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gency scenario. We show via a human-subject study that a design process based on our patterns is helpful
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1 INTRODUCTION

A sociotechnical system (STS) is composed of both social (people and organizations) and technical
(computers and networks) elements [Dalpiaz et al. 2013; Kafalı et al. 2016a; Sommerville et al.
2012]. In this conception, we understand an STS as a normative multiagent system (nMAS),
wherein autonomous agents representing stakeholders interact with each other through and
about the technical components [Chopra et al. 2014; Singh 2013]. Accordingly, an nMAS supports
interaction across two levels: (i) among the agents regarding the applicable social norms and
(ii) between the agents and the technical components that belong to, and are subject to control
by, the underlying technical architecture.

Figure 1 illustrates this conception. We place norms [Barth et al. 2006; Singh 2013] as central
to nMAS. A norm here is a directed relationship between two agents. An nMAS’s technical tier is
composed of (nonautonomous) software components supporting various agent actions. Multiple
agents can use a software component concurrently, and an agent can use multiple software compo-
nents. Access to software components is controlled via technical mechanisms, which embody hard
specifications and allow or prevent specific agent actions. In essence, we understand such mech-
anisms as providing regimentation [Jones and Sergot 1993]. An nMAS’s social tier is composed
of autonomous agents interacting with each other. Norms regulate [Jones and Sergot 1993; Kafalı
et al. 2016a; Singh 2013] such interactions by providing accountability for agent actions. That is,
agents, being autonomous parties, can violate their norms but each norm specifies who is account-
able to whom for what and when. Since norms can be violated, legal compliance is not assured
in general. However, as appropriate, we can ensure compliance for some norms via regimentation
and can achieve regulation through social controls such as sanctions [Nardin et al. 2016].

An nMAS designer specifies the technical tier (mechanisms) and social tier (norms) according
to the requirements of its stakeholders. A well-conceived nMAS would capture ways in which to
recover from violations, e.g., by sanctioning an accountable party for a violation. For target applica-
tions of nMAS, such as healthcare security and privacy, incorporating norms is essential to gain the
flexibility needed to satisfy stakeholder requirements that would otherwise be left unsupported.

Running Example: HIPAA (US Health Insurance Portability and Accountability Act) Emergency

Rule [HHS 2014]. The following nMAS supports regulations regarding the disclosure of patient
information in national emergencies. For ease of presentation, we adopt distinct type styles for
agents and propositions.

Example 1. The guidelines for disasters provided by the American College of Emergency Physi-
cians, ACEP [ACEP 2013], include expanding staff capacity and relaxing privacy requirements.
Following such guidelines, a hospital may recruit outside physicians to cope with the load of a
national emergency or disaster situation. However, doing so inevitably raises privacy concerns
regarding the patients’ electronic health records (EHR). According to HIPAA privacy rules, dur-
ing regular medical practice, physicians are required to obtain consent from a patient to share
the patient’s protected health information (PHI) with the patient’s family members. In addition,
patients can request confidential communications, which would prohibit a physician from con-
sulting another colleague about the patient’s condition. However, in emergencies, a patient is in
no condition to give consent, and the HIPAA rules are waived to authorize physicians to inform
a patient’s family about the condition of the patient. In case a hospital needs to recruit outside
physicians, the hospital must prohibit the outside physicians from disclosing patients’ PHI.

We now informally apply Figure 1’s conception to Example 1. Figure 2 instantiates our con-
ceptual model with agents, norms, and software components. The agents are physician, out-
side_physician, hospital, patient, and family. The hospital’s EHR software implements ac-
cess control mechanisms (corresponding to a software component in the figure), where the
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Fig. 1. Two-tier normative multiagent system (nMAS) with n (� 2) agents and m (� 2) software components.
Solid arrows represent how (autonomous and nonautonomous) entities interact with each other. Dashed
lines represent how norms provide regulation and regimentation.

Fig. 2. Instance of an nMAS with agents, norms, and software components.
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credentials are provided by hospital to the staff based on their roles. For example, a mechanism
enables physician to access a patient’s EHR only when there is consent from patient (correspond-
ing to a use relation in the figure). However, the same mechanism enables access to all emergency
patients’ EHRs when a national emergency is declared for the geographical area that the hospital
serves. Once physicians have access to a patient’s EHRs, a technical mechanism cannot prevent
them from disclosing the patient’s PHI. Therefore, in the social tier, hospital prohibits physician
from disclosing a patient’s PHI (corresponding to a norm in the figure). However, physician may
share a patient’s PHI with outside_physician in a national emergency. outside_physician may
then inform family about the patient’s medical situation.

The potential benefits of a normative approach are significant. First, it captures the social and
technical elements together, whereas traditional approaches artificially separate them. Second, a
normative approach formally represents and reasons about the social tier. Investigating the two
tiers together brings an important research challenge to fore: What computational representa-
tions and techniques can help realize this vision? We refine this challenge into two major research
questions that this article addresses by emphasizing a sociotechnical perspective on nMAS.

RQ1: Verification. How can we verify that an STS, via its technical and social elements, satisfies
the requirements of its stakeholders?

Significance: Situations in which agents stand in for autonomous stakeholders are especially
crucial to security and privacy [Ajmeri et al. 2018; Kökciyan and Yolum 2016; Such and Criado
2016], because security and privacy concerns presuppose that multiple autonomous agents are
involved.

Novelty: Previous research on verification of software systems falls into several bodies. Formal
methods such as Degiovanni et al. [2014] and Letier and Heaven [2013] for modeling and synthesis
of software components do not incorporate autonomous agents into their architectures. Works that
incorporate agents such as Barth et al. [2006] artificially limit the agents’ autonomy and assume
they always comply with any applicable norms. Similarly, multiagent modeling and verification
approaches such as Dastani et al. [2010], Kardas [2013], and Kuster et al. [2014] do not investi-
gate nonfunctional (e.g., security and privacy) stakeholder requirements in depth. Agent-oriented
software engineering (AOSE) methodologies such as Abushark et al. [2015], Bresciani et al. [2004],
Chopra and Singh [2016b], Gómez-Sanz and Fuentes-Fernández [2015], Horkoff and Yu [2016],
and Parunak and Brueckner [2015] focus on modeling techniques to aid software engineering by
integrating autonomous components in the software development lifecycle. However, they do not
incorporate the social dimension.

RQ2: Refinement. How can we guide the refinement of an STS specification to ensure that it
satisfies the stated and changing requirements?

Significance: Creating specifications is at the heart of software engineering; doing so for
STSs with first-class status for the social tier helps avoid loss of user requirements via ad hoc
translation from the social tier to the technical tier. Accommodating requirement changes in an
STS is nontrivial.

Novelty: Existing approaches on STSs, e.g., Protos [Chopra et al. 2014], provide an abstract de-
sign process but not concrete support for producing specifications. Formal requirements engineer-
ing approaches investigate privacy policies [Bhatia et al. 2016], regulations [Gandhi and Lee 2011],
and breach reports [Kafalı et al. 2017b]. However, they do not discuss how such investigation can
guide the refinement of an STS specification. We use agent-based simulation to evaluate candidate
STS designs and guide their refinement.

Contributions and organization. We propose Desen (Turkish for “pattern”), a formal frame-
work for the verification and refinement of STS specifications via social norms (Section 2). Desen
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supports formal verification of requirements by generating a temporal model based on the correct
behavior described by the norms (Section 3), thus contributing to security requirements engineer-
ing with sociotechnical considerations [Dalpiaz et al. 2016]. In case an STS specification does not
satisfy a requirement, Desen supports refinement based on design patterns (Section 4). Desen is
novel, because it provides a way to incorporate STS considerations in AOSE via design patterns,
which have not been explored in depth by previous work, including our previous research [Kafalı
et al. 2016a, 2016b]. Our extensive set of patterns transforms STS specifications between the tech-
nical and social tiers, thereby providing STS designers alternative means to satisfy stakeholder
requirements. We evaluate Desen at three levels. We demonstrate how refinement works on a
national emergency scenario from HIPAA (Section 5), which covers the legal and privacy require-
ments of HIPAA pertaining to emergencies. We conduct a human-subject study to evaluate the
effectiveness of our pattern-based approach in capturing and refining stakeholder requirements
(Section 6). We provide an open-source, agent-based simulation environment to mimic a social
community consisting of multiple hospitals, physicians, and patients (Section 7). Our simulation
experiments compare STS designs with respect to additional requirements by computing generic
metrics indicating social welfare and norm compliance as well as domain-dependent metrics such
as the number of alive residents in various community settings, e.g., extreme national emergency
and regular medical practice.

Practical usage and implications. Desen provides an analyst (or a designer) with a systematic
way to verify and refine STS specifications. Specifically, after the initial elicitation of requirements
(not tackled here) and a set of initial designs based on individual consideration of the requirements,
the analyst (i) verifies the designs with respect to the requirements using a model checker tool;
(ii) assuming there are unsatisfied requirements in some of the designs—sets up the simulation en-
vironment with environment parameters obtained from the requirements and parameters related
to norms and mechanism obtained from the designs; (iii) eliminates designs that do not perform
well in the simulation; (iv) refines the rest of the designs by applying the patterns (see Section 7 for
a sample comparison of STS designs); (v) goes back to step (i). Note that a wrapper tool would hide
the technical details of the formal verification process from the analyst. However, the development
of such a tool is out of the scope of this article.

2 FORMAL FRAMEWORK

We now describe the formal constructs that make up the technical and social tiers of an nMAS. Our
universe of discourse is composed of three finite sets: (1) R = {α1 . . .} of role and agent names; Φ =
{ϕ . . .} of atomic propositions; andM = {m1 . . .} of mechanisms. Run-time nMASs involve agents.
Roles are placeholders for agents in design-time specifications. Our definitions, including language
and model, are generated from this universe of discourse. Table 1 describes the syntax of an nMAS
specification, including other nonterminals (particularly Expr and List) that we reference below.

2.1 Computation Tree Logic

We operationalize an nMAS via a branching-time model of the kind used for Computation Tree
Logic (CTL) [Clarke et al. 1999]. We adopt the CTL syntax used by the NuSMV model checker
[Cimatti et al. 2002]. CTL introduces the temporal operators AX, AF, AG, AU, EX, EF, EG, and EU,
each of which combines quantification over paths (each path being a possible branch of time) and
quantification within a path. Specifically, A and E quantify over paths. A stands for all; that is, Aq
means that the quantified formula q holds on all paths emanating from the current point. E stands
for exists; that is, Eq means that the quantified formula q holds on at least one path emanating
from the current point. And, X, F, G, and U are specific to a single path. X stands for next and Xp
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Table 1. Desen Syntax

Specification −→ { } | {Specification} ∪ {Specification} |
Norm | Assumption | Mechanism

Norm −→ Commitment | Authorization | Prohibition
Commitment −→ c(R, R, Expr, Expr)
Authorization −→ a(R, R, Expr, Expr)
Prohibition −→ p(R, R, Expr, Expr)
Assumption −→ 〈ϕ,Expr 〉 | 〈¬ϕ,Expr 〉
Mechanism −→ m(Expr, List, List)

Expr −→ true | ϕ | ¬Expr | Expr | Expr ∧ Expr
List −→ { } | ϕ | {ϕ} ∪ {ϕ}

means that p holds at the next state on the given path. F stands for eventually and Fp means that
p holds eventually at some future states on the given path. G stands for globally and Gp means
that p holds at all future states on the given path. Finally, U stands for until and pUq means that p
holds on the given path until q holds on the given path. Note that ∪ (cup symbol) in Table 1 is the
set union operator, not to be confused with CTL until operator U (sans serif U).

2.2 Events and Immutability

In our setting, agents interact with each other and the environment. The interface with the
environment is in terms of observed events. In essence, the series of observations of events can
only grow over time. We assume for each event ev, there exists an event that is the complement
of ev, denoted by ev, which describes the nonoccurrence of ev. That is, we formalize ev in CTL as
AG¬ev. Complement events may thus correspond to deadline conditions. For example, if operate
means that the physician has operated within the specified time interval, then operate means
that the physician has failed to operate upon the patient during that time interval. Note that
both operate and operate cannot hold. Therefore, events are stable—immutable once they have
occurred [Chopra and Singh 2015].

2.3 Norms and Assumptions

Definition 1 characterizes a directed norm along the lines of Singh [2013], but with some
enhancements.

Definition 1. A norm is a tuple 〈n, sbj,obj, ant, con〉, where n, its type, is one of {c, p, a}; sbj ∈ R
is its subject; obj ∈ R is its object; ant ∈ Expr is its antecedent; and con ∈ Expr is its consequent.
We write a norm as n(sbj, obj, ant, con). We define N as the set of all norms.

We consider three kinds of norms. A commitment (c) means that its subject commits to its
object to bringing about the consequent if the antecedent holds. Consider the following commit-
ment: c(physician, hospital, emergency, operate). A physician is practically committed to the
hospital to operating upon patients in an emergency. The physician is accountable to the hospital
for this commitment. If the physician fails to operate upon patients, then the commitment is vio-
lated. Figure 3 summarizes the norm lifecycle for a commitment. A norm begins its lifecycle in the
conditional state—or in the detached state if its antecedent is initially true. When a commitment
is conditional, neither the antecedent nor the consequent hold. When the antecedent holds, the
commitment becomes detached. For a conditional commitment, if its antecedent condition (ant)
becomes impossible to satisfy, it expires. Recall the discussion of events and complementation in
Section 2.2. Expired is a terminal state, i.e., the commitment’s lifecycle ends in the expired state.
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Fig. 3. Commitment lifecycle. The accountable party is the subject of the norm. White rectangles represent
nonterminal states. Shaded rectangles represent terminal states.

Fig. 4. Prohibition lifecycle. The accountable party is the subject of the norm. White rectangles represent
nonterminal states. Shaded rectangles represent terminal states.

Note that it is possible for an antecedent such as emergency that the norm never transitions into
the expired state. Moreover, a norm whose antecedent is true does not expire. However, for some
antecedents, such as consent, expiration is possible (e.g., patients cannot give consent when they
are in an emergency). For a detached commitment, if the consequent condition (con) is brought
about, the commitment is satisfied. If the consequent becomes impossible to satisfy (i.e., con), then
the commitment is violated. Like expired, satisfied and violated are terminal states, meaning there
are no further transitions from them.

A prohibition (p) means that its subject is prohibited by its object from bringing about the con-
sequent if the antecedent holds. Consider the following prohibition: p(physician, hospital, true,
share_PHI_thirdparty). A physician is prohibited by the hospital from disclosing a patient’s PHI
to others (share_PHI_thirdparty). The physician is accountable to the hospital for this prohibition.
This prohibition is unconditional, because its antecedent is true. If the patient’s PHI is disclosed,
then the prohibition is violated. Figure 4 summarizes the norm lifecycle for a prohibition.

An authorization (a) means that its subject is authorized by its object for bringing about the
consequent if the antecedent holds. Consider the following authorization: a(physician, hospital,
consent, EHR ∨ operate). A physician is authorized by hospital to access a patient’s EHR as well
as to operate upon the patient when the patient’s consent is obtained. Here, the object (hospital)
is accountable to the subject (physician). If the physician cannot access the patient’s EHR or op-
erate upon the patient when the authorization is detached, then the authorization is violated. An
authorization acts as a commitment on the authorizing party, making it accountable. That is, the
authorizing party should ensure the authorized party is not blocked from the consequent if the
antecedent holds [Von Wright 1999]. Note that the authorization semantics captures this account-
ability relation, therefore an additional commitment is not required. Figure 5 summarizes the norm
lifecycle for an authorization.

Definition 2. A domain assumption is a pair 〈h,b〉, where h is a literal (either a member of Φ or
a negation of a member of Φ) and b ∈ Expr is any expression derived from Expr. An assumption
holds if and only if the CTL formula AG (b → h) is true. A is the set of all possible assumptions.
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Fig. 5. Authorization lifecycle. The accountable party is the object of the norm. White rectangles represent
nonterminal states. Shaded rectangles represent terminal states.

Assumptions describe domain-specific statements. For example, 〈¬logged_in, power_failure〉
means that physicians cannot log in to their computers when there is a power failure. Assumption
〈ϕ, true〉 means that ϕ must occur in every state of any enactment of the nMAS. A norm creates
an expectation about its parties under the assumption that they are trustworthy. For example,
the subject of a prohibition is not expected to bring about the prohibition’s consequent: 〈¬con,
p(sbj, obj, ant, con) ∧ ant ∧ trustworthy(sbj)〉. Trustworthiness could be per norm with a logical
structure as in Singh [2011].

2.4 Mechanisms and Regimentation

Mechanisms are supported by the underlying technical architecture. An example mechanism is
accessing patient data. The technical architecture may impose enabling conditions upon mecha-
nisms. For example, providing a token or password is an enabling condition for accessing patient
data. If physician supplies the password, then the access happens.

Regimentation is an implementation style in which an agent may perform a mechanism only if
that mechanism’s enabling conditions are met. To provide such regimentation, we introduce a for-
malization of mechanisms into our model. We write mechanisms asm(enabler, add, delete), where
enabler ∈ Expr, add, delete ⊆ Φ and add ∩ delete = { }. The underlying intuition is that when a
mechanism is enabled (i.e., enabler is true), its effect may take place. The effect consists of a set
of atomic propositions to be added (add list) and a set of atomic propositions to be deleted (delete
list)—these two sets are disjoint. Therefore, the effect of a mechanism is always unambiguous.

Enabler: A mechanism whose enabler is true is always enabled. We presume that some such
mechanisms (i.e., always enabled) would be defined so agents can act in the initial state. The mech-
anism m(true, {consent}, {}) allows a patient to electronically sign consent at all times.

Add list: Consider the mechanism m(password, {logged_in}, {}), for logging in to a computer.
That is, when the password is provided (i.e., enabler becomes true), this mechanism allows the
user to become logged in, since the proposition logged_in is contained in the add list.

Delete list: Consider a logout mechanism m(logged_in, {}, {logged_in}). When logged in, this
mechanism allows the user to log out. That is, the proposition logged_in that is contained in the
delete list is removed from the current state.

2.5 nMAS Enactments

We now describe how to operationalize an nMAS in terms of a branching-time model, as used for
CTL. Definition 3 specifies an nMAS as consisting of sets of roles L, assumptions A, mechanisms
M , and norms N (see Table 1 for the syntax).

Definition 3. An nMAS is a tuple Σ = 〈L,A,M,N 〉, where L ⊆ R is a set of roles; A ⊆ A is a set
of assumptions; M :M → Expr × 2Φ × 2Φ is a mapping from mechanisms to enabling conditions
and effects; and N ⊆ N is a set of norms.
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Consider an nMAS for a hospital environment: Σhospital = 〈{hospital, physician, pa-
tient}, {〈trustworthy(physician), true〉, 〈¬con, p(sbj, obj, ant, con) ∧ ant ∧ trustworthy(sbj)〉},
{mconsent (true, {consent}, {}), maccess (consent, {EHR}, {})}, {pshar e (physician, hospital, true,
share_PHI_thirdparty)}〉. There are three agent roles: hospital, physician, and patient. There are
two assumptions: physicians are trustworthy, and trustworthy agents do not violate their prohi-
bitions. There are two mechanisms: patients can give consent, and physicians can access patients’
EHR if consent is provided. There is one norm: physicians are prohibited by the hospital from
disclosing patients’ PHI.

Definition 4 specifies a CTL model. A state of an enactment is given precisely by the atomic
propositions true therein. Below, S is interpreted as the set of labeled states in the CTL model.
Having a CTL formalization enables us to exploit associated formal verification tools, such as
NuSMV.

Definition 4. A CTL model is a tuple Γ = 〈S, s0,M,δ ,Lbl〉, where (i) S ⊆ 2Φ is a subset of the
powerset of Φ; (ii) s0 ∈ S is the initial state; (iii)M ⊆ M is the set of mechanisms; (iv) δ : S ×M → S
is a transition function; and (v) Lbl is a labeling function for states.

For example, a CTL model, Γhospital , corresponding to Σhospital would have states consisting of
propositions that are contained in the add and delete lists of the mechanisms in Σhospital . Simi-
larly, the transitions among those states are carried out according to the mechanism definitions in
Σhospital , e.g., the mechanism for accessing a patient’s PHI (maccess ) can only be performed from
a state that contains the proposition consent.

Definition 5 describes how a CTL model is generated from an nMAS. The states and transitions
are populated mutually inductively to produce a minimal CTL model (a least fixed point exists,
because set union is monotonic).

Definition 5. An nMAS Σ = 〈L,A,M,N 〉 generates a CTL model Γ = 〈S, s0,M,δ ,Lbl〉 as follows:

(1) s0 includes the set of propositions that are always true in the given domain;
(2) S is the minimal set such that s0 ∈ S and (∀s ∈ S : (∀m(p, add, delete) ∈ M : if s � p, then

((s ∪ add) \ delete) ∈ S ));
(3) δ = {〈s,m, s ′〉|s, s ′ ∈ S and m(p, add, delete) ∈ M such that s � p and s ′ = (s ∪ add) \

delete}.

The initial state s0 includes only domain facts (i.e., the head of an assumption where the body is
true). The rest of the states are constructed using the mechanism definitions, i.e., successor states
are added using the propositions contained in the add and delete lists of mechanisms only when the
enabler conditions of the mechanisms are satisfied in the predecessor state. We assume interleaving
of mechanisms; that is, at most one agent acts at a time and performs at most one mechanism. This
definition provides the formal basis of our correctness check for nMASs in Definition 6. Figure 6
demonstrates part of a CTL model to illustrate the connection between an nMAS and a CTL model,
and how we can check the correctness of an nMAS using its CTL model. Section 3 describes how
to generate such a CTL model for NuSMV.

2.6 Requirements Verification

This section develops our formal verification process. Classical requirements verification, as char-
acterized by Zave and Jackson [1997], states the following:

A,M � R. (1)

That is, assumptions (A) and mechanisms (M) together entail requirements (R), meaning that
under the stated assumptions, the specification ensures the requirements would be satisfied. In
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Fig. 6. Visualization of nMAS correctness. States shown as dashed circles are discarded from verification, as
they contain violated norms. Existence of a state with a double dashed circle implies incorrect nMAS, as they
lead to an unsatisfied requirement. A correct nMAS specification should consist of states shown as double
circles, as they do not lead to any unsatisfied requirements.

Zave and Jackson’s formulation, � indicates a notional inference relation. Although they do not
explicitly rule out norms, the software specification in their formulation is what provides the func-
tional components (M), which leaves the only place for norms as part of the assumptions (A). In
contrast, in our formalization, both technical mechanisms and social norms are captured in com-
putational terms. Therefore, we can describe the interplay between the technical and social tiers
and show how sociotechnical patterns can apply to both tiers.

Accordingly, in addition to the assumptions and mechanisms that traditional software engi-
neering incorporates into requirements verification, Desen incorporates the participating agents
and their norms (N) as part of the social tier. An nMAS is correct if assumptions, mechanisms,
and norms together entail the requirements (as formalized in Definition 6). If the agents satisfy
the norms, then they would jointly meet the requirements, provided the mechanisms are imple-
mented and the domain assumptions hold. The challenge is to specify such an nMAS. That is, we
need the following:

A,M,N � R. (2)

In the above equation, the � can be understood as a notional inference relation, the same as Zave
and Jackson’s, to draw out the conceptual distinction between our approach and theirs. However,
our formalization makes the � concrete by adopting CTL as the underlying logic. That is, given an
expression e and a set of expressions s , we write s � e to mean that for any CTL model Γ and state
i in Γ, if Γ |=i t for all expressions t belonging to set s, then Γ |=i e .

Definition 6 builds upon the above verification process. Below, r is a requirement, i.e., r ∈ R. We
represent each such requirement as a CTL formula.

Definition 6. An nMAS Σ = 〈L,A,M,N 〉, which generates a CTL model Γ = 〈S, s0, Act, δ ,Lbl〉, is
correct with respect to requirement r if and only if

(1) A is consistent in Γ (all CTL formulas regarding assumptions hold);
(2) ∃sj ∈ S such that ∀ni ∈ N : satni

is true in sj (norms are consistent—that is, all norms can
be satisfied);

(3) ∀ni ∈ N : CTL formula (AG satni
→ AF r ) is true in Γ.
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Figure 6 visualizes Definition 6 using an example nMAS with one commitment and one prohi-
bition. The enactment of nMAS starts in state s0, where both the commitment and the prohibition
are in their conditional states. According to Definition 6, we are interested only in states where
all norms are satisfied (Condition 3). There must be at least one such state (Condition 2). All other
paths are discarded (e.g., states with dashed circles that emanate from si ). Satisfaction of individual
norms is described in Section 3. Whenever the path reaches a state where all norms are satisfied
(sj or sk ), we check whether the requirement is satisfied in all paths that emanate from such a state.
If the requirement is not satisfied in some path (the middle path emanating from state sj with a
double dashed circle), then the nMAS is incorrect. If no such state exists, and there exists a state
where all norms are satisfied and the requirement is satisfied in all paths that emanate from that
state (state sk with double circle), then the nMAS is correct. We assume for the ease of drawing
that the figure includes only those states where the assumptions hold (Condition 1).

3 NORM-BASED SPECIFICATION

An nMAS specification in Desen respects the grammar given in Table 1. Listing 1 shows such a
specification for controlling access to a patient’s EHR. Here, physician and hospital are agents,
and assigned, EHR (meaning EHR is accessed), and logged_in are atomic propositions. physician
is authorized to access the EHR if she is assigned to treat the patient (Line 1). physician needs to
log in to the computer to access the EHR (Line 2).

Listing 1. A specification for physician activity.

We adopt model checking [Clarke et al. 1999] to formally verify whether an nMAS specification
satisfies requirements (RQ1). Algorithm 1 translates an nMAS specification (composed of roles,
assumptions, mechanisms, and norms) into a NuSMV module composed of state transitions that
follow mechanism and norm specifications.

The NuSMV syntax specifies a case statement for each variable (proposition) with one or more
transition rules separated by semicolons. The rule “E: Values;” means that if expression E eval-
uates to true, then the given variable can take any of the values in Values. For Booleans, Values
can be {TRUE}, {FALSE}, or {TRUE, FALSE}. NuSMV attempts the rules within a case statement
sequentially, beginning from the first. Thus, we place transitions of the form “TRUE: X” last.

Algorithm 1 generates one case statement for each proposition ϕ ∈ Φ. For each mechanism
m(enabler, add, delete), we insert a transition for each u in m’s add list so u may occur when
m’s enabling condition is true and u cannot occur when m’s enabling condition is true (Line 2).
Similarly, we insert a transition for each v inm’s delete list to prevent v from occurring whenm’s
enabling condition is true (Line 3).

For each commitment ci , we add a proposition (Line 5): sat_ci to denote that ci is satisfied.
Note that such propositions are used in Definition 6 to verify the correctness of an nMAS. The
transition rule for this proposition is described as follows: sat_ci is true if Expr2 is true (Line 6).
This specification of a satisfied commitment is compatible with the commitment lifecycle of
Figure 3. That is, a commitment is satisfied when its consequent is brought about.

For each prohibition pj , we add a proposition (Line 8): sat_pj to denote that pj is satisfied. The

transition rule for this proposition is described as follows: sat_pj is true if Expr2 is true (Line 9).
That is, according to Figure 4, a prohibition is satisfied when its consequent is never brought about

(i.e., Expr2 is true). Recall that we represent Expr2 as a temporal expression in CTL. Thus, we cannot
directly implement that expression in NuSMV code. Instead, we assume the existence of distinct
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ALGORITHM 1: T← generate(M, N)

Input: M: mechanisms
Input: N: norms
Output: T: NuSMV transition model

1 foreachm(enabler, add, delete) ∈ M do

2 Add transition “enabler: {TRUE, FALSE}; !enabler: FALSE;” for each proposition u ∈ add;

3 Add transition “enabler: FALSE;” for each proposition v ∈ delete;

4 foreach ci = c(R1, R2, Expr1, Expr2) ∈ N do

5 Add proposition sat_ci ;

6 Add transition “Expr2: TRUE;” for sat_ci ;

7 foreach pj = (R1, R2, Expr1, Expr2) ∈ N do

8 Add proposition sat_pj ;

9 Add transition “Expr2: TRUE;” for sat_pj ;

10 foreach ak = a(R1, R2, Expr1, Expr2) ∈ N do

11 Add proposition sat_ak ;

12 Add transition “Expr2: TRUE;” for sat_ak ;

13 T← “ ”; Group all transitions for ϕ into [transitions(ϕ)]; Add “next(ϕ):= case [transitions(ϕ)] esac;” to T;

14 return T;

propositions that correspond to the nonoccurrence of events, and use those in the NuSMV imple-
mentation. For example, a proposition non_share_PHI represents the complement of share_PHI.

For each authorization ak , we add a proposition (Line 11): sat_ak to denote that ak is satisfied.
The transition rule for this proposition (Line 12) is similar to that for a commitment. According to
the authorization lifecycle of Figure 5, an authorization is satisfied when its consequent is brought
about.

Finally, we group transitions for each proposition and place them within a single case statement
(Line 13).

Listing 2. NuSMV transitions generated for a commitment.

Listing 2 shows the resulting NuSMV specification for a commitment. In an emergency,
physician is committed to treating and operating upon patients (Line 2). This commitment is
satisfied when treated and operated are both true (Lines 3–6). Specifications for other norms are
given similarly.

The formalization we have presented can be transformed into other formalizations to enable bet-
ter adoption for practitioners who have no expertise in formal logic. However, please note that this
is beyond the scope of this article. Chopra and Singh [2016a] propose a language to describe events
and their effects on norms. We show the representation of a similar domain specific language (DSL)
in Appendix B. Transformation of CTL formulas to more practitioner-friendly specifications have
also been proposed. In particular, specification patterns [Attie et al. 1993; Dwyer et al. 1998] en-
able practitioners who have no expertise in formal logic to specify requirements and other formal
system properties without the complications of CTL. An automated tool, ProPaS [Filipovikj et al.
2018], supports such specification for practitioners.
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4 REFINEMENT VIA NORMATIVE DESIGN PATTERNS

More than merely verifying that an nMAS satisfies any stated requirements, we would like to
specify an nMAS to ensure it satisfies the (possibly changing) stakeholder requirements (RQ2).
Accordingly, we propose a refinement process based on normative patterns. That is, if an nMAS is
not correct with respect to some requirements, then our refinement process suggests refined sets
of mechanisms and norms.

4.1 Norm Strength

Norm specifications can initially be broad or narrow. That is, they may not cover specific situ-
ations that might lead to opportunities being missed and eventually cause violation of some of
the requirements. When this is the case, the stakeholders should refine the norms to account for
the situation at hand. To come up with such a refinement, we propose to use normative patterns.
Chopra and Singh [2009] propose a relation to compare commitments such that one is stronger
than the other. We extend their definition to all norm types. Having a formal means of comparing
norms enables us to refine them. Our notion of “refinement” is inspired by the alteration of for-
mal method specifications via weakening or strengthening of preconditions and postconditions
[Darimont and Van Lamsweerde 1996], and such refinement is supported by our patterns.

Definition 7. ci = c(sbj, obj, r, u) is stronger than cj = c(sbj, obj, s, v), denoted ci � cj , if and
only if s � r and u � v.

A commitment becomes stronger if its antecedent becomes weaker (or stays the same) and its
consequent becomes stronger (or stays the same). That is, a stronger commitment requires greater
effort to fulfill the consequent. Consider c1 = c(physician, hospital, true, operation∧ clinic) and c2

= c(physician, hospital, emergency, operation). Then, c1 is stronger than c2, because emergency
� true and operation ∧ clinic � operation. This is a refinement of c1 into c2 by weakening both the
antecedent (making it more specific) and the consequent (making it more general).

Definition 8. pi = p(sbj, obj, r, u) is stronger than pj = p(sbj, obj, s, v), denoted pi � pj , if and
only if s � r and v � u.

A prohibition becomes stronger if both its antecedent and consequent become weaker (or stay
the same). Consider p1 = p(physician, hospital, true, share_PHI_family ∨share_PHI_thirdparty)
and p2 = p(physician, hospital, emergency, share_PHI_thirdparty). Then, p1 is stronger than
p2, because share_PHI_thirdparty � share_PHI_family ∨ share_PHI_thirdparty and emergency �
true.

Definition 9. ai = a(sbj, obj, r, u) is stronger than aj = a(sbj, obj, s, v), denoted ai � aj , if and
only if s � r and v � u.

An authorization becomes stronger if both its antecedent and consequent become weaker
(or stay the same). That is, a stronger authorization allows improved flexibility. Consider a1 =

a(physician, hospital, true, own_patients∨ other_patients) and a2 = a(physician, hospital,
true, own_patients). Then, a1 is stronger than a2, because their antecedents are identical and
own_patients �own_patients ∨ other_patients. Note that a more restrictive authorization may
provide “stronger” security. However, we use the word “stronger” based on the deontic semantics.
Therefore, we define a stronger authorization to be the more flexible one. This definition enables
our patterns to be applied in general settings.

Note that every norm is stronger than itself, as � is reflexive. Moreover, if a stronger norm is
satisfied in a CTL model, then all weaker norms are satisfied in that CTL model as well.
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Table 2. Refinement Patterns

Pattern Original Refined Conditions

Strengthening

Liability ci = c(sbj, obj, r, u) cj = c(sbj, obj, s, v) r � s, v � u
Grant ai = a(sbj, obj, r, u) aj = a(sbj, obj, s, v) r � s, u � v
Denial pi = p(sbj, obj, r, u) pj = p(sbj, obj, s, v) r � s, u � v
Weakening

Release of Liability ci = c(sbj, obj, r, u) cj = c(sbj, obj, s, v) s � r, u � v, ci ∈ max(C )
Revoke ai = a(sbj, obj, r, u) aj = a(sbj, obj, s, v) s � r, v � u, ai ∈ max(A)
Accessibility pi = p(sbj, obj, r, u) pj = p(sbj, obj, s, v) s � r, v � u, pi ∈ max(P )
Amendment

Responsibility ai = a(sbj, obj, r, u) aj = a(sbj, obj, s, v) r � s, u � v
ck = c(sbjk , objk , v, w)
〈trustworthy(sbjk), true〉

Limitation pi = p(sbj, obj, r, u) pj = p(sbj, obj, s, v) s � r, v � u, pi ∈ max(P )
pk = p(sbjk , objk , v, w)
〈trustworthy(sbjk), true〉

Spawn

Spawn[Commitment] c(sbj, obj, r, u)
Spawn[Authorization] a(sbj, obj, r, u)
Spawn[Prohibition] p(sbj, obj, r, u)
Overseer

Overseer[Succeed] c(sbj, obj, r, u) c(sbj, obj, r, u)
c(sbjk , obj, r, u) sbj � sbjk

Overseer[NotSucceed] p(sbj, obj, r, u) p(sbj, obj, r, u)
c(sbjk , obj, r, ¬u) sbj � sbjk

Operational

Enabler mi =m(r, u, v) mj =m(s, u, v) r � s
Blocker mi =m(r, u, v) mj =m(s, u, v) s � r
Spawn[Mechanism] m(r, u, v)
Sociotechnical

Normify mi =m(r, { }, u) mj =m(s, { }, u) r � s
c(sbj, obj, v, w) w � ¬u
〈trustworthy(sbj), true〉

Mechanize c(sbj, obj, r, u) m(r, u, { })
p(sbj, obj, r, w) w � ¬u

p(sbj, obj, r, u) m(r, { }, u)
p(sbj, obj, r, w) w � u

4.2 Patterns

Patterns provide ways of extending a given norm specification with specific conditions. The use of
design patterns is common in software engineering [Zhu and Bayley 2013], and patterns have been
investigated before in commitment-based specifications [Singh et al. 2009]. The strengthening and
weakening patterns are inspired by healthcare law [Hammaker 2010], and focus on modifying
antecedents and consequents of norms to either increase agents’ flexibility, thereby promoting
collaboration, or restricting agents to demote undesired outcomes. Table 2 shows an overview of
our patterns.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 1, Article 7. Pub. date: December 2019.



Desen: Specification of Sociotechnical Systems via Patterns of Regulation and Control 7:15

Social patterns

Liability replaces a commitment ci with cj where cj is stronger than ci .
Grant replaces an authorization ai with aj where aj is stronger than ai .
Denial replaces a prohibition pi with pj where pj is stronger than pi .
Release of Liability replaces a commitment ci with cj where ci is stronger than cj .
Revoke replaces an authorization ai with aj where ai is stronger than aj .
Accessibility replaces a prohibition pi with pj where pi is stronger than pj .
Strengthening and weakening patterns expand available functionality, but can introduce vulner-

abilities. Inspired by the sociolegal aspects of healthcare [Ham et al. 1988], the following amend-

ment patterns address security and privacy concerns while promoting collaboration.
Responsibility replaces an authorization ai = a(sbj, obj, r, u) with aj = a(sbj, obj, s, v), where

aj is stronger than ai , and adds a commitment ck (sbjk , objk , v, w). That is, Responsibility limits
the subject of the norm only to the intended functionality provided by the relaxation pattern by
specifying a complementary commitment. When the additional functionality provided by relaxing
an authorization is eventually achieved by the subject, the subject commits to bringing about
another proposition so the additional functionality is not available anymore.

Consider the following scenario regarding the responsibility pattern: physician is authorized
to access a patient’s EHR from one of the desktop computers that implement an automatic session
termination after inactivity. To address the need for efficiency, the hospital authorizes physician
to use her phone to access EHR. However, doing so creates a vulnerability if physician leaves her
phone unattended and forgets to lock it. Therefore, she has to commit to locking her phone to be
granted this additional authorization. physician is accountable for a security breach she causes
by not locking her phone.

Limitation replaces a prohibition pi = p(sbj, obj, r, u) with pj = p(sbj, obj, s, v), where pi is
stronger than pj , and adds a prohibition pk (sbjk , objk , v, w). That is, Limitation both relaxes a
prohibition and limits the subject of the relaxed norm by specifying a complementary prohibition.
When the subject is no longer prohibited from performing the consequent in certain situations,
another prohibition prevents the subject from performing additional functionality.

Note that the subjects (SBJk ) and objects (OBJk ) of the additional norms for the amendment
patterns are not necessarily the same as the original norms. For example, allowing a physician
to share a patient’s PHI with colleagues increases the risk of PHI being disclosed. An additional
norm prohibits the physician’s colleague (a new subject) from publishing the PHI online under the
assumption that the colleague is trustworthy for not violating the prohibition.

Spawn[Norm] creates a norm. This pattern is especially useful for specifying an nMAS from
scratch [Chopra et al. 2014; Günay et al. 2015] when the current set of norms cannot be strength-
ened or weakened to satisfy a stated requirement.

Overseer assigns a monitor to a given norm to ensure the norm is eventually satisfied. Given
a commitment, Overseer[Succeed] specifies an additional commitment with a new subject to en-
sure that the consequent of the original commitment is brought about. Given a prohibition, Over-
seer[NotSucceed] specifies an additional commitment with a new subject to ensure that the con-
sequent of the original prohibition is not brought about.

Technical patterns

Similar to the patterns applied on norms, the following operational patterns modify technical
mechanisms.

Enabler replacesm(r, u, v) withm(s, u, v) if r � s.
The Enabler pattern refines a mechanism to relax an existing enabling condition. Considerm1 =

m(consent, {non_patient_EHR}, {}). The hospital’s software allows physician to access the EHR of a
patient the physician is not treating only if the patient has consented. We can refine this mechanism
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into m2 = m(consent ∨ emergency, {non_patient_EHR}, {}) so the software allows physician to
access any patient’s EHR during emergencies, instead of only those who consented.

Blocker replacesm(r, u, v) withm(s, u, v) if s � r.
The Blocker pattern refines a mechanism to make an existing enabling condition more strict.
Spawn[Mechanism] creates a mechanism.

Sociotechnical patterns

The following patterns are unique to Desen in that they enable refinements across the technical
and social tiers by modifying mechanisms and norms at the same time, which other approaches
cannot capture. We can thereby provide nMAS designers alternative means to satisfy stakeholder
requirements by relying purely on regimentation via technical mechanisms, regulation via social
norms, or a balanced combination of both. The following patterns are inspired by real data breaches
in healthcare [HHS 2019; Kafalı et al. 2017b] and the means to mitigate them [Koppel et al. 2015].

Normify replaces m(r, {}, u) with m(s, {}, u) where r � s, and adds a commitment c(sbj, obj, v,
w) where w � ¬u. That is, a mechanism that puts a restriction on some operation is relaxed in
the technical tier, and a norm is added in the social tier to ensure the operation is not performed
in unintended situations. Consider mechanism m(inactive_15, {}, {logged_in}), which implements
a session timeout on computers (physicians are automatically logged out after 15 minutes of in-
activity). Now, this mechanism is refined into m(inactive_120, {}, {logged_in}), where the timeout
duration is increased to 2 hours. Since this would create a security risk if the computer is left
unattended, a commitment c(physician, hospital, unattended, ¬logged_in) is added along with
an assumption that the physician is trustworthy to satisfy the commitment.

The use of shared computers is common in healthcare practice, especially in medical emergen-
cies. When technical controls are too restrictive, employees tend to find workarounds [Koppel et al.
2015] to evade such controls, such as sharing passwords or writing them down. Those workarounds
might lead to practices that are noncompliant with the underlying healthcare security and privacy
laws. Therefore, such practices should be avoided. The normify pattern implements a transition
from the technical tier to the social tier to reduce the need for such workarounds while main-
taining accountability via norms. That is, normify provides a relaxation in the technical controls
while providing additional social regulation, which enables employees flexible execution of their
everyday tasks.

Mechanize replaces commitment c(sbj, obj, r, u) with m(r, u, {}) or prohibition p(sbj, obj, r, u)
with m(r, {}, u), and adds a prohibition p(sbj, obj, r, w) where w � u. That is, a commitment or a
prohibition in the social tier that requires a manual operation to be performed is removed, and a
mechanism is added in the technical tier to automate that operation. Moreover, a prohibition is
added to ensure the new mechanism is not tampered with. Consider commitment c(physician,
hospital, public_computer, clear_cache), which means that physicians are committed to clear-
ing the cache after using a public computer. Now, this commitment is refined into mechanism
m(public_computer, {clear_cache}, {}) which implements a plugin to automatically clear the cache.
In addition, a prohibition p(physician, hospital, public_computer, remove_plugin) is added to
ensure physicians do not remove the plugin from a public computer.

Let us consider another example of a sociotechnical pattern. To ensure that computers are not
left unattended, a new plugin is installed on the physicians’ computers to monitor their activities.
This new plugin, however, could result in the physicians’ privacy being violated, and hence physi-
cians are now authorized to disable the plugin for any personal use to prevent leakage of sensitive
data.

The use of shared electronic devices (e.g., computers and printers) is common practice in var-
ious industrial settings and can cause data breaches due to human error. For example, a simple
failure to erase a photocopier’s cache led to the disclosure of over 300,000 patient records in 2010
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[HHS 2019]. The mechanize pattern implements a transition from the social tier to the technical
tier by automating a previously manual practice to reduce such human errors, e.g., by installing a
plugin to periodically clear the cache.

4.3 Generating Refined Specifications

In practice, STS designers can use patterns for creating and revising nMAS specifications. Our aim
is to provide generic templates to guide the design process. Our templates can be customized by
designers to address requirements that demand finer regulation and control. For example, the ad-
ditional commitment in normify can instead be replaced with a prohibition. Following the session
timeout example, the hospital might prohibit physicians from leaving a computer unattended if
the physician is still logged in to the computer.

We now formulate the problem of generating refined specifications in abstract terms. For this
purpose, we adopt the notion of classical AI planning [Russell and Norvig 1995]. The initial state s0

is described by a tuple 〈A, M, N〉. Suppose A, M, N � R. That is, the initial assumptions, mechanisms,
and norms do not satisfy all requirements. A goal state sд is described by a tuple 〈A′, M′, N′〉, where
A′, M′, N′ � R. That is, a goal state satisfies all requirements. Note that there might be multiple
states that satisfy all requirements. SG is the set of all such states.

A solution to the problem of generating refined specifications is a sequence of pattern operations
that takes s0 to an sд . In essence, each solution is a plan. Note that not every solution is equally
good, and it is helpful to find refinements that make minimal changes to a prior specification.
Selecting among possible solutions would generally involve domain-specific considerations, po-
tentially captured as heuristics. One such heuristic is to prefer the solution with the least number
of pattern operations (i.e., shortest path). Another heuristic would be based on a distance func-
tion, Δsд−s0 , to compute the distance of a goal state from the initial state. We present below two
such heuristics for guiding the STS refinement process. Such heuristics are compatible with stud-
ies suggesting that higher costs associated with implementation of drastic changes [Suri 2011]
and substantial reorganization requirements [Hall 2004] negatively impact the rate of technology
adoption. Therefore, a realistic planning solution would prioritize revisions with as few patterns
as required or patterns with low implementation costs.

Following a heuristic-based approach, our formulation of the refinement problem enables the
potential application of more sophisticated planning techniques, which, however, are outside of
our present scope. Let us consider the following heuristics for computing the cost and risk associ-
ated with a given refinement solution:

Heuristic 1. Cost: The cost of implementing a mechanism is higher than the cost of enforcing a

norm.

Heuristic 2. Risk: The risk associated with the potential violation of a norm is higher than the

potential malfunctioning of a mechanism.

Note that the above heuristics do not take into account the predicates involved in the mecha-
nisms or norms. A domain ontology [Kafalı et al. 2017b] can be used to further associate costs and
risk with individual predicates. We describe how Heuristics 1 and 2 are applied in an emergency
healthcare scenario in Section 5.

Next, we demonstrate how a pattern can be applied as an operation. Let si = 〈Ai , Mi , Ni 〉 be
an intermediate state, and authorization ai = a(R1, R2, t∧ z, u) ∈ Ni . Then, the Grant pattern can
be applied as an operation to si by adding a proposition to the antecedent or consequent of ai or
removing a proposition from the antecedent or consequent of ai using the set of domain proposi-
tions. The alternative successor states of si would include an authorization from the following set:
{a(R1, R2, t, u)} ∪ {a(R1, R2, z, u)} ∪ {a(R1, R2, (t ∧ z) ∨w, u)| w ∈ Φ \ {t, z, u}} ∪ {a(R1, R2, t∧ z,
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Table 3. Specification of Example 1 in Desen

Assumptions

s1 〈¬consent, emergency〉
s2 〈¬emergency,¬emergency_area ∨ ¬emergency_period〉
s3 〈con, c(sbj, obj, ant, con) ∧ ant ∧ trustworthy(sbj)〉
s4 〈¬con, p(sbj, obj, ant, con) ∧ ant ∧ trustworthy(sbj)〉
s5 〈trustworthy(physician), true〉
s6 〈trustworthy(outside_physician), true〉

Mechanisms

m1 m(president_declare ∧ secretary_HHS_declare, {emergency}, { })
m2 m(confidential_communication ∧ ¬emergency, { }, {consent})
m3 m(true, {consent}, { })

Norms

c1 c(physician, patient, confidential_communication ∧ ¬emergency,
accommodate_request)

a1 a(patient, hospital, ¬emergency, confidential_communication)
p1 p(physician, hospital, ¬consent, share_PHI_thirdparty)
p2 p(physician, hospital, ¬consent ∧ ¬emergency, share_PHI_outside_physician)
p3 p(physician, hospital, ¬consent ∧ ¬emergency, share_PHI_family)
p4 p(outside_physician, hospital, true, share_PHI_thirdparty)

u ∨ v)| v ∈ Φ\ {t, z, u}}. Note that the set of domain propositions used for applying the pattern can
be further restricted to only the propositions relevant to the given requirement. Doing so would
significantly reduce the space of successor states. After each step, a solver verifies (e.g., via a model
checker) whether the current state satisfies all requirements (i.e., a goal state is reached). If so, then
the plan is added to the set of solutions.

5 EVALUATION: HEALTHCARE PRIVACY SCENARIO

Recall the five methodological steps described in the “Practical usage and implications” section.
This realistic use case enables us to validate our model checking tool (Step i) and refinement pat-
terns (Step iv). To demonstrate how refinement works, we formalize the scenario described in
Example 1 using the assumptions, mechanisms, and norms listed in Table 3 (see Appendix A for
the complete NuSMV implementation).

Assumptions: s1 means that it is not possible to obtain consent from patients in national emer-
gencies; s2 means that it is not declared a national emergency in a hospital unless the hospital
is located in the emergency area and an emergency is currently active; s3 means that the subject
of a commitment brings about the commitment’s consequent if the commitment is detached and
the subject is trustworthy; s4 means that the subject of a prohibition does not bring about the
prohibition’s consequent if the prohibition is detached and the subject is trustworthy; s5 and s6,
respectively, mean that physicians and outside physicians are trustworthy.

Mechanisms: m1 means that a national emergency is declared when the president and the secre-
tary of Health and Human Services both declare an emergency situation; m2 means that a patient’s
consent to share PHI is overridden when the patient requests confidential communications during
regular medical practice (nonemergency); m3 means that a patient can give consent at any time.

Norms: c1 means that a physician is committed to a patient to accommodating the patient’s
request if the patient requests confidential communications and it is not a national emergency; a1

means that a patient is authorized by the hospital to request confidential communications when it
is not a national emergency; p1 means that a physician is prohibited by the hospital from sharing
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a patient’s PHI with third parties if the patient does not give consent; p2 means that a physician
is prohibited by the hospital from sharing a patient’s PHI with an outside physician if the patient
does not give consent and it is not a national emergency; p3 means that a physician is prohibited
by the hospital from sharing a patient’s PHI with the patient’s family if the patient does not give
consent and it is not a national emergency; p4 means that an outside physician is prohibited by
the hospital from sharing a patient’s PHI with third parties at all times (unconditional norm).

Requirements: We consider the following HIPAA requirements [HHS 2014] that are relevant to
Example 1.

R-Disclose: A patient’s PHI must not be shared with third parties without the patient’s consent.
In CTL:

AG¬(¬consent ∧ share_PHI_thirdparty).
There cannot be a time point on any path where there is no consent from the patient but PHI is

shared with third parties.

R-Share: In case of a national emergency, physicians must be allowed to share a patient’s PHI
with the patient’s family members. This reflects the waiving of the HIPAA clause 45 CFR 164.510(b)
[HHS 2014] in emergencies: “the requirements to obtain a patient’s agreement to speak with family
members or friends involved in the patient’s care.” In CTL:

EF ((emergency ∧ ¬consent) ∧ share_PHI_family).
There must be at least one path where a patient’s PHI is shared, when there is a national emer-

gency but no consent from the patient.

R-Communication: During regular medical practice, patients must be allowed to request con-
fidential communications regarding their PHI. This reflects the HIPAA clause 45 CFR 164.522(b)
[HHS 2014]: “the patient’s right to request confidential communications.” Two CTL formulas to-
gether represent this requirement:

EF (¬emergency ∧ confidential_communication).
There must be at least one path where a patient can request confidential communications in

case of a nonemergency:

AG (emergency→ AF¬confidential_communication).
From any time point when there is a national emergency, there must not be any confidential

communications at any path.
Note that we do not tackle requirements elicitation in this article. To demonstrate how Desen

refines specifications, we begin from an nMAS specification that does not satisfy some of the
requirements. By applying our patterns, we end with the specification in Table 3.

Let us begin by describing the initial specification. We use subscript i (short for initial) to dis-
tinguish from the correct specification in Table 3.

m1 =m(president_declare ∧ secretary_HHS_declare, {emergency}, {})

m2i =m(confidential_communication, {}, {consent})

m3 =m(true, {consent}, {})

c1 = c(physician, patient, confidential_communication ∧ ¬emergency, accommodate_request)

a1i = a(patient, hospital, true, confidential_communication)

p1i = p(physician, hospital, ¬consent, share_PHI_thirdparty ∨ share_PHI_outside_physician ∨
share_PHI_family)

Since disclosing the patient’s PHI is prohibited via p1i , requirement R-Disclose is satisfied.
Moreover, this specification does not allow any flexibility in national emergency situations. Thus,
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R-Share is not satisfied. Moreover, mechanismm2i and authorization a1i are given in broad terms
and do not capture communications in national emergencies, which leaves R-Communication un-
satisfied (the first CTL formula for R-Communication is true, whereas the second CTL formula for
R-Communication is false).

Below, we present the refinement steps (i.e., pattern operations) of two potential solutions
among all possible candidate solutions. Solution 1 is norm-based, which yields lower cost (due
to Heuristic 1), but higher risk (due to Heuristic 2). Solution 2 is mechanism-based, which yields
higher cost, but lower risk (again based on the heuristics). Figure 7 depicts the pattern operations
involved in the solutions.

Solution 1. Norm-based:

(1) Accessibility: Prohibition p1i is refined into p1, p2, and p3 to improve physicians’ flex-
ibility during emergencies by enabling physician to share a patient’s PHI with out-
side_physician or the patient’s family without consent.

(2) Limitation: Note that the above refinement satisfies R-Share but violates R-Disclose, be-
cause outside physicians may disclose a patient’s PHI. Therefore, an additional prohibition
p4 is specified to make outside physicians accountable for such disclosures.

(3) Revoke: NuSMV verifies that the second CTL formula for R-Communication is false.
Therefore, a1i is refined into a1 using the Revoke pattern.

Solution 2. Mechanism-based:

(1) Mechanize: Prohibition p1i is removed, and a mechanism m(¬consent, {},
{share_PHI_thirdparty, share_PHI_outside_physician, share_PHI_family}) is added.
By replacing the norm with a mechanism, physicians are prevented from downloading
or copying the content on their screen for sharing purposes, e.g., via a plugin installed on
their computer.

(2) Limitation: An additional prohibition p4 is specified to make outside physicians account-
able for disclosures in case the mechanism on their computer fails to prevent them from
sharing patient information.

(3) Blocker: Regarding requirement R-Communication, m2i is refined into m2 using the
Blocker pattern.

6 EVALUATION: MODELER STUDY

We conducted a human-subject study to evaluate the effectiveness of the refinement patterns in
specifying an nMAS. Our study was declared exempt by NC State University’s Institutional Re-
view Board. We circulated an advertisement for participation and asked interested participants
to complete a pre-participation survey. Based on their responses, we selected 32 graduate com-
puter science students as study participants and created two groups (Control and Desen) balanced
in terms of familiarity with conceptual modeling and software engineering industry experience.
Each participant provided informed consent; upon completion, a participant received a payment of
20 USD (see Appendices C–G for study details). Table 4 summarizes the demographics information
of our study participants that we collected in the pre-participation survey.

6.1 Study Design

We follow a one-factor two-alternatives design. Participants in the Desen group are guided with
refinement patterns (listed in Appendix D.2), whereas participants in the Control group are given
a basic definition of refinement (listed in Appendix D.1). Our study has three phases.
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Fig. 7. Applying the patterns. The initial specification is given in the top box. Each box shows the refined
specification after the application of a pattern. Crossed-out requirements are not satisfied by the correspond-
ing specification.
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Table 4. Demographics Information of the Study Participants

Education (degree pursuing) MS: 93.33%, PhD: 6.67%
Academic (programming and
software development)
experience

Less than 3 months: 0%, 3 months–1 year: 10%, 1–3 years:
26.66%, More than 3 years: 63.33%

Industry work experience Less than 3 months: 33.33%, 3 months–1 year: 23.33%,
1–3 years: 26.66%, More than 3 years: 16.66%

Familiarity with conceptual
modeling

Not familiar: 10%, Familiar with concepts, but no practical
experience: 43.33%, Familiar and some academic experience:
20%, Familiar and some industry experience: 26.67%

Familiarity with norms Not familiar: 40%, Familiar with concepts, but no practical
experience: 33.33%, Familiar and some academic experience:
13.33%, Familiar and some industry experience: 13.33%

Learn. Participants learn how to define requirements and specify an nMAS for a healthcare
privacy scenario.

Create Participants define requirements for a healthcare security scenario and produce its
nMAS specification.

Maintain. Participants comprehend and maintain requirements of an nMAS specification for
a security access control scenario adopted from Tsigkanos et al. [2014].

Data Collection and Metrics: The study was carried out using pen and paper without tool sup-
port. Participants record completion times and complete a post-study survey regarding the help-
fulness of patterns in their specification. The first two authors designed an oracle solution for each
phase and marked participants’ specifications using the following metrics:

Coverage of specification: Fraction of norms in the oracle that are stated by the participants.
Higher is better.

Correctness of specification: Fraction of participant-stated norms that occur in the oracle.
Higher is better.

Time to define specification: Time in minutes recorded by participants. Lower is better.
Ease of defining specification: Subjective ratings provided by the participants via the post-

study survey on a Likert scale ranging from very hard (1) to very easy (5). Higher is
better.

Hypotheses: We propose four two-sided hypotheses to compare how the Desen and Control
treatments influence the production of nMAS specifications. For each hypothesis, a null hypothesis
(omitted for brevity) states that there is no difference between the groups.

H1 Desen and Control differently influence the coverage of specifications produced by study
participants.

H2 Desen and Control differently influence the correctness of specifications produced by
study participants.

H3 Desen and Control differently influence the time expended by study participants to pro-
duce specifications.

H4 Desen and Control differently influence participants’ subjective ease of producing
specifications.
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Fig. 8. Participants with low experience in conceptual modeling.

Fig. 9. Participants with no prior experience in norms.

Moreover, we propose subhypotheses to evaluate the influence of Desen on coverage, correct-
ness, speed of producing specifications by participants with or without prior knowledge or expe-
rience of working with norms (Appendix C provides details).

6.2 Results

We analyze specifications produced by participants in the Control and Desen groups, and com-
pute the means of coverage and correctness of the specifications, and the means of time to define
specification and medians of ease of defining specification values reported by the participants.
We perform a two-tailed t-test to test the significance of hypotheses H1, H2, H3, and Wilcoxon’s
rank-sum test for H4. We choose Wilcoxon’s test for H4, as it has a power advantage over the t-
test for Likert scale data. Specifically, Wilcoxon’s test compares medians, whereas t-test compares
means [Hollander and Wolfe 1999]. Following recent recommended practice, we provide descrip-
tive statistics along with p-values. We adopt 5% as the significance cutoff for p-values, below which
each null hypothesis is rejected. To measure the effect size for the difference between means, we
compute Hedges’ д, which is well suited to measuring effect for small (and unequal) sample sizes
[Grissom and Kim 2012].

Coverage and correctness of specification. We evaluate H1 and H2 by computing the coverage
and correctness metrics of specifications produced by participants. The mean coverage (65%) and
correctness (67%) for the specifications produced using Desen was higher (but not significant at
5%) than the mean coverage (62%) and correctness (62%) for those of Control. We further analyzed
specifications to see if prior knowledge or experience with norms has an effect. We observe sig-
nificant (at 5%) gains for participants with no prior industry experience in conceptual modeling
and no knowledge of norms with large effect size [Grissom and Kim 2012], which we attribute to
the fact that all participants were introduced to the basics of norm refinement during the study.
Figures 8 and 9 show the box plots for coverage (left) and correctness (right) of specifications pro-
duced by the participants with low experience in conceptual modeling and no prior knowledge of
norms.
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Time to produce specification. We evaluate H3 by comparing the time expended by participants
to produce specifications. The mean time to produce specifications using Desen (63 minutes) was
higher (but not significant at 5%) than using Control (58 minutes). The result is not surprising, as
participants in the Desen group were required to first get acquainted with the normative design
patterns. Further analysis suggests that, although Desen takes more time in the learning phase for
participants with no prior knowledge of norms, they speed up in the defining specification and
maintenance phases.

Ease of defining specification. We evaluate H4 based on the post-survey completed by participants
after each phase, wherein they answered questions on the ease of defining specifications either
using Desen or Control. Whereas participants found both Desen and Control equally easy to work
with, participants in the Desen group reported that patterns were helpful in their specification
(μ = 4.4/5) and stated that an automated tool to generate alternative refinements would improve
accuracy (μ = 4.27/5).

6.3 Practical Implications

Both study groups employed a normative approach to capture requirements and achieved good
coverage and accuracy results (excluding minor errors regarding the logical representation), which
suggests that norms provide a promising way of capturing requirements. We did not employ an
automated tool for Desen, because we wanted to evaluate the usefulness of patterns without cou-
pling it with the effect of using a tool. We defer such a study to future work.

6.4 Study Threats and Mitigation

We identified and mitigated two threats. (i) Skill differences: We surveyed participants for their
education and prior experience with conceptual modeling and software engineering industry
experience. We balanced Control and Desen with respect to aggregate experience of participants
based on this survey. (ii) Failure to report information: Participants completed the time and
difficulty survey for a phase while it was fresh in their minds. (iii) Internal validity of learning

material: Participants in the Control group and Desen group were provided with the same tutorial
on normative requirements. Participants of the Desen group were additionally provided with a
refinement patterns guide. (iv) External validity for using students instead of practitioners: Since pro-
ducing specification is a software engineering task performed by practitioners, our participants—a
large portion of whom have industry work experience—are acceptable surrogates for software
engineers.

7 EVALUATION: SIMULATION EXPERIMENT

Recall the five methodological steps described in the “Practical usage and implications” section.
The simulation experiments enable us to evaluate the solutions gathered from our modeler study
against benchmark solutions (Steps ii and iii). We adopt MASON [Luke et al. 2005], which is a
Java-based multiagent simulation library, to develop a multiagent simulation environment based
on an extension of the healthcare privacy scenario described in Section 5.

7.1 Community Healthcare Environment

The environment represents a community-based social network consisting of several communities,
in each of which several residents (agents) reside. Each community has one community hospital,
and each community hospital has several physicians (agents).

In the community healthcare environment, time is represented in steps. At each step there is a
probability (illness probability) of a resident to fall ill. When a resident falls ill, the health of the
resident (resident health) starts deteriorating. Illness in our environment is of two types—critical
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and noncritical. An ill resident residing in a community visits the community hospital for treat-
ment.

An ill resident admitted to the community hospital is a patient (agent). Each community hospital
has a capacity—the maximum number of patients it can admit at one time step—depending upon
number of physicians and their availability. The hospital assigns an available physician to a patient.
To start treatment, a physician accesses a patient’s PHI. A physician can either treat one critical
patient or three noncritical patients. After a physician starts treatment, a patient takes three time
steps to recover from a critical illness and one time step to recover from a noncritical illness. A
critically ill patient may recover faster (early-recovery probability) in two time steps if the family
is aware of the illness. When a patient’s treatment is completed, the patient is discharged from the
hospital.

Communities in the environment often suffer from a disease outbreak—at each step there is a
probability (outbreak probability) of a disease outbreak. When such an outbreak occurs, all resi-
dents who fall ill suffer from a critical illness at the same time step. During and after the outbreak
period, if the community’s average health falls below a threshold (low community health thresh-

old), the community declares an emergency, and the community hospital starts operating under
emergency operating procedures. A community hospital operating under an emergency requests
external physicians. When the community average health rises above a threshold (high commu-

nity health threshold), the emergency status is withdrawn and the community hospital returns to
operating under normal procedures and the external physicians are released.

Table 5 summarizes the simulation parameters and their values.

7.2 Requirements and Solutions

Hospitals are bound by law to keep their patients’ electronic health records (EHR) private. Thus,
internal and external physicians working in a community hospital must not publish a patient’s
protected health information (PHI) online. External physicians are prohibited to access a patient’s
PHI directly. However, internal physicians may share a patient’s PHI with external physicians
when the hospital is operating under emergency. Physicians may share a patient’s PHI with the
patient’s family when there is an emergency [HHS 2014].

Requirements:
R-Publish: A patient’s PHI should not be published online with personally identifying informa-

tion under any circumstances.
R-External: In emergencies, hospital physicians may share a patient’s PHI with outside physi-

cians to cope with the load.
R-Family: In emergencies, hospital physicians may share patient’s PHI with family members to

inform family members or gather new information to help with treatment.
Initial STS:

(1) p1i = p(physician, hospital, true, publish_PHI_online)
(2) p2i = p(physician, hospital, true, share_PHI_outside_physician)
(3) a1i = a(physician, hospital, true, share_PHI_family)

Based on the above initial STS specification, we first describe the benchmark solutions that we
use to evaluate the modeler study solutions against.

Spec1. Norm—Norm-based solution

(1) p1i stays the same
(2) Accessibility: Refine p2i into p2 = p(physician, hospital, ¬ emergency,

share_PHI_outside_physician)
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Table 5. Simulation Parameters and Their Values or Range

Parameter Value

Number of residents 100
Hospital 1

Number of internal physicians
low 15
high 25

Number of external physicians
low 5
high 15

Illness types critical, noncritical

Illness probability
low 0.10
high 0.25

Outbreak probability
low 0.10
high 0.25

Early-recovery probability 0.25

Treatment time
critical 3
critical (early recovery) 2
noncritical 1

Internal physician compliance 0.90

External physician compliance
low 0.70
high 0.90

Mechanism availability
low 0.70
high 0.90

Resident health 0–100
Community health 0–100

Community health threshold
low 75
high 85

Family PHI request probability 0.50

(3) Revoke: Refine a1i into a1 = a(physician, hospital, emergency,
share_PHI_family)

Spec2. Mech—Mechanism-based solution

(1) Mechanize: Replace p1i withm1 =m(true, {}, {publish_PHI_online})
(2) Mechanize: Replacep2i withm2 =m(emergency, {share_PHI_outside_physician},

{})
(3) Mechanize: Replace a1i withm3 =m(emergency, {share_PHI_family}, {})

Spec3. Stos—Sociotechnical optimization solution

(1) Mechanize: Replace p1i withm1 =m(true, {}, {publish_PHI_online})
(2) Accessibility: Refine p2i into p2 = p(physician, hospital, ¬ emergency,

share_PHI_outside_physician)
(3) Revoke: Refine a1i into a1 = a(physician, hospital, emergency,

share_PHI_family)

Next, we describe the solutions provided by the participants in our modeler study. Our motiva-
tion behind this experiment is to evaluate the quality of the specifications produced by the modeler
study using simulation (in addition to the correctness evaluation performed in Section 6). We ap-
ply a set of selection criteria to construct specifications from participants’ solutions, simulate those

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 1, Article 7. Pub. date: December 2019.



Desen: Specification of Sociotechnical Systems via Patterns of Regulation and Control 7:27

solutions, and report the results using our metrics. We take Scenario A (Section F.1) as a basis for
comparison, as it constitutes the most relevant setting to simulation environment. More specifi-
cally, Scenario A shares the same set of requirements (R-publish, R-external, R-family) and a sim-
ilar set of propositions (publish_PHI_online, share_PHI_outside_physician, share_phi_colleague,
share_PHI_family) as the community healthcare setting. We discard Scenario B (Section F.2) and
Scenario C (Section F.3), since they constitute different settings. However, we check participants’
solutions in those scenarios to validate consistency. Below, we list the selection criteria:

C1 – Primary. Discard participant solutions with more than one norm incorrectly specified
in Scenario A.

C2 – Secondary. Discard participant solutions with a majority of the requirements and norms
incorrectly specified for Scenarios B and C.

C3 – Secondary for Desen. Discard participant solutions that do not involve pattern usage.
C4 – Secondary for Control. Discard participant solutions that include redundant norms.

Following C1 and C2, we selected nine participant solutions for Desen and five participant solu-
tions for Control. Following C3, we discarded five of the nine participant solutions for Desen, thus
ending up with four participant solutions. Following C4, we discarded two of the five participant
solutions for Control, thus ending up with three participant solutions. As a result, we construct
one solution for each participant group reflecting the solutions from their individual participants.

Spec4. Desen—Most general solution for the Desen participant group with an additional
norm, Commitment (5), appearing in at least two solutions.

(1) Accessibility: p(physician, hospital, true, publish_PHI_online)
(2) Spawn: a(physician, hospital, true, share_phi_colleague)
(3) Revoke: a(physician, hospital, true, share_PHI_family)
(4) Spawn: p(physician, hospital, ¬emergency, share_PHI_family)
(5) Responsibility: c(physician, hospital, emergency, share_PHI_family)

Spec5. Control—Unanimous solution among all the Control group participants.

(1) p(physician, hospital, true, publish_PHI_online)
(2) a(physician, hospital, true, share_phi_colleague)
(3) a(physician, hospital, emergency, share_PHI_family)
(4) p(physician, hospital, ¬emergency, share_PHI_family)

Note that our modeler study instructions for the participants in the Desen group enabled some
of them to specify an additional commitment using the “Responsibility” pattern. The resulting
specification allows physician agents in our simulation to be proactive, i.e., to contact the patient’s
family to share PHI with a chance to enable early recovery for the patient, compared to the Control
group solution, where agents remain reactive, i.e., must wait for a request from the patient’s family
to share PHI.

7.3 Metrics

To measure the effectiveness of the solutions, we compute the following metrics:

Information disclosure is the average number of unauthorized disclosures by physicians in
a community hospital. Lower is better.

Life sustenance is the number of residents still alive in a community. Range: 0–100. Higher
is better.

Social welfare is the average community health. Range: 0–100. Higher is better.
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Table 6. Community Settings

# Physicians Illness probability Outbreak probability Compliance†

1 low low low high
2 low high high high
3 high low low high
4 high high high high
5 low low low low
6 low high high low
7 high low low low
8 high high high low

† For Norm, Stos, Desen, and Control: External physician compliance;

For Mech: Mechanism availability.

Table 7. Comparing Average Information Disclosure, Average Life
Sustenance, and Average Social Welfare Across Communities

for the Five Solutions

Solution Norm Mech Stos Desen Control
Information disclosure 0.97 – 0.19 0.95 0.97
Life sustenance 56.91 34.48 59.15 61.71 57.63
Social welfare 44.97 28.11 46.65 48.75 45.55

Bold indicates better.

7.4 Hypotheses

We propose three null hypotheses that state there are no differences between the five solutions—
Norm, Mech, Stos, Desen, and Control. The alternative hypotheses indicate there is a difference.

H5disclosure. There is no difference in the number of unauthorized disclosures that result by
the use of five solutions—three benchmarks, Desen, and Control solutions.

H6sustenance. There is no difference in the life sustenance yielded by the five solutions—three
benchmarks, Desen, and Control solutions.

H7welfare. There is no difference in the social welfare yielded by the five solutions—three
benchmarks, Desen, and Control solutions.

7.5 Experiments and Results

We evaluate the hypotheses via multiple experiments on the community healthcare environment
in which we simulate each of the five solutions (Norm, Mech, Stos, Desen, and Control) in eight
community settings defined in Table 6. These eight community settings are based on combinations
of availability of physicians, illness and outbreak probabilities, and compliance and mechanism
availability, each of which could be either high or low as defined in Table 5. We run each simulation
three times for 10K steps, and compute the metrics defined in Section 7.3. We perform a one-way
ANOVA to test the null hypotheses H5, H6, and H7. If a null hypothesis is rejected—indicating
there is a difference in the solutions—in the post hoc analysis, we perform a series of pairwise
t-tests to isolate the differences. To avoid a type-1 error, we apply the Bonferroni correction and
set the significance cut-off at 0.00833 for H5 and 0.005 for H6 and H7.

Figures 10 and 11 in Appendix H show the plots for life sustenance and social welfare for
the five solutions in the eight community settings, respectively. Table 7 summarizes the results.
The One-way ANOVA test rejects the null hypotheses H5 (p = 0.025;η2 = 0.28), H6 (p = 0.019;
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η2 = 0.28), and H7 (p = 0.03;η2 = 0.27) with large effect size [Grissom and Kim 2012]. This in-
dicates that there is a difference in the disclosure, sustenance, and welfare provided by the five
solutions.

In the plots and results summary table, we observe that Desen yields better average life suste-
nance and average social welfare compared to the benchmark solutions and the Control solution
from the modeler study. Specifically, Desen yields best life sustenance and social welfare in three
of the four communities with low external physician compliance and second best in three other
communities having either both physicians and compliance as high or both as low. Tables 11 and 12
in Appendix H list these values yielded by the five solutions for each of the eight communities. We
attribute better sustenance and welfare yielded by Desen to the additional commitment on physi-
cians to share PHI with family during emergency. Recall that this commitment enables physician
agents to behave in a proactive manner in emergencies. Stos yields average life sustenance and
average social welfare values second only to those yielded by Desen. Mech yields the lowest sus-
tenance and welfare. The low sustenance and welfare values in Mech are because of catastrophic
failures resulting due to mechanism nonavailability when treating a critically ill patient. Such cat-
astrophic failures do not occur with other solutions (note that the mechanism in Stos that is used
to prevent physicians from publishing PHI online does not have an effect on patient health). Al-
though we observe differences in the means, in the post hoc analysis, we find that the differences
in sustenance and welfare are not significant.

We further observe that Stos results in significantly lower unauthorized information disclosure
than Norm and Control. We attribute the lower disclosure in Stos to the mechanism that prevents
physicians from publishing PHI online. Desen results in lower (but not significant) disclosure than
Norm and Control in six of the eight communities. Whereas the disclosure in Stos is lower than
that in Desen, the difference is not statistically significant considering the Bonferroni correction.
Table 10 (in Appendix H) summarizes the unauthorized disclosure results.

7.6 Threats, Mitigation, and Assumptions

Since we simulate resident illnesses, disease outbreaks, physician compliance, and mechanism
availability, a threat is whether the values for these variables seeded in the simulation are res-
onable. To mitigate this threat of reliability of data, we define multiple community settings to
simulate different contexts.

Our community healthcare simulation environment relies on a number of simplifying assump-
tions. First, we assume that all physicians are equally compliant. In reality, different physicians
may have different compliance. Second, we assume that all residents are equally susceptible to
illness, but in reality residents could have different immunity and thus, may not be equally sus-
ceptible to a disease. Third, we assume only two types of illnesses—critical and noncritical, each
taking a fixed time to treat. In reality, there could be multiple types of illnesses, each with differ-
ent treatment times. We make these assumptions because our objective is not to model healthcare
reality but to compare the effectiveness of the five solutions.

8 RELATED WORK

We review relevant approaches to Desen in the context of STSs. Chopra et al. [2014] propose a
formalization for requirements engineering of sociotechnical systems via social refinement rules.
Sommerville et al. [2012] describe sociotechnical systems as users, processes, and technological
systems. Process definitions outline how system designers intend the system to be used. In prac-
tice, users interpret and adapt them in unpredictable ways. We regulate compliance with such
processes via the notion of social norms as well as incorporate agent autonomy into the processes,
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which constitute the center of our approach. Prior formulations treat norms as expected social
properties [Criado et al. 2013], usually enforced through (positive or negative) social sanctions
[Nardin et al. 2016]. Criado et al. [2013] propose the normative architecture MaNEA as a coordina-
tion mechanism for open multiagent systems, where agents may not be equipped with normative
reasoning capabilities. They investigate previous norm enforcement approaches and describe the
challenges of adapting such formalizations to represent real domains. In Desen, we provide formal
relations accompanying norm specifications, formalize additional STS components, and demon-
strate how transformations between the technical and social tiers can be performed using practical
patterns.

Sergot [2013] discusses the correspondence of normative relations among agents with Hohfel-
dian legal concepts such as duties and rights. Alechina et al. [2013] focus on conditional norms
with deadlines and extend CTL and ATL with sanctions to reason about the effects of normative
update. They measure norm compliance by verifying if specific states are reached before the dead-
line and enforce norms via sanctions. King et al. [2015] propose a hierarchical governance model
for institutions using a multitier normative system using answer set programming. Institutions
on the higher level of hierarchy govern others on lower levels. Enhancing Desen with additional
normative concepts such as sanctions would provide alternative means of refinement from mech-
anisms to norms.

Barth et al. [2006] formalize the norms of transmitting personal information in temporal logic
and discuss properties such as consistency, entailment, and compliance. They study HIPAA sce-
narios similar to ours. Like Letier and Heaven [2013], Barth et al. make strong assumptions on
agent autonomy (i.e., agents never violate norms), and they do not discuss how agents interact
with nonautonomous components. Desen regulates interactions between agents, and agents and
other components using a richer normative formalization. Moreover, we provide realistic health-
care scenarios that support openness, where agents enter or leave the system dynamically (e.g.,
recruiting outside physicians in emergencies). Our design patterns capture transitions among the
tiers to provide flexibility to agents and to enable secure collaboration.

Agent-oriented modeling techniques have been employed to aid software engineering. Chopra
and Singh [2016b] introduce the Interaction-Oriented Software Engineering (IOSE) methodology
to capture agent autonomy in development of sociotechnical systems. They identify the limitations
of machine-only specifications and formalize social protocols via norms as we do in this article.
Having a formal social protocol enables compliance checking. Chopra and Singh define five core
principles of IOSE: accountability modularity, abstraction, separation of technical and social con-
cerns, encapsulation, and configuration, and evaluate other software engineering methodologies
with respect to those principles. Desen is compatible with IOSE and enables the transition between
technical and social components of STSs via the use of patterns.

Conflicts in normative systems are discussed in works related to norm synthesis, wherein con-
flicting norms are synthesized to nonconflicting abstract norms. Günay and Yolum [2013] discuss
the feasibility of commitments, i.e., whether it is possible to satisfy all (existing and prospec-
tive) commitments of an agent. They formulate feasibility as a constraint satisfaction problem.
Vasconcelos et al. [2009] propose methods for resolving conflicts among norms. Ajmeri et al. [2016]
propose Coco, a formalism to express and reason about conflicting commitment instances at run-
time and dominance among them. Coco employs Answer Set Programming to compute nondom-
inated commitment instances and uses Alechina et al.’s [2013] framework to determine compli-
ance of actions with nondominated commitment instances. In contrast, Desen not only handles
commitments, but provides a richer notion of norms and normative design patterns for flexible
specifications.
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9 CONCLUSIONS

We proposed Desen, a formal model for STS based on norms that supports requirements verifica-
tion via model checking and refinement via normative patterns. The main contribution is a way to
incorporate STS considerations in AOSE, which has not been explored in depth by previous work.
Our design patterns provide means for transforming STS specifications between the technical and
social tiers, and exploring the tradeoffs among them [Kafalı et al. 2017a]. Our findings suggest that
Desen’s patterns are helpful for participants who are inexperienced in conceptual modeling and
norms.

Our work opens up interesting directions for enhancements. We have developed generic pat-
terns, and although we have validated their usability, we have not investigated their complete-
ness. Whereas our norm refinement patterns are generic, they are inspired by healthcare law
and practice, and they do not constitute an exhaustive collection. It would help to investigate
domain-specific patterns (e.g., switching to priority norms for life-threatening situations). Sanc-
tions [Nardin et al. 2016] would add another dimension to Desen’s set of normative patterns.
Sanctions help deter against norm violations and provide compensation when norms are violated.
Further investigation of possible norm violation paths alongside consideration of sanctions would
help prevent misuse, i.e., faults caused by autonomous parties [Kafalı et al. 2016b]. Moreover, au-
tomated mining of norms [Avery et al. 2016; Dam et al. 2015] would enhance the planning process
that we have proposed for generating refined specifications.

Our language can be extended to include instances of agents at design time, which would be
helpful for setting up norms and assumptions regarding individual agents. For example, John might
be a trustworthy physician agent whereas this assumption cannot be generalized to all other agents
pertaining to the physician role. Therefore, additional norms or mechanisms might be needed to
regulate agents other than John.

Our simulation environment can be extended to identify tradeoff and conflict scenarios and op-
timize resources in medical emergencies. Several works deal with normative conflicts [Ajmeri et al.
2016; Günay and Yolum 2013; Vasconcelos et al. 2009] and those could be incorporated in Desen.
Such scenarios can also be incorporated in a follow-up human participant study with additional
tool support. The development of comprehensive design tool support is left for future work.

Regarding the scalability and selection of patterns, our simulation environment can be extended
in a way that the metrics we have provided act as the basis for heuristic optimization. For example,
simulation results can provide guidance on the optimal number of outside physicians or maximum
tolerable fault rates for mechanisms. Such optimization would guide the design of STS by determin-
ing which patterns to apply, e.g., apply normify if high mechanism fault rates cannot be tolerated.
The implementation of such an optimization tool is left for future work.

We performed an end-to-end evaluation of the five methodological steps described in the “Prac-
tical usage and implications” section. Specifically, we validated the model checking tool (Step i)
and the refinement patterns (Step iv) on a realistic use case and evaluated the solutions gathered
from our modeler study using the simulator (Steps ii and iii). Further validation of these steps is
left for future work as part of a larger study with practitioners.
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APPENDICES

A NUSMV MODEL

We describe the NuSMV model for the HIPAA privacy scenario. A NuSMV main module begins
with the variable declarations as shown in Listing 3. These variables constitute the elements of a
state in NuSMV. They can be defined as Boolean variables (Lines 5–16 and 30–34), enumerations
(Line 18–21), or as instances of norms (Lines 23–28).

Listing 3. Variable declarations in NuSMV.

Listing 4 describes the initial state in NuSMV by assigning values to the Boolean variables
(Lines 1–12 and 19–23) and enumerations (Line 14–17). Note that the agent roles for the specified
norms do not change during execution. We ensure this via next state declarations (Line 25–28).

Listing 5 describes the state transition rules in NuSMV with respect to the stated mechanisms.
Mechanism m1 controls the transition rules for emergency. Accordingly, a national emergency is
declared when the president and the secretary of HHS declare an emergency situation (Line 4).
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Mechanism m2 controls the transition rules for consent. Accordingly, a patient’s consent is not
valid if the patient requests confidential communications (Line 11).

Listing 4. Variable assignments in NuSMV.

Listing 5. Mechanisms in NuSMV.
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Listing 6 describes the state transition rules in NuSMV with respect to the stated norms.

Listing 6. Norms in NuSMV.
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B ILLUSTRATION OF DSL SYNTAX

We now illustrate the DSL by applying it to the example of Table 3. The code listing includes
comments for convenience. We coupled assumptions with their corresponding norms.

Listing 7. DSL for Example 1.
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Listing 7. Continued.

ACM Transactions on Software Engineering and Methodology, Vol. 29, No. 1, Article 7. Pub. date: December 2019.



Desen: Specification of Sociotechnical Systems via Patterns of Regulation and Control 7:37

C STUDY DESIGN

C.1 Effect of Prior Experience

To evaluate the influence of Desen on participants with prior experience or no prior experience on
producing specifications, we additionally propose subhypotheses for the hypotheses on coverage
H1cover aдe , correctness H2corr ectness , and time H3t ime . For each subhypothesis, a null hypothesis
(omitted for brevity) states that there is no difference between the groups.

Coverage: The following subhypotheses evaluate if Desen influences the coverage of specifica-
tions produced by participant with prior experience with norms and without prior experience.

H1a Desen and Control differently influence the coverage of specifications produced by par-
ticipants with prior industry experience or knowledge of norms.

H1b Desen and Control differently influence the coverage of specifications produced by par-
ticipants with no prior industry experience or knowledge of norms.

Correctness: The following subhypotheses evaluate if Desen influences the correctness of speci-
fications produced by participant with prior experience with norms and without prior experience:

H2a Desen and Control differently influence the correctness of specifications produced by
participants with prior industry experience or knowledge of norms.

H2b Desen and Control differently influence the correctness of specifications produced by
participants with no prior industry experience or knowledge of norms.

Time: The following subhypotheses evaluate if Desen influences the time expended to produce
specifications by participants with prior experience with norms and without prior experience:

H3a Desen and Control differently influence the time expended to produce specification by
participants with prior industry experience or knowledge of norms.

H3b Desen and Control differently influence the time expended to produce specification by
participants with no prior industry experience or knowledge of norms.

D TUTORIALS

Participants in the Control group are given a tutorial on normative requirements, including a
basic definition of refinement described in Appendix D.1. In addition to the tutorial on normative
requirements, participants in the Desen group are given a note on refinement patterns described
in Appendix D.2.

D.1 Normative Requirements and Refinement

We outline an approach to capture natural language requirements as social norms. We review the
background on norms and requirements and use examples to illustrate the connection between
them.

Social Norms. Humans, organizations, and technical systems such as software interplay with
each other in a sociotechnical system (STS). To capture the requirements of an STS, we adopt
Singh’s [Singh 2013] model of norms. A norm is directed from a subject to an object and is con-
structed as a conditional relationship involving an antecedent (which brings the norm in force)
and a consequent (which brings the norm to satisfaction). This representation yields clarity on
who is accountable to whom. A norm has four core elements—subject, object, antecedent, and
consequent. It can be formalized as N(subject,object,antecedent , consequent ).
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Norms in our approach are of the following main types:

A commitment means that its subject commits to its object to ensure the consequent if the
antecedent holds. For example, in a hospital, physicians are committed to the hospital to
operating upon patients when there is an emergency. We write this commitment as:
C(physician,hospital, emerдency,operate ).

An authorization means that its subject is authorized by its object for bringing about the
consequent if the antecedent holds. For example, physicians are authorized by the patients
to access their electronic health record (EHR) if the patients give consent. We write this
authorization as:
A(physician, patient, consent ,access_EHR).

A prohibition means that its subject is forbidden by its object from bringing about the conse-
quent if the antecedent holds. For example, healthcare professionals (HCP) are prohibited
by the hospital from disclosing patients’ protected health information (PHI). We write
this prohibition as (true in the antecedent means that the norm is unconditional):
P(hcp,hospital, true,disclose_PHI )

Requirements. Requirements represent what the stakeholders expect from an STS and are usu-
ally expressed in natural language. Consider the following scenario:

Medical emergency scenario: There has been a public emergency near the hospital, and
several unconscious patients need to be operated upon immediately. The hospital does
not have the required number of physicians on staff to attend to the emergency situa-
tion. Therefore, it has to call in volunteer physicians from nearby hospitals. However, the
volunteer physicians are not supposed to disclose the patients’ PHI.

There are three requirements associated with the above scenario:

R-Operate Physicians must operate upon patients immediately when there is a medical
emergency.

R-Help The hospital may allow volunteer physicians from other hospitals to help with the
treatment of patients.

R-Disclose Volunteer physicians must not disclose the patients’ PHI.

Refinement. Norm specifications can initially be broad. That is, they may not cover specific sit-
uations that might lead to opportunities being missed, and eventually cause violation of some
of the requirements. When this is the case, the stakeholders should refine the norms to account
for the situation at hand. This is similar to classical refinement, i.e., weakening or strengthening
of preconditions or postconditions [Pohl 1994]. Norm refinement can be performed by applying
logic operators (NOT, AND, OR) on the propositions of norms (antecedent, consequent). Consider
the authorization from earlier: Physicians are authorized by the hospital to access patients’ EHR
provided there is consent. To provide additional flexibility to physicians, we can refine this autho-
rization so physicians are authorized to access patients’ EHR provided there is consent or when
there is an emergency (i.e., the precondition is weakened).

D.2 Patterns

Patterns provide ways of extending a given norm specification with specific conditions, which
enhance flexibility (i.e., enable additional executions of the STS) while preserving functionality.

Relaxation Patterns. The first set of relaxation patterns focus on the alteration of antecedents and
consequents of norms to promote collaboration among agents. We have the following relaxation
patterns:
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Release of liability refines a commitment to make its antecedent/consequent more general
or more specific. Consider the following commitment:
C(physician,hospital, true,operate AND clinic ): The physician is committed to the
hospital to operating upon patients as well as doing clinic duty.
One refinement of the commitment is the following:
C(physician,hospital, emerдency,operate AND clinic ): The physician is committed to
doing the same tasks only in emergencies (i.e., the antecedent is more specific).
Another refinement of the commitment is the following:
C(physician,hospital, true,operate ): The physician is only committed to operating
upon patients (i.e., the consequent is more general).

Expansion refines an authorization to make its antecedent/consequent more general or more
specific. Consider the following authorization:
A(physician,hospital, consent ,own_patients_EHR): The physician is authorized by the
hospital to access her own patients provided there is consent.
One refinement of the authorization is the following:
A(physician,hospital, consent ,own_patients_EHR OR other_patients_EHR): The
physician is authorized to access her own patients as well as other patients (i.e., the
consequent is more general) provided there is consent.

Accessibility refines a prohibition to make its antecedent/consequent more general or more
specific. Consider the following prohibition:
P(physician,hospital, true, share_PHI_colleaдue OR share_PHI_f amily): The physi-
cian is prohibited by the hospital from sharing a patient’s PHI with colleagues or with
the patient’s family.
One refinement of the prohibition is the following:
P(physician,hospital, true, share_PHI_colleaдue ): The physician is only prohibited
from sharing a patient’s PHI with colleagues (i.e., the consequent is more specific).

Amendment Patterns. The relaxation patterns provide additional functionality that is not avail-
able before. However, they might open up new vulnerabilities if a violation due to the additional
functionality is not properly handled. The following amendment patterns address these challenges
to improve security and privacy-related concerns while promoting collaboration.

Responsibility limits the subject of the norm to the intended functionality provided by the
relaxation pattern by specifying a complementary commitment. Consider the authoriza-
tion from the Expansion pattern:
A(physician,hospital, consent ,own_patients_EHR).
Now, consider the following refinement:
A(physician,hospital, consent ,own_patients_EHR OR other_patients_EHR),
C(physician,hospital,own_patients_EHR OR other_patients_EHR, loдout ).
An additional commitment is provided to make sure that the physician logs out from the
computer after she finishes reviewing a patient’s EHR.

Limitation limits the subject of the relaxed norm by specifying a complementary prohibition.
Consider the prohibition from the Accessibility pattern:
P(physician,hospital, true, share_PHI_colleaдue OR share_PHI_f amily).
Now, consider the following refinement:
P(physician,hospital, true, share_PHI_colleaдue ),
P(physician,hospital, true,publish_PHI_online ).
An additional prohibition is provided to make sure that the physician does not publish a
patient’s PHI online.
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E SURVEYS

E.1 Pre-participation Survey

To select participants for the study, we circulated an advertisement with a link to a pre-
participation survey. We received 68 responses, of which we selected 32 computer science graduate
students and created groups balanced in terms of familiarity and industry experience.

(1) Which degree are you currently pursuing? (e.g., BS, MS, PhD)
(2) What is your current major? (e.g., Computer Science, Computer Networking, Electrical

and Computer Engineering)
(3) How long is your academic (programming and software development) experience?
(4) How long is your industry work experience?
(5) How familiar are you with conceptual modeling?
(6) How familiar are you with norms?
(7) How familiar are you with security and privacy in the healthcare domain?
(8) How familiar are you with role-based access controls?

E.2 Post Survey

(1) How easy was it to understand the problem domain?
(2) How easy were the scenarios?
(3) To what extent would the patterns have helped you in refinement? ∗

(4) To what extent would a refinement tool listing all possible applications of the patterns
have helped you? ∗

(5) To what extent would more guidance on patterns have helped in refinement? #

∗Answered only by participants in Desen group. #Answered only by participants in Control
group.

F SCENARIOS AND DELIVERABLES

F.1 Healthcare Privacy Scenario

Consider a healthcare scenario involving the privacy of patients’ protected health information.
Hospitals are bound by law to keep their patients’ electronic health records (EHR) private.

Therefore, when a patient is admitted to a hospital, the physician treating the patient must not
publish the patient’s protected health information (PHI) online. However, the physician may share
the patient’s PHI with a colleague to get an expert opinion. Moreover, the physician may share the
patient’s PHI with the patient’s family when there is an emergency.

Agents

physician, patient, hospital

Propositions

true, emerдency,patient_visit ,access_ehr ,publish_phi_online, share_phi_colleaдue, share_phi
_f amily

Deliverables

• Specify the natural language requirements for the scenario.
• A requirements analyst has come up with the following norms for the scenario:

P(physician,hospital, true,publish_phi_online OR share_phi_colleaдue ),
A(physician,hospital, true, share_phi_f amily).
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Your task is to come up with a refinement of this specification using the above agents and
propositions to satisfy the requirements for the scenario.

F.2 Healthcare Security Scenario

Consider a healthcare scenario involving the security of patients’ electronic health records (EHR).
Hospitals are bound by law to keep their patients’ EHR secure. Therefore, healthcare work-

ers who have access to patients’ EHR must not share their credentials (username and password)
with anyone. If healthcare workers need to use a public computer (such as the computer in the
emergency department), then they must log off from the computer as soon as they are finished re-
viewing the patient’s EHR. Moreover, healthcare workers must not view the EHR of their friends
unless they are responsible for their treatment.

Agents

worker, physician, patient, hospital

Propositions

true, emerдency, share_id, share_password,access_ehr ,public_computer , loдout , f riend, treatinд

Deliverables

• Specify the natural language requirements for the scenario.
• A requirements analyst has come up with the following norms for the scenario:

P(worker,hospital, true, share_id OR share_password ),
C(worker,hospital, true, loдout ),
P(worker,hospital, true,access_EHR).
Your task is to come up with a refinement of this specification using the above agents and
propositions to satisfy the requirements for the scenario.

F.3 Academic Access Control Scenario

Consider an access control scenario for an academic building involving the confidentiality and
integrity of its sensitive resources.

An academic department has a number of functions to keep running. Exams are kept in the
department’s safe room. Professors have access to the safe room. Teaching assistants may access
exams, however they must not be in the safe room when the professor is present to keep the
safe’s security code confidential. Exams are printed using the departmental printer. When there is
a problem, a technician is called to repair the printer. A visiting technician is allowed to enter the
printer room. In general, visitors are only allowed in public areas and rooms they are supposed
to carry out work. Often, grad students need training on the department’s server. However, they
are not allowed to enter the server room when authorized staff are not present to preserve the
integrity of the server.

Agents

technician, graduate_student, teaching_assistant, professor, security_admin

Propositions

true,printer_broken,access_printer ,access_server ,access_sa f e,access_public_area, exam_
period, sta f f _present ,pro f essor_present
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Deliverables

• Identify the natural language requirements for the scenario.
• A requirements analyst has come up with the following norms for the scenario:

A(technician, security_admin,printer_broken,access_printer ),
P(graduate_student, security_admin, true,access_server ),
A(professor, security_admin, true,access_sa f e ),
P(teaching_assistant, security_admin, exam_period,access_sa f e ).
Your task is to come up with a refinement of this specification using the above agents and
propositions to satisfy the requirements for the scenario.

G STUDY ANALYSIS

As participants produced specifications for the scenarios’ each phase, we recorded their comple-
tion time. Later, participants’ specifications were compared against the oracle solution to compute
the coverage and correctness of the specifications produced for each of the scenarios. Table 8
summarizes the results for all participants, participants with no prior knowledge of norms, and
participants with no industry experience.

Table 8. Empirical Results on Effectiveness of Desen Compared to Control for All Participants, Participants
with No Knowledge of Norms, and Participants with No Industry Experience in Conceptual Modeling

All participants No knowledge of norms No industry experience

Desen Control p value Desen Control p value Desen Control p value

Time–Phase 1 (in mins) 30.63 23.75 <0.05 36.00 25.33 <0.05 35.20 18.40 <0.01

Time–Phase 2 (in mins) 15.63 14.88 0.71 15.50 18.00 0.47 12.80 11.60 0.51

Time–Phase 3 (in mins) 16.69 19.63 0.15 15.50 18.83 0.05 18.40 18.40 1

Coverage of specification (in %) 65 62 0.66 75 61 0.15 76 56 0.09

Correctness of specification (in %) 67 62 0.55 78 58 <0.05 79 57 <0.05

After completing each phase, participants completed a post-survey. Table 9 summarizes the
responses received from the post-survey.

Table 9. Empirical Results on Effectiveness of Desen Based on the Post-survey Responses

Desen Control

Mean Median Mean Medium

How easy was it to understand the problem domain? ∗ 2.60 3 2.60 3

How easy was it to learn the approach? ∗ 2.40 2 2.27 2

How easy was it to define a specification using the approach? ∗ 2.80 3 2.60 3

How easy was it to maintain a specification using the approach? ∗ 2.60 3 2.80 3

How easy were the scenarios? [Phase 1] ∗ 2.27 2 2.00 2

How easy were the scenarios? [Phase 2] ∗ 2.40 2 2.47 2

How easy were the scenarios? [Phase 3] ∗ 3.33 4 3.13 3

To what extent did the patterns help you in refinement? # 4.40 4 - -

To what extent would more guidance on patterns have helped in

refinement? †
- - 3.87 4

To what extent would a refinement tool listing all possible

applications of the patterns have helped you? †
4.27 4 - -

∗(1: Very easy, 2: Easy, 3: Medium, 4: Difficult, 5: Very difficult).
#(1: Didn’t help me at all, 5: Helped a lot).
†(1: No help at all, 5: Would have helped a lot).
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H SIMULATION RESULTS

Tables 10, 11, and 12 list the information disclosure resulted in and life sustenance and social
welfare yielded by the five solutions in eight communities.

Table 10. Information Disclosure Resulted in Five Solutions
for the Eight Communities

Norm Mech Stos Desen Control
Community 1 0.37 – 0.09 0.28 0.35
Community 2 1.01 – 0.20 0.77 0.92
Community 3 0.58 – 0.15 0.46 0.58
Community 4 1.29 – 0.24 1.19 1.49
Community 5 0.35 – 0.09 0.27 0.39
Community 6 1.56 – 0.26 1.83 1.17

Community 7 0.60 – 0.15 0.49 0.63
Community 8 2.02 – 0.30 2.25 2.20
Mean 0.97 – 0.19 0.94 0.97

Stos consistently results in lower disclosure. Desen results in lower disclosure than Norm and

Mech in six of the eight communities. Bold indicates best; Slanted indicates second best.

Table 11. Life Sustenance Yielded by the Five Solutions for the Eight Communities

Norm Mech Stos Desen Control
Community 1 31.53 28.15 31.21 31.16 29.85
Community 2 44.84 13.24 50.98 41.04 40.41
Community 3 49.24 49.01 52.10 51.43 49.57
Community 4 56.74 24.98 60.97 63.33 66.45

Community 5 29.33 25.61 29.05 30.53 32.07

Community 6 39.95 13.07 41.43 49.40 33.28
Community 7 50.61 47.76 50.53 54.32 52.52

Community 8 57.52 23.10 56.92 68.78 60.25

Mean 44.97 28.11 46.65 48.75 45.55

Desen yields best sustenance in three of the four communities with low compliance, and yields

second-best sustenance in three other communities when both physicians and compliance are

either high or are low. Bold indicates best; Slanted indicates second best.
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Table 12. Social Welfare Yielded by the Five Solutions for the Eight Communities

Norm Mech Stos Desen Control
Community 1 36.40 32.53 35.98 35.91 34.45
Community 2 61.01 18.36 69.35 55.69 55.01
Community 3 56.54 56.32 59.89 58.90 56.92
Community 4 77.01 34.24 82.68 85.68 90.34

Community 5 33.84 29.63 33.55 35.18 36.95

Community 6 54.35 18.10 56.35 67.01 45.35
Community 7 58.15 54.92 58.06 62.29 60.30

Community 8 78.01 31.73 77.34 93.00 81.67

Mean 56.91 34.48 59.15 61.71 57.63

Desen yields best sustenance in three of the four communities with low compliance, and yields

second-best welfare in three other communities when both physicians and compliance are either

high or are low. Bold indicates best; Slanted indicates second best.

Figures 10 and 11 show the plots for life sustenance and social welfare for the five solutions in
the eight community settings, respectively.

Figures 12, 13, and 14 show the box plots for information disclosure, life sustenance, and social
welfare in the five solutions across the eight community settings, respectively.
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Fig. 10. Life sustenance in the five solutions.
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Fig. 11. Social welfare for the five solutions.
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Fig. 12. Boxplots comparing average information disclosure in the five solutions across eight community
settings. # No disclosure in Mech.

Fig. 13. Boxplots comparing average life sustenance yielded by the five solutions across eight community
settings.
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Fig. 14. Boxplots comparing average social welfare yielded by the five solutions across eight community
settings.
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