, that is, the
customer violates a commitment. Then a penalty applies,
committing the customer to pay $15 within 30 days to
the reseller.

6 RELATED WORK

We relate our work to three research areas: business
process modeling, software engineering methodologies
for open systems, and formal approaches of modeling
and verifying agent interactions.

Business Process Modeling

Hofreiter et al. [15] present UN/CEFACT’s methodology
UMM for modeling interorganizational business pro-
cesses as global choreographies. Similar to our approach,
UMM specifies a choreography at a business level, in-
dependently of the underlying implementation technol-
ogy. However, unlike UN/CEFACT’s UMM model, our
metamodel naturally captures business aspects by giving
primacy to the commitments among the participants.
Further, the well-defined semantics of a commitment
and its operations provide a basis for formally verifying
operational executions.

Bodenstaff et al. [16] present a methodology to check
consistency between different models of an interor-
ganizational scenario. Their methodology is model-
independent, but their notion of consistency fails to
consider the temporal progression of a model. In con-
trast, our method verifies the temporal progression of an
operational model, with respect to the business model.

Rosenberg et al. [17] highlight the lack of a model-
ing method that derives a cross-organizational business
process starting from service level agreements (SLA)
among the participants. They propose a methodology
that extends the web services choreography description
language (WS-CDL) to capture SLAs specified in the web
service level agreement (WSLA) language. Unlike our
metamodel, this approach fails to capture the agreements
(relationships) among the participants at a business level,
and lacks the flexibility that our metamodel offers.

Milosevic et al. [18] propose a method that derives
a cross-organizational business process starting from a
contract between the participants. This is similar in spirit
to our approach, which starts from a business model to
derive an operational model. However, Milosevic et al.’s
approach models a contract using the deontic notion of
an obligation. Although obligations are similar to com-
mitments, they are limited since they are not directed
from one participant to another, and cannot be readily
manipulated. Further, unlike our approach, Milosevic et
al.’s method lacks a formal approach to verify if the
derived business process satisfies the original contract.

13

Engineering Methodology

Gordijn and Wieringa [19] propose the e3-value ap-
proach, which captures a business organization as an
actor, similar to our notion of an agent. Actors execute
value activities, similar to our tasks. In e3, a value inter-
face aggregates related in and out value ports of an actor
to represent economic reciprocity. This concept is close to
our concept of commitment, but it lacks formal semantics
and doesn’t yield flexibility. For example, unlike value
interfaces, commitments can be readily delegated. Due to
this, during execution, the exchange and interaction may
take place among actors different from those included in
an e3 model.

Our approach relates to Tropos [20] in spirit, but
differs significantly in that we use commitments. The
debtor, creditor, and consequent of a commitment are
respectively similar to the dependee, depender, and de-
pendum of a Tropos dependency [21]. However, unlike
a dependency, a commitment has an antecedent that
brings it into full force. This enables modeling of recip-
rocal relationships between economic entities, which is
lacking in the concept of dependency.

El Menshawy et al. [22] extend our approach from [9]
with argumentation to develop a methodology to model
communities of web services. Unlike El Menshawy et
al.’s methodology, our approach is founded upon pat-
terns. We formalize the patterns, and show how business
executions are verified with respect to a business model.

Amoeba [1] is a process modeling methodology based
on commitment protocols. This methodology creates a
model in terms of fine-grained messages and commit-
ments. Our approach lies at a higher level of abstraction
containing business goals, tasks, and commitments.

Opera is a framework for modeling multiagent so-
cieties [23], though from the perspective of a single
designer or economic entity. In contrast, we model in-
teractions among multiple entities. Opera’s concepts of
landmark, scene, and contract are close to our concepts
of task, protocol, and commitment, respectively. How-
ever, Opera uses traditional obligations, which lack the
flexibility of commitments, as explained above.

Formal Approaches

Fornara et al. [6] model an open interaction system
in terms of social commitments, events, agents, roles,
and norms. They specify a model using an ontology
in OWL, and use SWRL and a custom Java program
to monitor the temporal progression of social commit-
ments. We specify the business model using CTL, and
model check operational interactions specified as UML
sequence diagrams. Unlike the patterns in our approach
that model a business scenario, Fornara et al.’s approach
lacks principled means of creating a model.

Winikoff [5] argues that a message-centric agent in-
teraction model limits flexibility and autonomy of the
agents. He proposes an approach using commitments for
modeling agent interactions. We indeed share the same

motivation, and base our business model on commit-
ments. Winikoff further outlines a multistep process for
designing an interaction model, which he applies on a
simple meeting scheduler application. However, unlike
our approach, his process does not identify reusable
patterns. Further, we evaluate our approach on a real-
world Quote To Cash business process scenario.

The Logic for Contract Representation (LCR) [24] spec-
ifies interactions in Opera [23]. Avali and Huhns [25]
share our notion of commitments. They apply BDICTL∗
to relate commitments to an agent’s beliefs, desires, and
intentions. LCR and Avali and Huhns’ approach support
reasoning about obligations and commitments, respec-
tively. Such reasoning would complement our work. By
contrast, our approach focuses on interactions among
real-world organizations and enables us to develop high-
level business models, and to verify those with respect
to low-level operational models. Further, we develop a
set of real-world business patterns.

Fuxman et al. [26] present an approach to check a
Tropos specification for consistency and other proper-
ties that capture stakeholder expectations. Our approach
checks an operational model with respect to a business
model, wherein the semantics of a commitment and its
operations yield the desired temporal specifications.

Pijpers and Gordijn [27] present a semiformal ap-
proach for checking the consistency of a process model
(UML activity diagram) with respect to an e3-value
model. In their approach, a process model needs to
contain all value exchanges that an e3-value model spec-
ifies. For consistency, our approach does not mandate an
execution to create and satisfy all of the model commit-
ments. Instead, it only requires detached commitments
to be satisfied prior to the detached timeout. This offers
flexibility that real-world processes demand.

7 CONCLUSIONS

The main contributions of this paper are a business
metamodel, a set of modeling patterns, and an approach
for formalizing business models and verifying opera-
tions with respect to models. Using a real-life business
scenario, we evaluate both our model and patterns (Sec-
tion 3), and our verification approach (Section 5). Our
set of business model patterns is clearly not exhaustive
nor do we expect any set of patterns to be exhaustive—
hundreds of patterns exist for programming and for soft-
ware architecture, and the domain of business models
appears no less complex than those domains. However,
our core set of patterns shows how we may construct
additional patterns. Our approach helps a business mod-
eler concentrate on high-level commitments, and helps
detect flaws in business process implementations. This
paper establishes the practical usability of the approach
by applying it to a real-world business process.

In future work, we hope to study business models
from different domains to identify additional patterns.
Along these lines, we have begun abstracting high-
level business patterns [28] from the so-called Partner

14

Interface Processes of RosettaNet, a leading industry
standard for business-to-business interactions [29]. We
will extend the approach to check if business executions
satisfy model goals, and develop properties that a model
should satisfy for consistency. We also expect to develop
a methodology for business modeling, and graphical
tools for creating business models.

ACKNOWLEDGMENTS

Our business metamodel and patterns (but not their
formalization or verification) appeared in our previous
work [9], as did parts of our second case study in
the appendix. We thank the anonymous reviewers for
helpful comments and Scott Gerard and Amit Chopra
for useful discussions.

REFERENCES

[1] N. Desai, A. K. Chopra, and M. P. Singh, “Amoeba: A methodol-
ogy for modeling and evolution of cross-organizational business
processes,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 19, no. 2, pp. 6:1–6:45, Oct. 2009.

[2] M. P. Singh and M. N. Huhns, Service-Oriented Computing: Seman-
tics, Processes, Agents. Chichester, UK: John Wiley & Sons, 2005.

[3] BPEL, “Web services business process execution language, version
2.0,” Jul. 2007, http://docs.oasis-open.org/wsbpel/2.0/.

[4] WS-CDL, “Web services choreography description language ver-
sion 1.0,” Nov. 2005, www.w3.org/TR/ws-cdl-10/.

[5] M. Winikoff, “Designing commitment-based agent interactions,”
in Proc. IEEE/WIC/ACM Int’l Conf. Intelligent Agent Technology,
2006, pp. 363–370.

[6] N. Fornara and M. Colombetti, “Ontology and time evolution
of obligations and prohibitions using semantic web technology,”
in Proc. 7th AAMAS Workshop Declarative Agent Languages and
Technologies, 2009, pp. 101–118.

[7] M. P. Singh, “An ontology for commitments in multiagent sys-
tems,” Artificial Intelligence and Law, vol. 7, pp. 97–113, 1999.

[8] UML 2.0 Superstructure Specification, Object Management Group,
Framingham, Massachusetts, Oct. 2004.

[9] P. R. Telang and M. P. Singh, “Business modeling via commit-
ments,” in Proc. 7th AAMAS Workshop Service-Oriented Computing:
Agents, Semantics, and Engineering (SOCASE), ser. LNCS, vol. 5907.
Springer, 2009.

[10] M. B. van Riemsdijk, M. Dastani, and M. Winikoff, “Goals in
agent systems: a unifying framework,” in Proc. 7th Int’l Conf.
Autonomous Agents and Multiagent Systems (AAMAS), 2008, pp.
713–720.

[11] M. P. Singh, A. K. Chopra, and N. Desai, “Commitment-based
service-oriented architecture,” IEEE Computer, vol. 42, no. 11, pp.
72–79, Nov. 2009.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, ser. Professional
Computing Series. Reading, MA: Addison-Wesley, 1995.

[13] P. Yolum and M. P. Singh, “Enacting protocols by commitment
concession,” in Proc. 6th Int’l Conf. Autonomous Agents and Multi-
Agent Systems, May 2007, pp. 116–123.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, Massachusetts: The MIT Press, 1999.

[15] B. Hofreiter, C. Huemer, P. Liegl, R. Schuster, and M. Zapletal,
“UN/CEFACT’s Modeling Methodology (UMM): A UML profile
for B2B e-commerce,” in 2nd Int’l Workshop Best Practices of UML
(ER), 2006, pp. 19–31.

[16] L. Bodenstaff, A. Wombacher, M. Reichert, and R. Wieringa,
“MaDe4IC: An abstract method for managing model dependen-
cies in inter-organizational cooperations,” Service Oriented Com-
puting and Applications, vol. 4, pp. 203–228, 2010.

[17] F. Rosenberg, A. Michlmayr, and S. Dustdar, “Top-down business
process development and execution using quality of service as-
pects,” Enterprise Information Systems, vol. 2, pp. 459–475, 2008.

[18] Z. Milosevic, S. Sadiq, and M. Orlowska, “Translating business
contract into compliant business processes,” in Proc. 10th IEEE
Int’l Enterprise Distributed Object Computing Conf. (EDOC), 2006,
pp. 211–220.

[19] J. Gordijn and R. Wieringa, “A value-oriented approach to E-
business process design,” in Proc. 15th Int’l Conf. Advanced In-
formation Systems Engineering, ser. LNCS, vol. 2681. Springer,
2003, pp. 390–403.

[20] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los, “Tropos: An agent-oriented software development methodol-
ogy,” Autonomous Agents and Multi-Agent Systems, vol. 8, no. 3,
pp. 203–236, 2004.

[21] P. R. Telang and M. P. Singh, “Enhancing Tropos with commit-
ments,” in Conceptual Modeling: Foundations and Applications, ser.
LNCS, vol. 5600. Springer, 2009, pp. 417–435.

[22] M. El-Menshawy, J. Bentahar, and R. Dssouli, “Enhancing en-
gineering methodology for communities of web services,” in
Second Multi-Agent Logics, Languages, and Organisations Federated
Workshop, vol. 494, 2009.

[23] H. Weigand, V. Dignum, J.-J. C. Meyer, and F. Dignum, “Specifi-
cation by refinement and agreement: Designing agent interaction
using landmarks and contracts,” in Engineering Societies in the
Agents World III, ser. LNCS, vol. 2577. 2002, pp. 257–269.

[24] V. Dignum, J.-J. C. Meyer, F. Dignum, and H. Weigand, “For-
mal specification of interaction in agent societies,” in Formal
Approaches to Agent-Based Systems, ser. LNCS, vol. 2699. Springer,
2002, pp. 37–52.

[25] V. R. Avali and M. N. Huhns, “Commitment-based multiagent de-
cision making,” in Proc. 12th Int’l Workshop Cooperative Information
Agents, ser. LNCS, vol. 5180. Springer, 2008, pp. 249–263.

[26] A. Fuxman, J. Mylopoulos, M. Pistore, and P. Traverso, “Model
checking early requirements specifications in Tropos,” in Proc. 5th
IEEE Int’l Symp. Requirements Engineering (RE). 2001, pp. 174–181.

[27] V. Pijpers and J. Gordijn, “Consistency checking between value
models and process models: A best-of-breed approach,” in Proc.
3rd Int’l Workshop Business/IT Alignment and Interoperability (BUSI-
TAL), 2008, pp. 58–72.

[28] P. R. Telang and M. P. Singh, “Abstracting and applying busi-
ness modeling patterns from RosettaNet,” in Proc. 8th Int’l Conf.
Service-Oriented Computing, 2010, pp. 426–440.

[29] RosettaNet, Overview: Clusters, segments, and PIPs, 2008,
www.rosettanet.org.

[30] S. Browne and M. Kellett, “Insurance (motor damage claims) sce-
nario,” CrossFlow Consortium, Document Identifier D1.a, 1999.

Pankaj R. Telang is an IT Architect at Cisco Systems,
and a PhD student in the Department of Computer
Science, North Carolina State University, Raleigh. His
research interests include business modeling, service
oriented architecture, and agent oriented software
engineering.

Munindar P. Singh is a Professor in the Department
of Computer Science, North Carolina State Univer-
sity, Raleigh. His research interests include multia-
gent systems and service-oriented computing with
a special interest in the challenges of trust, service
selection, and business processes in large-scale open
environments. Dr. Singh was the Editor-in-Chief of the
IEEE Internet Computing from 1999 to 2002. He is
a member of the editorial boards of IEEE Internet
Computing, Autonomous Agents and Multiagent Sys-
tems, Web Semantics, and Service-Oriented Comput-

ing and Applications.

