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We introduce a high-level abstraction of location called place. A place derives its meaning from a user’s
physical space, activities, or social context. In this manner, place can facilitate improved user experience
compared to the traditional representation of location, which is spatial coordinates. We propose the Platys
framework as a way to address the special challenges of place-aware application development. The core of
Platys is a middleware that (1) learns a model of places specific to each user via active learning, a machine
learning paradigm that seeks to reduce the user-effort required for training the middleware, and (2) exposes
the learned user-specific model of places to applications at run time, insulating application developers from
dealing with both low-level sensors and user idiosyncrasies in perceiving places.

We evaluated Platys via two studies. First, we collected place labels and Android phone sensor readings
from 10 users. We applied Platys’ active learning approach to learn each user’s places and found that Platys
(1) requires fewer place labels to learn a user’s places with a desired accuracy than do two traditional
supervised approaches, and (2) learns places with higher accuracy than two unsupervised approaches.

Second, we conducted a developer study to evaluate Platys’ efficiency in assisting developers and its effec-
tiveness in enabling usable applications. In this study, 46 developers employed either Platys or the Android
location API to develop a place-aware application. Our results indicate that application developers employ-
ing Platys, when compared to those employing the Android API, (1) develop a place-aware application faster
and perceive reduced difficulty and (2) produce applications that are easier to understand (for developers)
and potentially more usable and privacy preserving (for application users).
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1. INTRODUCTION
Location awareness is an important feature of major mobile applications including
search, social networking, and games. In many cases, a user would not even notice
that an application is location-aware. As Weiser [1999] observed, “the most profound
technologies are those that disappear.”
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A:2 P. Murukannaiah and M. Singh

Our vision is developed in the same spirit and leads to three major questions that
we seek to address in this paper.

(1) What are the levels of abstraction (or granularity) at which a mobile application
could employ the location information?

(2) What are the implications of the chosen level of abstraction on the process of
location-aware application development?

(3) How does the chosen level of location abstraction affect the quality of the resulting
applications both from the perspectives of application developers and end-users?

In current practice, most location-aware applications represent location as position,
i.e., spatial coordinates (usually latitude and longitude). We imagine that position is
popular because it matches existing location acquisition techniques including Global
Positioning System (GPS), and cellular and WiFi triangulation [Küpper 2005]. Cur-
rent mobile devices provide hardware (built-in sensors) and software (programming
interfaces to the sensors) support for position acquisition. Thus, developing a position-
aware application is natural for an application developer.

1.1. From Position to Place
Applications employ location in typical ways such as the following:

(1) Explicit. Using the information as is, as below:
— Informative. An application can provide a user’s location information explicitly,

e.g., it may display the location in a calendar or tag location on a photo.
— Social disclosure. An application can disclose a user’s location to the social con-

tacts of the user, e.g., on a social network site or in a text message.
— Commercial disclosure. An application can disclose a user’s location to a third

party for a commercial purpose, e.g., to obtain a coupon for a nearby coffee shop.
(2) Implicit. An application can automate a task based on the user’s location. For ex-

ample, consider a personalization task such as changing the ringer mode of one’s
phone or forwarding text messages to email, which can be performed automatically
depending upon where the user is.

(3) Prediction. An application can analyze a user’s location (typically, location history)
to discover interesting patterns and predict a future location. The future location
could then be used for one of the above purposes.

Whether an application employs location for the user to benefit from the location per-
sonally (for information or task execution), or exploits location to share it with others
(for social or commercial purpose), what is a desirable level of abstraction at which to
do so? We doubt it would be position; spatial coordinates do not have an inherent mean-
ing for the user. Instead, we imagine that a notion such as home, office, restaurant, and
park is more natural. We term this level of location abstraction place. Employing place
instead of position has three implications on location-aware applications.

— By presenting location in a way that is natural to users, place can enhance usabil-
ity, i.e., the ease with which a user can exercise an application [Ryan and Gonsalves
2005].

— Place opens up new avenues for intelligent location-aware applications including
social networks [Murukannaiah and Singh 2012], personal assistants [desJardins
et al. 2005], pervasive and social games [Magerkurth et al. 2005], recommender
systems [Wang et al. 2012], and virtual worlds [Hendaoui et al. 2008].

— Place can enhance location privacy [Duckham and Kulik 2006] by providing users
an easier means for controlling the extent to which their location information is
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shared, e.g., by sharing the information that a user is in a class instead of sharing
the physical location of the specific class.

1.2. Place-Aware Application Development
Although place offers potential benefits as a location abstraction, place-aware applica-
tion development is quite challenging.

First, how can a place-aware application represent and reason about the places that
a user may care for? In general, developers cannot determine the needs of each po-
tential user. For example, a model yielding home, office, and elsewhere might suffice
for a user, but another user might want a model that distinguishes multiple offices.
Additionally, a user’s location needs often change over time.

Second, each developer may employ a distinct place model imposing an unnecessary
burden the user. For example, an application may model a class to include regular lec-
tures and guest lectures whereas another application may differentiate the two events
as taking place in a lecture hall and a seminar hall, respectively.

Third, we need to provide architectural support for developing a place-aware appli-
cation including means for modeling and acquiring place information.

1.3. Contributions and Organization
We make two main contributions. First, we propose the Platys framework for place-
aware application development. The framework incorporates a middleware provid-
ing the architectural support necessary for place-aware application development (Sec-
tion 3). Before describing the middleware, we synthesize a conceptual metamodel based
on various place-related constructs (Section 2). Second, we describe Platys Reasoner, a
key component of the middleware, which reasons about places from sensor data (Sec-
tion 4). Platys Reasoner is novel in that it (1) reasons about a user’s places subjectively,
enhancing the user experience delivered by place-aware applications, (2) prompts the
user to label places only if required, reducing the user effort involved in training the
reasoner, and (3) makes realistic assumptions that sensors readings for place recogni-
tion will be from multiple sources and intermittent.

We evaluate Platys via two studies involving users.

(1) A user study finds that Platys Reasoner is effective for place recognition, reducing
user effort and enhancing place recognition accuracy (Section 5).

(2) A developer study finds that Platys framework is effective for place-aware applica-
tion development, reducing development time and effort, and potentially enhanc-
ing the usability of location-aware applications (Section 6).

We summarize the related work in Section 7, identify some directions for future
research in Section 8, and conclude in Section 9.

2. A CONCEPTUAL METAMODEL OF PLACE
The notion of place has been studied under constructs such as place attachment, place
identity, sense of place, and semantic location. Gieryn [2000] identifies geographic lo-
cation, material form, and meaning and value as three features of a place. Scannell
and Gifford [2010] describe the meaning of a place using a tripartite model involving
people (individuals or groups), place characteristics (social or physical), and processes
(behavior, cognition, or affect). The interactionist theory of place attachment suggests
that the meaning given by an individual to a physical site comprises the individual’s
memories of interactions associated with that site (interactional past) as well as future
experiences perceived as likely (interactional future) [Goel et al. 2011; Kyle and Chick
2007; Milligan 1998]. Harrison and Dourish [1996] distinguish space and place by a
phrase that “we are located in space, but we act in place.”
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We synthesize (as Lewicka [2011] advocates) various place-related constructs as an
informational entity that can be computed and employed in mobile applications. Fig-
ure 1 shows our conceptual metamodel, which can be used to model each place of in-
terest to a user via its relationships with one or more of the following entities.

interacts
with

Place

Social CircleActivity

Position Action Social 
Contact

Space

Environment

Mobile 
Device User

maps to occurs at gathers at

observed at senses performs
senses

carries

Fig. 1: A conceptual metamodel relating place to space, activities, and social circles.

— Space. The spatial aspects of a place include one or more positions and the environ-
ment, including physical artifacts such as console and TV, and physical character-
istics such as noise level, ambient light, and temperature.

— Activity. A place derives its meaning from the activities that occur there. For exam-
ple, a user’s home might be a place of entertainment, rest, and eating, whereas a
research lab might be associated with activities such as writing a paper. Thus, a
set of activities can be used to specify a place of interest to a user.

— Social circle. The places of interest to a user are often occupied by his or her social
contacts. The user is likely to perceive a logical group of such contacts as a social
circle [Murukannaiah and Singh 2012]. For example, home is occupied by family
members, workplace by colleagues, and classrooms by classmates. Thus, a place
can also be described by the social circle associated with it.

We make three assumptions about modeling of places.

(1) A place can be completely specified by any combination of space, activity, and so-
cial circles. This assumption opens up interesting possibilities for spatially over-
lapping, dispersed, and space-less places. For example, two classrooms in different
corners of a college campus can be the same place specified by the unique set of
activities that take place in a classroom; the same coffee shop may be two different
places—a caffeine fix and a meeting place—differentiated by the social circles in-
volved; an Internet chat room might have no spatial aspects, but can be specified
via activities or social circles.

(2) A places is ego-centric, e.g., workplace of a physician and that of a software engi-
neer can each be modeled as comprising different sets of activities.

(3) Places can be computed from space, activities, and social circles. Typical spatial
aspects such as the position, temperature, and noise level can be sensed directly
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from a user’s device. Activities and social circles can be computed from observable
actions and interactions of a user. Examples of observable actions include URLs
visited, applications used, and physical movement, and that of observable interac-
tions include emails, text messages, and phone calls.

The notion of context is related to place. In contrast to context, which is defined
as “any relevant information” [Dey et al. 2001], we base place on three contextual
attributes: space, user activities, and social circles. In doing so, we make explicit
what is that we seek to compute (recognize) and the corresponding assumptions. This
helps (1) developers determine if Platys provides the abstractions they desire, and
(2) end-users train Platys appropriately (we imagine that asking a user about his or
her space, activities, or social circles is clearer than asking about context).

3. PLATYS: FRAMEWORK FOR PLACE-AWARE APPLICATION DEVELOPMENT
As shown in Figure 2, Platys framework consists of sensors, a middleware, and applica-
tions. The middleware is its key component. In a nutshell, (1) a user interacts with the
middleware and trains it with his or her places of interest, (2) the middleware learns
to recognize places of interest to each user from low-level sensor data, and (3) multiple
applications interact with the middleware to know the user’s places.

Platys Framework

Platys Middleware

Sensor

User

Platys Reasoner

Tagging 
Subsystem

Application 
Manager

Platys-Aware Application

Event and Action 
Logger

Fig. 2: Platys framework consists of a middleware, sensors, and applications.

3.1. Platys Middleware
Let us consider the benefits of a middleware. We hypothesize that developing location-
aware application employing a high-level abstraction such as place can be time-
consuming. Thus, providing an off-the-shelf component that simplifies place-aware ap-
plication development can be valuable. However, networking, coordination, delegation,
and heterogeneity [Emmerich 2000; Issarny et al. 2007] are inevitable requirements
for building such a component because (1) data for reasoning about a user’s places come
from sensors on multiple devices, e.g., smart phone, tablets, and an increasing variety
of wearable devices, and (2) the sensors, place reasoner, and place-aware applications
may all reside on different hosts.

The Platys middleware is responsible for (1) efficiently gathering data from multi-
ple low-level sensors; (2) computing high-level concepts such as places, activities, and
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social circles from low-level data specific to each user; and (3) exposing the learned
high-level concepts to place-aware applications as per a user’s needs.

Figure 3 shows the architecture of the Platys middleware consisting of four subsys-
tems. The figure also shows the platform for which we have implemented each com-
ponent. Each subsystem may be potentially hosted on any of a user’s personal device.
The subsystems communicate asynchronously via a shared information store.

Personal Computer

Android Phone

Shared Information Store 
(Dropbox Sync API)

Place Labels

Sensor Data
Place Model 

(Semi-supervised)

Tagging Subsystem
(Android Activity)

Event & Action Logger
(Android Service)

Application Manager 
(Android Service)

Platys Reasoner 
(Apache Daemon)

API (Android IDL)

Fig. 3: Platys middleware’s subsystems. The subsystems are loosely coupled and com-
municate asynchronously via a shared information store. Each of a user’s personal
devices can host one or more of the subsystems.

The event and action logger aggregates data from multiple sources. Smart phones
and wearable devices are ideal for hosting this component since they are equipped
with sensors such as GPS sensors, accelerometer, gyroscope, Bluetooth, WiFi, camera,
and microphone. In addition, the logger collects data from sources such as a user’s call
log, browsing history, email, SMS, and calendar. A user can control what sensors and
data sources to use and at what frequency to collect the data.

For Platys to make sense of the sensor data, the tagging subsystem helps a user
train Platys on the relevant place, activity, and social circle. Since smart phones are
always with a user, they are ideal to deliver notifications prompting the user to tag.
Figure 4b shows the user interface from our Android implementation of the tagging
subsystem. The user may ignore any prompt or delay responding.

The Platys reasoner builds a machine learning model to associate user tags with
sensor data. In a typical scenario, the user tags places for a training period and the
reasoner subsequently predicts the places, activities and social circles. Further, the
reasoner assigns a confidence level to its predictions in order to enable active learning
(Section 4). A resource-rich device such as a user’s personal computer (compared to a
mobile device) is ideal for hosting the reasoner.

Platys-aware applications interact with the application manager to acquire a user’s
places, activities, and social circles. The application manager respects privacy prefer-
ences specified by a user as shown in Figures 4c and 4d. An instance of the application
manager must be hosted on each device that hosts place-aware applications.
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(a) The home screen
shows the reasoner’s
predictions about a
user’s current place.

(b) A user tags the
current or a recently
visited place, activi-
ties, or social circles.

(c) The user can ap-
prove, trash, or block
an application from
using Platys informa-
tion.

(d) The user can set
fine-grained privacy
policies for a Platys
application from here.

Fig. 4: Screenshots from the Platys middleware’s subsystems.

3.2. Platys-Aware Application Development
A typical workflow of how a user, a Platys-aware application, and the Platys middle-
ware interact with each other is shown in Figure 5. Platys-aware application devel-
opment tackles the challenges in discussed in Section 1. First, it provides a commu-
nication channel between application developers and users. With Platys, what users
tag is what an application can see: A user trains the Platys middleware to recognize
places of interest; the Platys middleware learns to recognize the tagged places and
exposes them to applications. Thus, an application can rely on the Platys to provide
places of interest to each of its users. Further, a user can tag new places and Platys
automatically updates the places it exposes to the applications. Code snippets of how
an application interacts with the middleware are shown in Appendix B.

Second, Platys exposes places uniformly across all applications. Since each Platys-
aware application employs places exposed by Platys, the user avoids the burden of
understanding multiple place models.

Third, Platys provides users fine-grained control on privacy. In current practice, a
user’s control on privacy is typically at the level of all locations or none. However, a
user’s willingness to disclose location depends on who is requesting, why, and the de-
tails requested [Smith et al. 2005]. Platys supports such fine-grained privacy policies.

4. PLATYS REASONER
Now we describe how our middleware recognizes places of interest to a user. The Platys
tagging subsystem collects place labels from an end-user and the event and action log-
ger collects raw data from sensors. Then, the task of the Platys Reasoner is to recognize
places (corresponding to a user’s labels) from raw sensor readings.

This task can be addressed via a traditional machine learning paradigm. Specifically,
unsupervised learning techniques seek to learn patterns in the sensor data, not requir-
ing place labels. Typically, such approaches learn what we call as staypoints—sets of
positions within a certain radius or those where a user stays for a certain duration
[Hariharan and Toyama 2004; Montoliu and Gatica-Perez 2010; Zheng et al. 2011].
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Fig. 5: Interactions between a user, a Platys-aware application, and the Platys middle-
ware. The user tags places on an ongoing basis; the application is installed and regis-
tered; the middleware continually sends place updates to the application as needed.

Although staypoint-based approaches do not require labeling, they have the following
shortcomings. One, staypoints do not capture subjective nuances in how users per-
ceive places since: (a) no fixed values for radius and duration yield desired places for
all users, and (b) staypoints exclude interesting possibilities in terms of spatially over-
lapping and dispersed places. Two, a staypoint does not carry an inherent meaning. A
user may eventually need a symbolic name (hence labeling) to distinguish staypoints
[Lin et al. 2010]. Three, staypoint-based approaches, often, require frequent sensor
readings to find patterns in the unlabeled data. For example, [Ashbrook and Starner
2002] and [Zhou et al. 2007] scan GPS every second and minute, respectively. However,
sensing consumes battery power—a limited resource on mobile devices.

Alternatively, supervised learning techniques exploit user-provided place labels. A
traditional classifier such as logistic regression or support vector machine (SVM)
[Hastie et al. 2001] can be learned from sensor data treating place labels as class
labels. Typically, training a classifier requires several training instances per class to
produce good classification accuracy. However, acquiring training instances is chal-
lenging because place labeling requires user effort. Requiring each user to label each
place of interest several times is therefore not feasible. Additionally, sensor readings
are likely to be (a) intermittent (all sensor readings may not be available when a user
labels a place, e.g., GPS reception is limited indoors), and (b) infrequent (since sensing
frequently can drain battery). Thus, many training instances constructed from sensor
data are likely to be sparse (missing feature values).

The Platys Reasoner seeks to address the shortcomings of the above approaches.
Specifically, it combines two machine learning paradigms: (1) active learning [Settles
2012] to reduce the labeling effort, and (2) semi-supervised learning [Zhu et al. 2009] to
efficiently deal with intermittent and infrequent sensor data. Next, we explain these
paradigms and how the Platys Reasoner employs them for place recognition. We pro-
vide a formal description of the problem and its solution (with pseudocode) in Ap-
pendix A.

4.1. Intuition: Active and Semi-supervised Learning
As an example, Alex is a Platys user. Figure 6a captures Alex’s routine on a typical
day: Alex is at home in the morning, during lunch, and evening; he works from his lab
during a morning session and an afternoon session. As shown, Alex has labeled the two
places twice each and there are sporadic sensor readings throughout. For simplicity
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(and without loss of generality), we consider only two sources of sensor readings. Let
G(t) and W (t), and PL(t), respectively be the GPS reading, WiFi scan result, and place
label at time t. However, not all sensor readings may be available at each time; e.g.,
only WiFi scan result is available at 9:30 (GPS reception being poor indoors).

Now, we consider the questions: Given historical data (labels and sensor readings),
andW (14:00) = {w4, w8}, what is Alex’s place at 14:00? Similarly, given historical data
and G(17:15) = {g3}, what is his place at 17:15?

Home

09:30

Lab

09:00 11:30

Lab

11:15 12:00

Home

14:00

???

08:30 09:15 10:10 12:30 17:15

???

{w1 w2, w3} {w5, w6, w7} {w6, w7}{…} {w1} {w4, w8}{w4, w5} {w6, w7, w8} {w2, w3}

{g1} {…} {g2} {g3} {g3}

Time:

Place Label:

WiFi:

GPS:

Ground Truth: Home Lab LabHome Home

User labeled data points Unlabeled data points Data points for place prediction

11:45

{…}

(a) Streams of sensor data (time not to scale). Only two sources are considered for brevity.

Home Lab Lab Home ??? ???Place Label:

(b) Active learning intelligently prompts a user to assign place labels.

Home Lab Lab Home ??? ???Place Label:

Data points with Platys Reasoner assigned labels

Lab Lab HomeHome Lab Lab

(c) Semi-supervised learning exploits place labels and latent structure in the unlabeled data.

Fig. 6: An illustration of the place recognition problem and intuitions behind Platys
Reasoner’s techniques: active and semi-supervised learning.

In general, an unsupervised approach cannot answer the above question because it
does not employ place labels. In contrast, a traditional supervised approach may not
be accurate given few and incomplete training instances. For example, a traditional
classifier does not predict places any better than random guessing for Alex. The reason
is that the instances to be predicted, i.e., W (14:00) = {w4, w8}, and G(17:15) = {g3}
have nothing in common with the training instances.

The Platys Reasoner employs a classifier, albeit with additional steps in learning to
address the challenges of traditional classification. Platys Reasoner’s additional steps
are motivated by the following intuitions.

(1) Can we employ fewer training instances than traditionally required to train a
classifier to achieve a desired accuracy? Yes, if we control what those train-
ing instances are (same number, though). For example, given PL(8:30) = home
and W (8:30) = {w1, w2, w3}, it is not useful to label PL(12:00) as home, when
W (12:00) = {w1}. Instead, it would be better if we asked Alex to label at 12:30,
when G(12:30) = {g3}, as shown in Figure 6b. The labeled instances PL(8:30)
and PL(12:30) provide more information to train a classifier than PL(8:30) and
PL(12:00) because of the GPS reading G(12:30). Given G(17:15) = {g3}, a clas-
sifier trained from PL(8:30) and PL(12:30) could correctly predict PL(17:15) as
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home, but a classifier trained from PL(8:30) and PL(12:00) could only randomly
guess PL(17:15).

(2) Can we exploit both labeled and unlabeled instances for training to achieve a better
classification accuracy than training with labeled instances alone? Yes, if we exploit
the hidden structure in the unlabeled data. For example, given that PL(9:30) = lab
and W (9:30) = {w5, w6, w7}, we notice that W (9:15) = {w4, w5} and W (10:10) =
{w6, w7, w8} overlap with W (9:30). From this, we can assign PL(9:15) = lab and
PL(10:10) = lab as shown in Figure 6c, and then train a classifier. Such a classifier
would predict PL(14:00) as lab correctly, enhancing the classification accuracy.

4.2. Place Recognition Pipeline
Platys Reasoner incorporates the above intuitions by employing active and semi-
supervised learning techniques, as shown in Figure 7. The reasoner operates in train-
ing and prediction modes. In the training mode, Platys starts from sporadic streams
of sensor data. The active learner chooses a few instances from the pool of unlabeled
data and asks a user to label them. The active learner chooses only from recently
sensed data so that the user would remember what labels to use. The semi-supervised
learning module picks up from where the active learner leaves off—with a few la-
beled instances and many unlabeled instances. The semi-supervised learner exploits
the structure in unlabeled data and assigns place labels to several previously unla-
beled instances. Finally, the reasoner trains a classifier from all labeled instances (user
assigned and inferred). Once the place classifier is trained, given an unlabeled sensor
reading, Platys Reasoner predicts the user’s place at the time of the reading.

Pool of Unlabeled and Intermittent Sensor Data Instances

Active 
Learning

Sensor 1 Sensor 2 Sensor 3 …

Prompt the
User to Label

A Few Labeled 
Instances

Infer New Labels and 
Filter Non-places

Several Labeled 
Instances

Training

Semi-Supervised 
Learning

A Traditional 
Classifier Place Classifier

Label

Prediction

Map Sensor
Readings to Places

Fig. 7: Platys Reasoner learns a place classifier from unlabeled sensor data.

4.2.1. Active Learning. Given a pool of unlabeled instances (from recent past) and all
labeled instances (historical), our objective is to choose an instance which, if labeled,
would be most beneficial in improving our classifier. Platys Reasoner adapts a tech-
nique called uncertainty sampling [Settles 2012]:
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(1) Choose the latest unlabeled instance if there is no labeled instance. Otherwise,
perform the following steps.

(2) Train a classifier from labeled instances alone.
(3) Predict a place label for each unlabeled instance.
(4) Find the classifier’s confidence for each prediction.
(5) Prompt the user to label the place for an instance predicted with the least confi-

dence.

Any classifier can be employed in the above method as long as the confidence of
predictions can be measured. We employ logistic regression and SVM in our analyses
(Section 6). For logistic regression, the probability with which an instance is predicted
as belonging to a class indicates the confidence. For SVM, the decision value, i.e., the
distance of the instance being predicted from the separating hyperplane of the trained
model, is an indicator of confidence [Vlachos 2004].

Active learning is a continual process. As long as there are unlabeled instances that
the active learner is sufficiently uncertain about, it asks the user to label them. The
process is robust and uses whatever information it has—a user may ignore a labeling
request or proactively label a place.

4.2.2. Semi-Supervised Learning. The objective of semi-supervised learning is to exploit
unlabeled sensor readings, given a few readings with place labels. It is effective since
sensor readings tend to form well-separated clusters [Eagle and Pentland 2006]. We
employ this intuition in a semi-supervised technique called self training [Zhu et al.
2009]. Complementary to the active learner, which asks the user when in doubt, the
semi-supervised learner teaches itself from its own confident predictions. The tech-
nique operates as follows.

(1) Train a classifier from sensor readings with user-assigned place labels.
(2) Predict a place label for each unlabeled sensor reading via the above classifier.
(3) Retrain a classifier from both the original and the newly inferred labels.

A potential problem is that the above approach assigns a place label to each sensor
reading whereas some sensor readings may belong to none of the labeled places. Such
readings correspond either to places uninteresting to a user or those not labeled yet.
Thus, we seek to filter such “noisy” sensor readings before training the final classifier. A
simple strategy to filter out noisy sensor readings is to avoid assigning a place label to
an instance if the prediction confidence is below a threshold (in the second step above).
However, how do we find an optimal threshold? Again, manually fixing a threshold
across all places (similar to fixing staypoints’ radius or duration) is not desirable—
characteristics of different places may vary. Instead, we eliminate noisy readings by
iteratively clustering sensor readings as follows.

(1) Find the mean similarity between the inferred instances and the original (user-
assigned) instances of each place (we employ the similarity metrics described in
Appendix A.3).

(2) Eliminate a sensor reading from a place if the reading’s similarity to original in-
stances is less than the mean similarity for the corresponding place.

(3) Repeat the above steps until the difference in the number of instances eliminated
in two consecutive iterations is negligible.

The result of the above process is a set of tightly knit clusters of sensor readings
such that at least one instance in each cluster has a place label. Now, we assign the
same label to all instances in a cluster and train the final place classifier.
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4.3. Platys Social: Recognizing Ego-Centric Social Circles
The place recognition pipeline described above is generic in the sense that it can in-
corporate multiple sensors. Sensors available on a typical mobile device today provide
clues about a place’s spatial attributes (e.g., via ambience sensors [Azizyan et al. 2009])
and the activity component (e.g., via accelerometer [Kwapisz et al. 2011]). However,
how do we recognize the third component of our place metamodel—social circles?

Traditionally, community detection [Fortunato 2010] from online social networks
(OSNs) is used for recognizing social circles. However, such an approach is not suit-
able for our setting because of the following reasons. First, community detection from
an OSN presupposes that the global network structure is known. However, such infor-
mation is not available to end-users. Second, communities detected from an OSN are
typically much coarser than social circles in real life, e.g., all of a users friends from
college are likely to be in one OSN community (based on mutual acquaintanceship),
whereas the user may perceive multiple social circles within the college community.

Platys Social [Murukannaiah and Singh 2012] is our approach for recognizing ego-
centric social circles of a user. The approach is based on the intuition that a user is
likely to perceive a set of contacts (other users) as a social circle if the user meets those
contacts together, regularly. We employ Bluetooth technology to identify spatial prox-
imity between users because of its short range and widespread availability on mobile
devices. However, many contacts of a user are not likely to be Bluetooth discoverable.
Thus, social circles so discovered are likely to be sparse. We address this problem by
incorporating information from the user’s real-life interactions as follows.

(1) Construct a contact co-occurrence graph based on the spatial proximity between the
contacts observed over time. Each contact of a user is a node in the graph. There
is an edge between two contacts if the user meets the two contacts together. The
weight of an edge is proportional to the frequency of meetings.

(2) Extend the co-occurrence graph to incorporate information from interactions via
emails, phone calls, and instant messages. That is, add an edge between two con-
tacts if the user included both contacts in an interaction. If an edge already exists,
update the weight according to frequency of co-occurrence.

(3) Detect communities from the co-occurrence graph and treat each community as a
social circle. We employ the weighted clique percolation method [Palla et al. 2005]
to detect overlapping communities since social circles are likely to overlap.

Although Platys Social employs community detection, a difference from traditional
approaches is that it detects communities in a graph constructed from real life prox-
imity and interactions. Further, Platys Social incorporates only the local information
about a user that is available to the Platys middleware.

5. END-USER STUDY
We evaluated Platys Reasoner via a user study. We analyzed the accuracy with which
the reasoner recognizes places of interest to a user and its efficiency in doing so.

5.1. Data Acquisition
No available datasets were adequate for our evaluation. We created our own dataset
based on real traces collected from ten users. Each user carried an Android phone in-
stalled with Platys middleware as his or her primary phone for three to 10 weeks. The
middleware collected a user’s place labels and recorded GPS, WiFi, and Bluetooth read-
ings. The study was approved by our university’s Institutional Review Board (IRB).

Platys Reasoner’s objective is to exploit infrequent and intermittent data. The mid-
dleware invoked sensors only when a user labeled a place (a few times a day). However,
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the middleware, a background service, always listened to the sensors. Thus, the mid-
dleware received data from a sensor even when other applications invoked that sensor.

In real use, Platys Reasoner learns and predicts places continually. However, we
disabled the reasoner’s learning modules during data acquisition, enabling users to
label places without any bias and to avoid the possibility that if the reasoner were to
begin predicting a place accurately, the user might stop labeling that place, thereby
providing us insufficient ground truth for evaluation. The middleware reminded users
to label their current place at random intervals. We use these place labels, acquired
without the reasoner’s influences, as a baseline to evaluate active learning.

Table I summarizes the data we acquired. Our dataset contains a variety of users
(one faculty member, one postdoc, and eight graduate students from two departments;
seven male and three female), differing in their typical mode of transportation (drive or
walk), mobility across states and countries, and frequencies of sensor data collection.

Table I: Summary of the data acquired through our user study.

User Study All Unique GPS WiFi Bluetooth
days labels labels scans/day scans/day scans/day

A 70 173 18 19 140 73
B 38 63 9 11 79 87
C 68 82 14 7 19 21
D 37 128 9 199 763 0
E 48 32 4 10 129 44
F 24 40 3 22 50 0
G 70 340 11 9 323 65
H 63 38 6 113 408 37
I 21 36 9 5 208 45
J 21 56 9 12 220 3

Mean 45 94 9 41 234 38

5.2. Evaluation Metrics
We treat place recognition as a classification problem and evaluate its performance via
precision = TP

TP+FP , recall = TP
TP+FN , and F-measure = 2 × precision×recall

precision+recall , where
TP , TN , FP , and FN refer to true and false positives and negatives.

Typically, these metrics apply to a binary classification problem. However, place
recognition involves multiple classes (each place is a class). Thus, we use the one-
versus-the-rest strategy [Bishop 2006] in which we calculate a per-class F-measure for
each place as a class, treating rest of the places as another class. Then, we assess the
overall place recognition accuracy by averaging the per-class F-measures.

5.3. Comparison with Two Traditional Classifiers (Supervised)
Platys Reasoner employs a traditional classifier and the benefits it offers arise due to
active and semi-supervised learning enhancements. We evaluated the benefits of each
enhancement on logistic regression and SVM.

5.3.1. Active Learning. Recall that our learning algorithms were disabled during data
acquisition so that the order in which labels were assigned was user controlled or ran-
dom if the user simply labeled when the middleware reminded the user to. To evaluate
the claim that Platys Reasoner’s active learner reduces place labeling burden, we want
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to check, retrospectively, what would have happened had the places been labeled ac-
cording to the active learner’s expectations. To do so, given m labeled instances of a
user and a target number of labels n ≤ m, we created two training sets. The instances
in the first training set were the first n instances from the temporally ordered list of
m labeled instances. The instances in the second training set were the n instances the
active learner chose as best among the m labeled instances. In each case above, after
choosing m training instances, we employed the remaining n−m instances for testing.

Figure 8 shows a comparison of F-measure, averaged across users, of the two base
line classifiers (learned from the first training set above) and their active learning
versions (learned from the second training set above). We stop at n = 7 since eight is
the maximum number such that each user labeled at least two places eight times in
our dataset (we need at least two classes to train a classifier and at least one labeled
instance to test). Semi-supervised learner was not used in these comparisons.
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Fig. 8: Platys Reasoner’s active learner compared with two traditional classifiers.

We found a difference in the baseline and active learning versions of the classifiers
with as few as three labels. For example, at n = 3, an active learning version of logistic
regression performs on par with the corresponding baseline at n = 6. This supports
our claim that an active learner can significantly reduce a user’s place-labeling effort.

5.3.2. Semi-Supervised Learning. We claim that Platys Reasoner’s semi-supervised
learner, which employs both labeled and unlabeled instances, recognizes places with
better accuracy than a traditional classifier which employs labeled instances only. We
evaluated this claim via SVM. As shown in Figure 9 (left), the semi-supervised SVM
achieves a higher F-measure than SVM.

Our place-recognition pipeline employs both semi-supervised and active learning
techniques. Figure 9 (right) demonstrates the complimentary benefits of the two tech-
niques. First, with a few place labels (n ≤ 3 in our dataset), active learning improves
the semi-supervised SVM’s F-measure noticeably. Next, with several place labels (ac-
cordingly, more sensor readings), semi-supervised SVM’s F-measure is on par with
its active learning version. That is, whereas active learning is valuable in the ini-
tial phases of training, semi-supervised learning can compensate for a user’s non-
compliance to place labeling requests in later phases of training.

5.4. Comparison with Two Staypoint-Based Approaches (Unsupervised)
We compared Platys Reasoner with two staypoint-based approaches [Hariharan and
Toyama 2004; Zheng et al. 2011]. However, the comparison was nontrivial for three
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Fig. 9: Platys Reasoner’s semi-supervised and active learning compared for SVM.

reasons. First, a staypoint-based approach requires fixed values for place radius and
duration. Since the optimal values for these parameters are not obvious, we varied
them from 〈3 minutes, 20 m〉 to 〈1 day, 96 km〉.

Second, a staypoint-based approach does not distinguish one staypoint from another.
Thus, it can only predict whether a data instance belongs to a staypoint or not. To
make a fair comparison, we implemented a variant of Platys Reasoner called Place-or-
not that distinguished whether a data instance belongs to one of the labeled places or
not (and call the version that recognizes specific places as Which-place).

Finally, a staypoint-based approach requires several sensor readings to perform well.
Although the approach itself does not require labels, our evaluation requires labels as
ground truth. Since only a few sensor readings are labeled in our dataset, we requested
our users to provide additional ground truth. Six of the original ten users did so. For
each of the six users, we provided a web-based (large-screen) interface showing sensor
readings and asked the user to indicate whether the user was in one of labeled places
or not at the corresponding time. To assist users in recalling this information, the
interface showed GPS coordinates on a map, provided other sensor readings at that
time as well as the user’s previous and next labeled place.

Figure 10 compares the F-measures for Platys Reasoner and two staypoint-based
approaches. Our findings are three fold.

(1) Place-or-not performs better than both staypoint approaches we compared with.
The F-measures for Platys Reasoner, unlike those of the staypoint approaches, are
straight lines since since they do not depend upon place radius and duration.

(2) The parameters 〈30 minute, 200 m〉 used by [Zheng et al. 2011] are reasonable, but
not optimal for all users (dots in the figure labeled A through F indicate individu-
ally optimal values for users A to F, respectively).

(3) Place-or-not is an upper bound on Which-place. However, in most cases, the two
F-measures are quite close. That is, once Platys identifies a user to be in one of
the labeled places, in most cases it additionally correctly identifies which place the
user is in.

6. DEVELOPER STUDY
We now evaluate Platys as an application-development platform. We evaluate the plat-
form from the perspectives of two kinds of stakeholder—application developers and
end-users. We evaluate the:
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Fig. 10: Platys Reasoner compared with two staypoint-based approaches.

(1) efficiency of the middleware in assisting developers with respect to time and effort,
and

(2) effectiveness of the middleware in enabling high-quality place-aware applications
from both the developer and end-user perspectives.

6.1. Study Design
Our study design terminology is adapted from Juristo and Moreno [2001]. For conve-
nience, we summarize the key terms (with their mapping to our study) in Table II.

Table II: A brief description of the study-design terminology we adopt.

Term Description Examples in our study
Study unit An object on which the study is

being conducted.
A location-aware applica-
tion.

Subject A participant in the study. A developer exercising an
approach.

Parameter A characteristic held invariant
throughout the study.

Complexity of the soft-
ware to be developed.

Response variable A variable measuring the out-
come of a study.

Usability of the product,
development time.

Factor A characteristic studied that
affects a response variable

Development platform.

Alternatives The different values of a factor
studied.

Android location manager
vs. Platys middleware.

Undesired variation A characteristic that we wish
to keep invariant, but cannot.

Programming experience
of the subjects.

6.1.1. Study Unit. The unit of our study was the location-aware application to be de-
veloped. We conceived an application called the Ringer Manager Service (RMS) that
automatically sets the ringer mode of a user’s mobile phone based on location. The
functional requirements of the application were the following.
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— RMS must continually monitor a user’s location.
— RMS must provide a user a means of assigning a ringer mode (loud, vibrate, or

silent) to locations of interest.
— RMS must automatically adjust the ringer mode of a user’s phone according to the

user’s setting for the current location, setting it to a default if the user has not
specified a ringer mode for the current location.

— RMS must also act as a notification manager in the scenario when a user’s phone is
in silent mode and the user misses a call by sending a notification to the caller. The
notification should contain location information, e.g., “Sorry for missing your call; I
am in a lecture hall right now.”

So that it is representative of a variety of location-aware applications, the RMS was
conceived of to use location for multiple purposes—informative, task execution, and
social disclosure. In addition to the functional requirements, we also specified a set of
requirements to enhance the usability and privacy of RMS:

— RMS should be able to capture ringer mode settings for as many locations of inter-
est to a user as possible.

— RMS should accommodate the changing location needs of a user.
— RMS should equip users with utmost control on privacy.
— RMS should be usable by a variety of users. Thus, developers should avoid making

assumptions that won’t generalize to a wide variety of users.

The usability requirements were specified at a fairly high level to encourage devel-
opers to use their natural intuitions in addressing them. Note that a generic notion
of usability of a mobile application depends on several factors. Our focus here was to
evaluate the usability of RMS specific to its location-aware aspects.

Next, we divided the experimental unit into four subunits. Each subunit represented
an essential step in the development of RMS.

(1) Preparation (prep). Setting up the development environment, familiarizing with
the application specification, and acquiring the necessary background knowledge.

(2) Location representation and acquisition (loc). Representing the location at a suit-
able level of abstraction and developing techniques for acquiring it.

(3) Core functionality (core). Implementing the functionality of (a) providing users an
option to set the ringer mode, (b) automatically changing the ringer mode based
on the location, and (c) sending a notification to a caller on a missed call when the
phone is silent.

(4) Usability and privacy (usability). Enhancing the usability and privacy of RMS.

6.1.2. Subjects. Our study involved 46 students enrolled in a graduate-level computer
science course (36 graduate, four undergraduate, and six online graduate; 27 male and
19 female). The study was approved by our university’s IRB. Subjects earned points
(counting toward the course grade) for completing the study. However, participation
in the study was not mandatory. Nonparticipants were offered an alternative task to
earn points equivalent to what they would earn by participating in the study.

6.1.3. Study Mechanics. We asked each subject to develop RMS from the functional and
usability requirements. In addition to developing the application, subjects were asked
to keep track of the time and effort they expended for development by answering a time
and effort survey after each development session. The survey asked what subtasks each
subject worked on during a session, how long he or she spent on each of those subtasks,
and how difficult he or she felt a particular subtask was. The subjects reported time in
hours and minutes, and difficulty on a scale of very easy, easy, medium, difficult , and

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:18 P. Murukannaiah and M. Singh

very difficult . Finally, the subjects were asked to produce a document describing how
they addressed the usability requirements in their application.

6.1.4. Parameters. We identified the following as the parameters of the study.

— Requirements: Both functional and usability requirements, which remained un-
changed, for the most part, during the study. Minor changes and clarifications were
announced via a website and all subjects notified via email.

— Deliverables: Time and effort surveys, source code of the project, and a document
describing the usability and privacy-enhancing features of the application.

— Study duration: A four-week period to submit all deliverables (we allowed one ad-
ditional week for one subject for medical reasons).

— Software tools: Eclipse 3.6+ as the development platform and Android Development
Tools (ADT) plug-in for developing Android applications at API level 10.

— Development device: An Android development phone for the duration of the study,
loaned by our department unless the subject opted to develop on a suitable personal
Android device.

6.1.5. Response Variables. Table III summarizes the responses variables we analyzed.
For each subject, the timesubtask was calculated as the sum of times reported by the
subject for the subtask across multiple sessions. Here, effortsubtask is the arithmetic
mean of effort ratings reported by the subject for the subtask across multiple sessions.

Table III: A description of the response variables we analyzed. The subtask variable in
the table can take values prep, loc, core, and usability.

Response variable Study unit Description
timesubtask subtask
timeRMS RMS Development time as reported by subjects.
timeRMS−prep RMS after prep
effortsubtask subtask
effortRMS RMS Perceived effort as reported by subjects.
effortRMS−prep RMS after prep

MCC

RMS

McCabe’s cyclomatic complexity.
NoLM Number of levels per method.
NoS Number of statements.
NoM Number of methods (for a fixed NoS).

usability RMS Extent to which an RMS implementation
meets usability and privacy requirements.

We analyzed the overall time and effort required to develop RMS from two
perspectives—including and excluding the preparation time. We defined the follow-
ing variables: timeRMS as the sum of timesubtask for each subtask; effortRMS as the
arithmetic mean of effortsubtask for each subtask; and timeRMS−prep and effortRMS−prep
as above but respectively excluding timeprep and effortprep. The motivation was to
compare subjects in terms of their experience in location-aware application develop-
ment. A developer needs to perform the preparation subtask only for the first location-
aware application he or she develops. Since most of our subjects were inexperienced in
location-aware development, we used timeRMS−prep and effortRMS−prep as indicators of
the time and effort expended by experienced location-aware developers.
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Next, we analyzed the quality of the applications produced from two perspectives.

(1) Developers. We employed the following well-known software metrics [McCabe 1976;
Pressman 2005] as indicators of the quality of the software modules produced.
— MCC: McCabe’s cyclomatic complexity indicates the number of “linear” seg-

ments (i.e., sections of code with no branches) in a code fragment. This is an
indicator of the psychological complexity of a code fragment. We measured the
MCC of the project as the mean of MCC for each method in the project.

— NoLM : The number of levels per method reflects the number of logical branches
each method has on average. The metric is a key indicator of code readabil-
ity. We measured the NoLM of the project as the mean of the NoLM for each
method in the project.

— NoS: The number of statements in a project is an indicator of the general main-
tainability of the code. We measured NoS as the sum of non-comment and non-
blank lines inside method bodies of a project.

— NoM : The number of methods in a project (for a fixed NoS) is an indicator of
the modularity of the code.

(2) End-users. We performed a qualitative analysis of each application (end product)
produced. The objective of the analysis was to understand the techniques employed
by each subject to meet the usability and privacy requirements outlined earlier.
The techniques employed by an application allude to the potential usability prob-
lems associated with the application.

6.1.6. Factors and Alternatives. Our objective was to study the effect of the location ab-
straction employed—position or place. The abstraction a developer employs depends
on the location acquisition platform available. We divided subjects into two equal
sized groups as follows. The Control Group employed the Android SDK [Android Open
Source Project 2012] for location acquisition, which provides position information from
GPS or the network. The Platys Group employed the Platys middleware as [Murukan-
naiah 2012] for location acquisition platform, which provides place information.

The choice of Android SDK as the alternative of Platys is motivated by two factors.
First, the Android SDK is the de facto standard platform for developing location-aware
Android applications. Thus, our findings could be of interest to a large developer com-
munity. Second, although platforms with similar objectives as Platys are described in
the literature (as reviewed in Section 7), none are available for easy deployment on the
Android platform to enable a fair comparison with Platys.

6.1.7. Undesired Variations. We identified three sources of undesired variation and
sought to mitigate the associated risks as follows.

— Subjects’ experience: Differences among subjects’ programming experiences is in-
evitable in our setting. A subject’s programming experience can influence the time
and effort he or she expends on a programming task. To minimize the risks asso-
ciated with the difference in subjects’ skill sets, we conducted a prestudy survey
asking subjects about their experience in general, Android, and location-aware pro-
gramming. We assigned approximately an equal number of subjects at each level
of experience to the Control and the Platys Groups. Assignment within each level
of experience was completely random, though. However, most of our subjects (86%)
were new to developing mobile or location-based applications. Thus, each subject
was required to complete a simple location-based Android programming exercise
prior to the study to acquire basic knowledge of Android programming.

— Communication between subjects: We recognized that communication among sub-
jects across the Control and Platys Groups could influence a subject’s (1) strate-
gies for enhancing usability and privacy of RMS, and (2) survey responses to the
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perceived effort, if the subject figured out whether he or she belonged to Platys
or Control Group. In order to minimize the risks associated with this factor, the
groups were called Group 1 and Group 2. Further, we strongly discouraged subjects
from communicating with each other about the task. All communication between
the subject and the researchers were through one-to-one channels (email or meet-
ings) instead of a message board. Although the requirements for both groups were
the same, we provided group-specific guidelines accessible only to members of the
appropriate group.

— Different levels of formalization: The level of formalism and the resources avail-
able for developing Platys-aware applications is smaller than that for developing
position-aware applications with Android SDK. Although we exposed a descriptive
API and sample programs for Platys, minor changes to the API were inevitable
during the study, especially in the early parts.

6.2. Analyses Performed
At the end of the study, we verified the submissions and found 12 submissions to be
incomplete (seven from the Control and five from the Platys Group). An submission
was deemed incomplete if it did not address each functional requirement. The following
results are based on 34 complete submissions, which comprise 16 Control and 18 Platys
subjects. Our analyses considered the following statistics:

— mean of the sample for t-test;
— variance of the sample for F -test; and
— average rank of the sample for Wilcoxon’s ranksum-test (typically, difference in

average ranks of two samples indicates a difference in corresponding medians).

For each statistic, we tested the null hypothesis HNull against the alternative hy-
pothesis HPlatys or HNeither described in Table IV. We use Platys and Control subjects
to refer to the two samples studied and Platys and Control developers to refer to the
corresponding populations.

Table IV: Null and alternative hypotheses. Each test verified the null hypothesis
(HNull) against one of the alternative hypotheses (HPlatys or HNeither).

ID Hypothesis
HNull There is no difference in the statistic for Platys and Control developers.
HPlatys The statistic for Platys developers is less than that for Control developers.
HNeither There is a difference in the statistic for Control and Platys developers.

All tests accommodated samples of unequal sizes. We adopted Welch’s t-test, which
assumes unequal variance between the two populations. For each t-test, we verified
that the corresponding samples passed the Kolmogorov-Smirnov normality test. A one-
tailed or two-tailed test was conducted depending on whether the null hypothesisHNull

was tested against the alternative hypothesis HPlatys or HNeither, respectively [Hollan-
der and Wolfe 1999; Freund and Perles 2004]. We rejected the null hypothesis against
the chosen alternative hypothesis at the significance level of 10%.

6.3. Results and Discussion: Time and Effort
Figures 11 and 12 compare the development times and effort ratings reported by Con-
trol and Platys subjects during the development of RMS. We also summarize the re-
sults of hypothesis testing in the figure (to the right of each plot). We compared differ-
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ence in means (µ) and variances (σ2) for times reported, and median (x̃) for effort rat-
ings. Comparisons involving < and 6= indicate the alternative hypotheses HPlatys and
HNeither, respectively. Highlighted are the significant differences (∗∗ indicates p < 0.05
and ∗ indicates p < 0.1).
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Fig. 11: Comparison of the time (left) and effort expended (right) by Platys (P) and
Control (C) subjects to develop RMS, highlighting significant differences.

We now discuss the motivations behind our hypotheses and whether the observa-
tions supported our hypotheses. In case of apparent inconsistencies, we discuss if an
undesired variation could have influenced the result.

6.3.1. Preparation. As part of the preparation for RMS development, each developer
must become familiar with the functional and usability specifications of RMS, and set
up the development environment. Other than these steps, the only other task for a
Control developer is to become familiar with the Android location API. However, a
Platys developer must install the Platys middleware, and become familiar with both
the Platys place API and AIDL (Android Interface Definition Language) to interact
with the middleware.

Clearly, a Platys developer must perform more preparatory work than a Control de-
veloper. Thus, we hypothesized that Platys developers would expend more time and
effort for preparation (HControl). Not surprisingly, the observations supported our hy-
pothesis. The difference in variances was not surprising, either, considering the fact
that Control developers have noticeably less preparatory work to do. However, these
results are not discouraging. The important question is whether the extra cost ex-
pended by Platys developers for preparation pays off elsewhere.

6.3.2. Location representation and acquisition. The simplest approach for a Control devel-
oper to do is to represent location as position and acquire position information from
the Android location API. For a Control developer who wishes to abstract location at a
higher level than position, the location representation and acquisition time is likely to
be high. For a Platys developer who is acquainted with the Platys middleware, repre-
sentation and acquisition come at a low cost. That is, a Platys developer can represent
location as place and acquire place by interacting with the Platys middleware. Thus,
we hypothesized that Platys developers would spend less time and effort for represent-
ing and acquiring location (HPlatys). The difference in the means and variances of the
times reported by Control and Platys subjects supported our hypothesis.
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Fig. 12: Comparison of the time (left) and effort expended (right) by Platys (P) and
Control (C) subjects to develop RMS’ subtasks, highlighting significant differences.

Further, we observed that all Platys subjects represented location as place, whereas
Control subjects used a variety of techniques to represent location. We summarize the
major techniques employed by Control subjects to represent location below.

— A pair of spatial coordinates with a fixed radius for each location. Four subjects
implemented this technique (25%).

— A pair of spatial coordinates with a configurable radius for each location. Two sub-
jects implemented this technique (12.5%).

— A conceptual unit (i.e., a location with a logical name) backed by a pair of spatial
coordinates. However, the list of conceptual units is preconfigured by the developer,
e.g., one of subjects preconfigured the conceptual unit to be home or office. Three
subjects implemented this technique (18.75%).

— A conceptual unit backed by a pair of spatial coordinates and a user can add any
number of conceptual units. Seven subjects implemented this technique (43.75%).

We noticed that 75% of the Control subjects attempted to represent location at an
abstraction higher than position. This explains why Control subjects spent significant
amounts of time for representing and acquiring location and points toward the need
for architectural support to represent and acquire location as a high-level abstraction.
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Further, there was insufficient evidence to reject the null hypothesis for difference in
the effort ratings (although the median effort rating for Platys subjects was smaller).
This outcome could be explained by the different levels of formalization between the
Platys and the Android APIs. Since the Platys middleware is not a commercial product,
we encountered unanticipated patterns of middleware usage from the subjects, which
required minor changes to the middleware in early stages of the study. Working with a
middleware that changed, albeit slightly, might have made development more difficult
for Platys subjects.

6.3.3. Core functionality. Given that developers who have already represented location
know how to acquire it at the desired level of abstraction, the core functionality to be
implemented by Control and Platys developers is the same. Thus, we hypothesized that
there is no difference in the time and effort expended by Control and Platys developers
for implementing the core functionality (HNeither).

The results pleasantly surprised us. Although the difference in times reported were
not significant between Control and Platys subjects (p = 0.311), the efforts reported by
Platys subjects were significantly less than those of Control subjects (p = 0.088). This
leads us to conjecture (for future study) that a better representation of location can
lead to reduced effort in implementing the core functionality.

6.3.4. Usability. The Platys middleware seeks to support usable location-aware appli-
cations. To assist developers in enhancing the usability and privacy of a location-aware
application, the Platys middleware provides developers with access to places and activ-
ities, social circles, and privacy policies. Further, the Platys middleware notifies appli-
cations of newly added and stale places so that they can adapt to the changing location
needs of a user. However, for a Control developer, incorporating such features involves
a nontrivial investment of time and effort. Thus, we hypothesized that Platys develop-
ers would spend less time and effort for enhancing usability than Control developers
(HPlatys). The observations supported our hypotheses for the difference in mean and
variance of times reported as well as the difference in median effort expended. In each
case, we found sufficient evidence to reject the null hypothesis with p < 0.05.

6.3.5. Ringer Management Service. From the perspective of inexperienced location-
aware developers, Platys developers would spend extra time and effort in prepara-
tion but that expense would pay off in representation and acquisition, and enhancing
usability. Thus, we hypothesized that Platys developers would do at least as well as
Control developers, if not any better (HNeither). The observations supported our hy-
pothesis. Further, the p-values obtained indicate that the time and effort expended by
Platys developers would be smaller (although not significantly).

From the perspective of experienced location-aware developers, Platys developers
gain some advantages over Control developers. Thus, we hypothesized that Platys de-
velopers would do better than Control developers in time spent and effort expended
(HPlatys). The observations supported our hypotheses about mean time (p = 0.007) and
median effort (p = 0.01).

However, the observations didn’t support our hypothesis that the variance in time
reported would be smaller for Platys developers than for Control developers (for both
inexperienced and experienced developers). Further investigation revealed that a sig-
nificant amount of variance in times reported by Platys subjects originates from the
variance in times for the core functionality task. Such variance could arise because
of the fact that subjects had no incentive to submit the deliverables early. The Platys
subjects would have spent more time on the core task while Control subjects spent
some of their time on other aspects of the project.
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Fig. 13: Comparison of the software code metrics for the RMS implementations pro-
duced by the Platys (P) and Control (C) subjects. Also shown are the results of hypoth-
esis testing, highlighting significant differences (to the right of each plot).

6.4. Results and Discussion: Software Metrics
In this and the next section, we analyze the quality of the applications produced. In or-
der to understand quality from developers’ perspective, we analyzed well-known soft-
ware metrics (computed from the source code of the applications developed by sub-
jects). Because place is a high-level abstraction and the Platys middleware supports
representing and reasoning about place, we hypothesized that applications (software
modules) produced by Platys developers are easier to comprehend (MCC), easier to
read (NoLM ), shorter (NoS), and more modular (NoM ), i.e., HPlatys for each software
metric we analyzed.

The boxplots in Figure 13 compare the software metrics of the RMS applications
developed by Control and Platys subjects (computed from the source code). The figure
also summarizes the results of hypothesis testing for each metric. Our observations
support HPlatys for both MCC and NoLM . This indicates that applications developed
by Control developers, who employ position abstraction, are likely to be harder to com-
prehend than those developed by Platys developers.

However, the results were not according to our intuition for NoS and NoM . Al-
though each metric was slightly better for Platys subjects, the evidence was not sta-
tistically significant to reject the null hypothesis in either case. It was surprising that
the amount of code produced was not significantly different across groups although
Control subjects spent more time in doing so than Platys subjects.

An analysis of the variance (also summarized in Figure 13) revealed that the vari-
ance in NoS for Control subjects was significantly higher than that for Platys subjects.
This variance could result from the varying extents to which Control implementations
met usability requirements (since the analyzed applications meet all functional re-
quirements) We conjecture that the mean code size of Control implementations would
be higher if all Control implementations met all usability requirements (Section 6.5).

Our results about NoM for code sizes are inconclusive. RMS implementations pro-
duced by Control subjects were at least as modular as those produced by Platys sub-
jects. However, whether this would continue to hold had all Control subjects addressed
usability requirements effectively (which would increase the code sizes) remains to be
verified.
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6.5. Results and Discussion: Usability
In order to understand quality from end-users’ perspective, we performed a qualita-
tive evaluation of the usability of RMS applications developed by Control and Platys
subjects. To do so, we analyzed the usability description document submitted by each
subject and verified the claimed features by testing the subject’s application. In the
process we discovered features that were not claimed, but implemented, which could
potentially affect the usability of RMS. Table V summarizes, in three categories, ma-
jor techniques employed by subjects to address the usability requirements. Next, we
discuss the potential impact these techniques may have on the usability of RMS.

Table V: A summary of the techniques implemented by Control and Platys subjects to
address the usability requirements.

Category Technique Implemented Control Platys
(% sub.) (% sub.)

Visualization

Logical names as a list. 56.25 77.78
Logical names on a map. 6.25 22.22
Unlabeled markers on a map. 25.00 0.00
Spatial coordinates as a list. 12.50 0.00

Evolution
Via automatic notification of new and stale locations. 0.00 83.33
Via manual addition of new locations. 81.25 0.00
No support for evolution. 18.75 16.77

Privacy

Specify a policy for each social circles. 0.00 77.78
Specify a policy for each contact. 18.75 0.00
Share with anyone in the contact list. 6.25 0.00
Ask user each time before sharing. 62.50 11.11
Specify to share with all or none. 12.50 11.11

6.5.1. Visualization. An RMS implementation must display locations of interest to a
user for informative purposes, e.g., for showing ringer modes associated with locations.
Most Platys subjects showed locations as a list of previously tagged places (and some
marked the place on a map when clicked). Note that showing places on a map is not
always a viable option for Platys-based RMS implementations since (1) not all places
may have a spatial component; (2) a user may configure the Platys middleware to not
share spatial coordinates with RMS at all.

Interestingly, RMS implementations of more than half of the Control subjects also
visualized location as logical names (as a list or on a map). However, techniques im-
plemented by other Control subjects could potentially reduce usability, e.g., both unla-
beled markers and the list of spatial coordinates reduce the memorability of the user
interface and a list of spatial coordinates may not be intelligible.

6.5.2. Evolution. As a user visits different locations, RMS should enable the user to set
(or reset) an appropriate ringer mode for each location. The Platys middleware notifies
registered applications of new locations tagged by the user as well as locations that
have become stale. Most Platys subjects implemented RMS so as to take advantage
of these notifications and prompt the user to add (or delete) ringer modes for new (or
stale) locations. A few Platys subjects ignored these notifications and didn’t address
the requirement of evolving RMS as the location needs of a user change.
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The RMS implementations by most Control subjects provided a user an option to
manually add locations as needed, but only 37.5% of them provided an option to delete
stale locations. Requiring the user to manually add each location can be time consum-
ing (as compared with automated support). Further, being unable to delete stale loca-
tions can easily clutter the user interface. The rest of the Control subjects’ implemen-
tations preconfigured the list of locations (e.g., home, office, and restaurant ) allowing
a user to neither add nor delete locations. Such preconfigured lists don’t necessarily
generalize to a variety of RMS users.

6.5.3. Privacy. The Platys middleware provides a user an option to specify which of the
user’s locations are to be shared and with whom (one or more social circles). A majority
of Platys subjects implemented RMS to consult the Platys middleware (through appro-
priate method calls) before sharing the location with a caller. In contrast, a majority of
the RMS implementations by Control subjects consulted the user before sharing loca-
tion. Although this option is privacy preserving, it is too intrusive. Asking a user each
time before sharing location defeats the very purpose of RMS to automatically notify
callers. The other options implemented by Control subjects were also suboptimal: spec-
ifying a policy for each contact is time consuming, and automatically sharing location
with anyone in the contact list is too coarse. Finally, none of the RMS implementations
by Control subjects enabled a user to specify the granularity at which location is to be
shared (e.g., logical names only, include spatial coordinates, and so on).

For Platys subjects, addressing the usability requirements, for the most part, was
a matter of employing the Platys API appropriately. As indicated above, a majority of
Platys subjects succeeded in doing so. Control subjects attempted to address the usabil-
ity requirements in a variety of ways. However, many of the techniques implemented
by Control subjects could potentially impact the usability negatively. The shortcomings
outlined above indicate that despite the extra time and effort expended, the usability
enhancing features implemented by Control subjects were not as effective as those
implemented by Platys subjects.

7. RELATED WORK
Platys seamlessly integrates place modeling, place acquisition, and place-aware ap-
plication development providing an end-to-end solution, as well as offering distinct
advantages. Below, we identify related works in each of the three areas.

7.1. Place Models
To realize a conceptual model of location in a development environment to support a
variety of location-aware applications is challenging. Ranganathan et al.’s [2004] Mid-
dleWhere middleware realizes a hierarchical model of location involving points, lines,
and polygons backed by physical coordinates. Stevenson et al.’s [2010] LOC8 frame-
work realizes a model of location consisting of a granularity (coordinates or symbolic
names) and spatial relationships (containment, adjacency, connectedness, and over-
lap). Ye et al. [2007] describe additional implementations that realize space models.
Approaches that model only space and spatial relationships fail to capture place in its
entirety.

Baldauf et al. [2007] survey several context-aware approaches. Bettini et al. [2010]
provide a comprehensive view of several context modeling and reasoning techniques.
Although existing context-aware approaches model more than space, they largely focus
on environmental features of context. Schuster et al. [2013] survey several approaches
that bringing together spatio-temporal aspects of context and online user interactions
(e.g., on a social network site). These approaches capture only a fixed set of objective
contexts.
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The Platys middleware is novel in that it unifies space, activities, and social circles
into the notion of place. The three features of place are captured, not as independent
entities, but in a unified manner. The middleware is extensible and captures places of
interest to each user subjectively. Further, each user can control which of his places
an application can access and at what granularity. Additionally, Platys promotes con-
fidentiality and privacy by running locally on a user’s personal devices.

7.2. Place Acquisition
Existing techniques that seek to recognize places are predominantly unsupervised.
These approaches typically recognize staypoints, an abstraction richer than position,
but cover (to varying extents) only the spatial aspect of places.

Ashbrook and Starner [2002] collect GPS logs once per second if the user is moving
beyond one mile per hour and apply a variant of k-means clustering to extract places.
Similarly, Zhou et al. [2007] learn places from one-minute frequent GPS logs, though
via density-based clustering, and obtain better accuracy than the k-means approach.
NextPlace [Scellato et al. 2011] models the importance of a GPS coordinate to a user
as a Gaussian distribution based on the the user’s length of stay at the coordinate and
at the coordinates next to it. NextPlace considers, as places, only those coordinates
that have an importance higher than a specified threshold. Similarly, Zheng et al.
[2011] and Hariharan and Toyama [2004] extract staypoints via clustering (with fixed
staypoint parameters 〈30 minute, 200 m〉) and probabilistic approaches, respectively.

Unlike the GPS-based approaches above, Kang et al. [2005] learn places based on a
location database of WiFi access points. They sort the locations of WiFi access points
based on time; group proximate locations as a cluster; create a new cluster when a
location is far away from the current one; and ignore the clusters within a short period
of time. Kang et al.’s idea is quite similar to the GPS staypoint-based approaches. Vu
et al. [2011] apply star clustering on a co-occurrence graph of WiFi access points.

Another popular category of place-recognition approaches employ cell-towers logs. A
cell-tower, similar to a WiFi access point, broadcasts its unique identifier. Cell phones
can periodically scan for the identifiers of nearby cell-towers. Hightower et al. [2005]
extract a place by seeking a stable scan, which occurs when there is no new cell-tower
or WiFi signal seen within a certain period of time. Their approach requires highly
frequent scans (2Hz). Similarly, SensLoc [Kim et al. 2010] detects a user’s entry and
departure from a place based on the stability of cell-tower signals; recognizes places
using cell-tower and WiFi signals; and, tracks movement paths between places using
GPS. SensLoc conserves power by stopping unnecessary sensor scans when a user has
no movement, as detected by an accelerometer.

7.3. Place-Aware Application Development
Below, we identify location and context-aware systems that include architectures,
methodologies, programming frameworks, tools, and techniques.

CARISMA [Capra et al. 2003] is a context-aware reflective middleware that provides
primitives to handle context changes using policies and to resolve conflicts that arise
with them. The middleware is mainly evaluated for computational performance. Its
usability is informally evaluated by a single subject. Capra et al. identify the need for
studying the amount of work required by application engineers to develop a context-
aware application as an important future work—this is what we study via Platys.

Topiary [Li et al. 2004] is a prototyping tool for location-enhanced applications that
seeks to enable interaction designers (with limited expertise on location acquisition
techniques) to prototype location-aware applications. We envision a Topiary-like tool
to be an extension of the Platys middleware that could receive context components
from Platys (unlike the fixed, built-in, context components of Topiary). Li et al. infor-
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mally evaluate Topiary observing that some of their subjects familiar with ubiquitous
computing find the high-level abstractions of Topiary easier to deal with than sensors
and logic-based rules. Whereas Li et al. evaluate the usability of the Topiary tool itself,
we evaluate the usability of the location-aware applications produced from Platys.

LIME (Linda in a Mobile Environment) [Murphy et al. 2006] consists of a coordina-
tion model and middleware for dealing with mobility of hosts and agents. The crux of
LIME is the idea of transiently maintaining a tuple space of context data, which could
potentially simplify application design. The LIME middleware supports both private
and grouped tuple spaces. In contrast, Platys maintains each user’s place information
privately. However, Platys could enable coordination at the level of social circles (com-
pared to LIME groups which represent agents colocated on a host). LIME is evaluated
informally through two case studies and presents results as “lessons learned.”

TOTA (Tuples On The Air) [Mamei and Zambonelli 2009] consists of a middleware
and a programming approach. The middleware facilitates generation of context tuples
by applications, and propagation and maintenance of such tuples according to appli-
cation specific rules. A major objective of the middleware is to alleviate developers
from dealing with low-level issues such as representing context and network dynam-
ics. TOTA is evaluated via simulation for performance metrics such as the propagation
time and number of maintenance operations required under various circumstances.

OPEN [Guo et al. 2011] is an ontology-based programming framework for prototyp-
ing context-aware applications. The major objective of OPEN is to cater to develop-
ers ranging from novices (e.g., as in end-user programming) to experts. Accordingly,
OPEN consists of three programming modes. Its evaluation compares the program-
ming modes with each other for relative accuracy and ease of use.

Hermes [Buthpitiya et al. 2012] is a context-aware application development toolkit
that seeks to reduce the overhead of context-aware application development associated
with sensing, aggregating, and inferencing context information. Hermes provides an
intuitive description of how it could reduce the overhead, but no empirical evidence.
Like Hermes, the Platys middleware is loosely coupled. However, the Platys middle-
ware implements the place reasoner as one module whereas Hermes employs multiple
widgets. We conjecture that a unified treatment of place enhances the intelligibility
and simplifies design.

Kulkarni et al. [2012] describe a programming framework for context-aware appli-
cation development that requires an application developer to produce domain-specific
models of an application in terms of policies regarding activities, roles, objects, and re-
actions. Next, a generic middleware generates an execution environment consisting of
specialized application-specific components. Kulkarni et al. evaluate for the efficiency
(time required) of the generative process and report the number of automatically gen-
erated components (of testbed applications) as a potential indicator of the development
work the middleware could reduce.

The works mentioned above seek to simplify location-aware or context-aware appli-
cation development but do not evaluate the effectiveness for developers empirically.
Instead, the evaluations consider metrics such as computational time. Although es-
tablishing such characteristics is important, equally important for engineering are the
benefits the approaches offer to developers and end-users.

To the best of our knowledge, the Platys developer study reported in this paper is the
first of its kind in that it quantifies the efficiency and effectiveness of a location-aware
middleware from the perspectives of application developers and end-users. The study
analyzes the implications (to developers) of employing the middleware at the granu-
larity of the subtasks of the development process. Further, it highlights the potentially
superior user experience place-aware applications could offer to an end-user. From
our experience, we have learned that such studies are difficult to design, control, and
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conduct. The analyses we performed could be valuable to location-aware applications’
researchers and developers alike.

8. DIRECTIONS
We describe three directions in which our work can be extended.

8.1. Enhancing the Platys middleware
The Platys middleware can be extended in two ways.

(1) Two major concerns about place recognition are the user effort it demands and the
battery power it consumes. Platys addresses the first concern via active learning.
To address the second concern, Platys adopts an extreme solution by collecting sen-
sor readings passively (only when another application invokes a sensor). Whereas
this approach conserves power, it may yield suboptimal place recognition accuracy.
Platys can benefit from adaptive sensing techniques such as sensor suppression
and substitution [Zhuang et al. 2010]. We defer the task of studying the tradeoff
between place-recognition accuracy and power consumption to future work.

(2) Platys enables a user to specify fine-grained application-centric privacy policies.
That is, a user can specify for each application, the places and the underlying
attributes the application can access. In contrast, Tiwari et al. [2012] describe a
context-centric approach in which a user can specify “bubbles” of contextual events
and applications that can execute within each bubble. The hierarchical place model
that Platys builds can be used to construct bubbles described by Tiwari et al. How-
ever, the implications of application-centric and context-centric approaches on user
experience remain to be studied.

8.2. Usability Evaluation of Place-Aware Applications
We performed a qualitative evaluation of the usability of RMS applications. However,
Duh et al. [2006] observe that several critical usability related problems can only be
uncovered in a field study with end users. Such a user study must control factors
such as device type, interface type, application type, and contexts in which tasks are
performed. Ryan and Gonsalves [2005] conducted a field study and found that location
can significantly improve the usability of a mobile application. But how choices along
key location dimensions [Murukannaiah and Singh 2014a] such as abstraction (e.g.,
position and place) and perspective (e.g., subjective, objective, and inter-subjective)
affect usability remains to be studied. The results from our qualitative evaluation of
usability can provide valuable guidelines in specifying hypotheses for a usability study
involving real users.

8.3. Requirements Engineering and Formal Verification of Place-Aware Applications
Two important directions for place-aware application development research that we
didn’t address in this paper are requirements engineering and formal verification. As
Salifu et al. [2007] describe, a challenge with engineering place-aware applications is
that the monitoring (changes in place) and switching (application behavior) require-
ments of such applications are rarely made explicit. Yet, modeling and analyzing lo-
cation variability [Ali et al. 2013] during requirements phase is valuable in that in-
consistencies and conflicts in location-based requirements can be detected early. Xipho
[Murukannaiah and Singh 2014b] is our effort toward systematically capturing the
contextual requirements of an application and incorporating a middleware for provid-
ing runtime support. However, we understand that specifying a complete set of place-
based requirements during design is difficult since the places of interest to a user are
often unknown a priori and are subject to change. In such circumstances, automated
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discovery, at run time, of fault patterns [Sama et al. 2010] could be a viable option. We
will explore the possibility of incorporating such options in the Platys middleware in
the future.

9. CONCLUSION
Intelligent location-aware applications are being widely adopted. Yet, these applica-
tions are often developed in an ad hoc manner and yield apparently suboptimal user
experiences. Platys seeks to address this problem and establishes through empirical
evidence, for the first time, the benefits of place-aware application development.

Platys introduces place, a high-level abstraction of location that contrasts with po-
sition understood as geospatial coordinates. Employing location at the granularity of
place can enable intelligent applications as well as enhance the usability and privacy-
preserving aspects of a location-aware application. Platys middleware, the crux of our
framework, provides the necessary communication channels between the users of a
location-aware mobile application and its developers, and the architectural support
necessary for representing and reasoning about places.

The results of our empirical evaluation indicate that developers employing the
Platys middleware spend significantly less time and effort than those not employing
the middleware for representing and acquiring location, and enhancing the usabil-
ity and privacy aspects of the application. Although developers employing the Platys
middleware expend additional time and effort for acquiring the necessary background
knowledge about the Platys middleware, the middleware pays off in other aspects of
location-aware application development. Moreover, preparation is a one-time cost: a
developer who employs Platys to develop several location-aware applications can save
significant time and effort over the course of multiple applications. Our evaluation of
the applications produced in the developer study indicate that location-aware appli-
cations produced using Platys are potentially (1) more usable and privacy-preserving
from an end-user’s perspective, and (2) easier to comprehend from a developer’s per-
spective.
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A. PLACE RECOGNITION VIA ACTIVE AND SEMI-SUPERVISED LEARNING
Platys Reasoner seeks to recognize places of interest to a user from intermittent sensor
readings and user-provided place labels. In this section, we formulate the place recog-
nition problem and describe the techniques employed by Platys Reasoner to address
the problem. We also provide the pseudocode for our algorithms.

A.1. Problem Formulation
We formulate place recognition as a machine learning problem. Further, we assume
that the following sensor readings are available. These are the same sensors we em-
ployed in our user study (Section 6).

GPS scan results. G = {g1, . . . , g|G|}, where each gi is a latitude-longitude pair.
WiFi scan results. W = {w1, . . . , w|W |}, where each wi = {w1

i , . . . , w
|wi|
i } is a set of ac-

cess points (APs) found in a scan and each wj
i contains a MAC identifier and a received

signal strength indicator (RSSI).
Bluetooth scan results. B = {b1, . . . , b|B|}, where each bi is a set of Bluetooth devices
(BtDs) found in a scan and each bji contains a MAC identifier and an RSSI.

Google Places. GP = {gp1, . . . , gp|G|}, where each gpi = {gp1i , . . . , gp
|gpi|
i } is a set of

Google places corresponding to a gi ∈ G retrieved from a web service [Google 2013]
and each gpji contains the name a point of interest (POI) and its distance to gi.

Place labels. PL = {pl1, . . . , pl|PL|}, where each pli is a user-assigned place label.

Further, each data item above is timestamped. Let T = {t1, . . . , tmax} be the ordered
set (ti ≤ ti+1) of all timestamps such that at least one data item is associated with
each ti. Further, let G(ti) be the GPS scan results at ti (which can be null if GPS
reading is not available at ti). Assume similar definitions for W (ti), B(ti), GP (ti), and
PL(ti). Further, let I(ti) = PL(ti)∪G(ti)∪W (ti)∪B(ti)∪GP (ti) be the set of all sensor
readings at ti. Now, the place-recognition problem is as follows.

Given G, W , B, GP , P , and t > tmax: I(t) 6= ∅ and PL(t) = null, what is PL(t)?

A.2. Solution Overview
Platys Reasoner addresses the place recognition problem via a classification technique.
In order to do so, the reasoner prepares data as shown in Algorithm 1. In general,
Platys Reasoner can employ any classifier in this algorithm (as long as the confidence
of predictions can be inferred). We demonstrate this idea via a 1-Nearest Neighbor
(1NN) classifier because of its simplicity [Tan et al. 2006]. Training a 1NN classifier is
trivial—each labeled instance is representative of the corresponding class. Predicting
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from a 1NN classifier involves finding a class whose instances are most similar to the
unlabeled instance (being predicted), when compared to instances of other classes. In
order to do so, we employ the similarity measures defined next.

Algorithm 1 Place classifier: Trains a classifier from labeled instances.
Require: G, W , B, GP , PL, t

1: I ← ∅ . Training instances
2: for all p ∈ P do
3: Ipli ← pl . Class label
4: ti ← PL′(pl)
5: ADDFEATURES(Ii, G(ti),W (ti), B(ti), GP (ti))
6: end for
7: Pmodel ← TRAIN(I) . Any generic classifier
8: ADDFEATURES(Itest, G(t),W (t), B(t), GP (t))
9: plt ← PREDICT(Pmodel, Itest)

10: return plt . Place at time t

1: function ADDFEATURES(i, g, w, b, gp)
2: ig ← g . GPS features
3: iw ← w . WiFi features
4: ib ← b . Bluetooth features
5: igp ← gp . Google Place features
6: end function

A.3. Similarity Measures
In our setting, an instance (whether labeled or unlabeled) consists of GPS, WiFi, Blue-
tooth, and POI features. However, some feature values may be null due to the inter-
mittent nature of data. Given two instances, our objective is to return a value in [0, 1]
indicating the extent to which the two instances are similar (1 meaning most similar).

We define the similarity between (1) features corresponding to different sensors (e.g.,
WiFi and GPS), and (2) a feature value of null and anything else to be 0 since there
is no meaningful comparison in these cases. We describe computation of similarity
between individual features of the two instances as follows.

(1) The GPS similarity of two instances with GPS features Ig1 and Ig2 is

sim(Ig1 , I
g
2 ) =

1

1 + d(Ig1 , I
g
1 )
, (1)

where d(Ig1 , I
g
1 ) is the Euclidean distance (in km) between the two coordinates.

(2) The WiFi similarity of two instances with WiFi readings Iw1 and Iw2 is the cosine
similarity between the normalized RSSI values ([0, 1]) of the corresponding access
points (APs). If an instance contains an AP but the other doesn’t, the missing AP
is added to the latter with its RSSI treated as 0.

sim(Iw1 , I
w
2 ) =

Iw1 � Iw2
‖Iw1 ‖ × ‖Iw1 ‖

, (2)

where � is the dot product operator and ‖Iw‖ is the length of the vector Iw.
(3) The Bluetooth similarity between two instances with Bluetooth features sim(Ib1, I

b
2)

is calculated similarly to that between WiFi features, as described above.
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(4) The POI similarity between two instances with Google places Igp1 and Igp2 depends
on the frequency of the overlapping POIs. We adapt [Lin 1998] to measure the
similarity as follows.

sim(Igp1 , Igp2 ) =
2× IC(Igp1 ∩ I

gp
2 )

IC(Igp1 ) + IC(Igp2 )
, (3)

where IC(Igp) = −
∑

poi∈gp logProb(poi). Prob(poi) =
npoi∑
p∈gp np

is the probability of
visiting a POI, where npoi is the number of occurrences of a POI. Our intuition here
is that matching a rarer POI (e.g., Lake Johnson Nature Park) is more valuable
than matching a more frequent POI (e.g., Raleigh).

(5) Finally, the overall similarity between two instances I1 and I2 as the maximum
similarity based on any of the above features.

sim(I1, I2) = max
f∈{g,w,b,gp}

sim(If1 , I
f
2 ). (4)

We chose the above measures intuitively. However, the 1NN classifier or Platys Rea-
soner is not tied to these specific measures. Next, we describe the techniques Platys
Reasoner employs for place place recognition on top a traditional classifier.

Algorithm 2 Uncertainty sampling: Choose an unlabeled instance for labeling.
Require: G, W , B, GP , PL, T . Few labels or none
Require: sim() . Similarity function

1: L,U ← ∅ . Labeled and unlabeled instances
2: BUILDDATASET(L,U,G,W,B,GP, PL, T )
3: if L 6= ∅ then
4: for all u ∈ U do
5: usim ← maxl∈L sim(l, u)
6: end for
7: uuncertain ← minu∈U u

sim

8: else
9: uuncertain ← Remove first instance from U

10: end if
11: return uuncertain . An instance to label

1: function BUILDDATASET(L,U,G,W,B,GP, PL, T )
2: i, j ← 0
3: for all t ∈ T do
4: if PL(t) 6= ∅ then
5: Lpl

i ← PL(t)
6: addFeatures(Li++, G(t),W (t), B(t), GP (t))
7: else
8: addFeatures(Uj++, G(t),W (t), B(t), GP (t))
9: end if

10: end for
11: end function

A.4. Active Learning
Platys Reasoner employs an active learning technique called uncertainty sampling
[Settles 2012]. This technique, first, builds a model of places from the given labeled
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instances. Given a model of places and a pool of unlabeled instances, the active learner
asks the user to label an instance for which the learner is least confident (among all
unlabeled instances) of predicting a place. Algorithm 2 illustrates the uncertainty sam-
pling technique. First, it builds a dataset consisting of labeled and unlabeled instances.
Note that if there are no labeled instances, the algorithm arbitrarily selects an instance
and asks the user to label it. Next, the algorithm employs the similarity function we
defined earlier to predict labels and the similarity value as the confidence.

Algorithm 3 Self training: Infer labels for unlabeled instances.
Require: G, W , B, GP , PL, T . Few labels
Require: sim() . Similarity function

1: L,U ← ∅ . Labeled and unlabeled instances
2: BUILDDATASET(L,U,G,W,B,GP, PL, T )
3: while U 6= ∅ do
4: u← Remove first instance from U
5: lnearest ← maxl∈L sim(u, l)

6: upl ← lplnearest . 1-nearest neighbor
7: Li++ ← u
8: end while
9: return L . All labeled instances

A.5. Semi-supervised Learning
Platys Reasoner employs a semi-supervised technique called self training [Zhu et al.
2009] to exploit both labeled and unlabeled instances. In contrast to the active learner
which asks the user to teach, the semi-supervised learner teaches itself from its own
confident predictions. Algorithm 3 illustrates self training. Similar to the active learn-
ing algorithm, we first build labeled and unlabeled instances. Next, we assign an unla-
beled instance to a class based on the similarity of the instance to the class’ instances.

Algorithm 4 Iterative clustering: Filter instances not belonging to any labeled place.
Require: PL, I, L . All labeled instances

1: for all pl ∈ PL do
2: Ipl ← I(PL′(pl) . Originally labeled pl
3: Lpl ← L(PL′(pl)) . Assigned to pl
4: ε, ε′ ← 0.5 . Similarity
5: δ = 0.01 . Convergence threshold
6: repeat
7: ε← avgl∈Lpl,i∈Iplsim(l, i)
8: for all l ∈ Lpl do
9: if avgi∈Iplsim(l, i) < ε then

10: remove(l, Lpl) . Filter out
11: end if
12: ε′ ← avgl∈Lpl,i∈Iplsim(l, i)
13: end for
14: until |ε− ε′| > δ . until convergence
15: end for
16: return L . Several labeled instances
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The self-training algorithm assigns each unlabeled instance a place label. However,
a user may not have labeled all places he visits. Also, not all (sets of) positions might be
of interest to a user. Thus, assigning a place label (p ∈ P ) to each unlabeled instance
can mislead the learning algorithm. In order to address this problem, we consider
an iterative clustering algorithm that filters out sensor readings that belong to none
of the user’s labeled places. Algorithm 4 illustrates the iterative clustering technique.
Our intuition is to find an appropriate similarity boundary for each place such that the
boundary groups sufficiently similar data instances as belonging to the corresponding
place. Then, we filter out instances outside the boundary. Our approach begins with a
fairly large similarity boundary (with similarity, ε = 0.5); iteratively clusters a set of
instances; and reduces the similarity boundary (i.e., increases ε) based on the mean
similarity (ε′) of the currently clustered instances until the boundary converges.

B. PLATYS-AWARE APPLICATION DEVELOPMENT ON ANDROID
Platys currently supports place-aware application development on the Android plat-
form (API level 10 and above). We briefly describe the steps involved in developing
a Platys-aware Android application. First, a user installs the Platys middleware on
an Android device and trains it to recognize place of his or her interest. Then, other
applications on that device can interact with the middleware via interprocess commu-
nication (IPC) to acquire place information.

Platys middleware exposes an interface (Listing 1) defined in Android Interface Defi-
nition Language (AIDL) declaring the functions a Platys-aware application can invoke
[Murukannaiah 2012]. Both the middleware and application must include a copy of
the interface. The Android SDK Tools auto-generate an abstract implementation of
the interface that acts as a stub (Listing 2) on each end. The stub insulates developers
from dealing with low-level details such as finding the remote process, and marshalling
and unmarshalling data objects exchanged between the application and middleware.
Further, the middleware defines a service (Listing 3) that returns a concrete imple-
mentation of the stub when an application binds with the middleware.

Listing 1: The Platys middleware exposes an inerface defined in AIDL to applications.
interface IPlatysMiddlewareRemoteService {

/∗∗ Regis ters the applicat ion and returns a private key . ∗/
String regis terAppl i cat ion ( String name, String descr ipt ion ) ;

void unregisterApplication ( String privateKey ) ;

/∗∗ Status can be pending , approved , trashed , or blocked ∗/
String getAplicationStatus ( String privateKey ) ;

/∗∗ Current place or null i f not pr iv i l eged ∗/
String getCurrentPlace ( String privateKey ) ;

List <String > getCurrentAct iv i t ies ( String privateKey ) ;

List <String > getSoc ia lCirc les ( String privateKey ,
String connectionName ) ;

List <String > getSharableSocialCirc les ( String privateKey ,
String placeOrActivityName )

// . . .
}
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Listing 2: Android SDK Tools auto-generate a stub based on the AIDL interface ex-
posed by the middleware.
public static abstract class Stub extends Binder implements
IPlatysMiddlewareRemoteService {

/∗∗ Local−side IPC implementation stub c lass . ∗/
// . . .

}

Listing 3: A service on the middleware returns a concrete implementation of the stub
when an application binds with the middleware.
public class PlatysMiddlewareRemoteService extends Service {

// . . .
@Override
public IBinder onBind ( Intent intent ) {

return new IPlatysMiddlewareRemoteService . Stub ( ) {
/∗∗ A concre te implementation of

IPlatysMiddlewareRemoteService ∗/
// . . .

}
}

}

Next, since the application also has a copy of the stub, it can bind to the middleware’s
service as if it is a local service (Listing 4).

Listing 4: An application can bind to the middleware’s service and receive a concrete
implementation of the stub.
private IPlatysMiddlewareRemoteService mService = null ;
ServiceConnection mConnection = new ServiceConnection ( ) {

@Override
public void onServiceConnected (ComponentName className ,

IBinder serv ice ) {
mService = IPlatysMiddlewareRemoteService . Stub

. asInterface ( serv ice ) ;
}
@Override
public void onServiceDisconnected (ComponentName className ) {

mService = null ;
}

} ;

Once bound, the application can interact with the middleware as follows.

(1) Register with the middleware providing a unique name. The middleware returns
a private the application should use in all future communication.

(2) Check the status of the application; if approved, continue to next steps.
(3) Query for the user’s place, activity, or social circles as need be. The middleware

returns the corresponding value or null according to the user’s privacy policies.
(4) The middleware sends asynchronous messages when the user’s places or privacy

policies change so that the application can update local caches without polling.
(5) Unregister the application if place information is not needed anymore.
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