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Abstract—In multiagent interactions, such as e-commerce and file
sharing, being able to accurately assess the trustworthiness of others is
important for agents to protect themselves from losing utility. Focusing
on rational agents in e-commerce, we prove that an agent’s discount
factor (time preference of utility) is a direct measure of the agent’s
trustworthiness for a set of reasonably general assumptions and defi-
nitions. We propose a general list of desiderata for trust systems and
discuss how discount factors as trustworthiness meet these desiderata.
We discuss how discount factors are a robust measure when entering
commitments that exhibit moral hazards. Using an online market as
a motivating example, we derive some analytical methods both for
measuring discount factors and for aggregating the measurements.

Index Terms—Trust, Reputation, Intertemporal Discounting

1 INTRODUCTION

T RUST is an important and broad topic. It incorporates
elements of cognition, emotion, social relationships [1],

information security [2], and (economic) rationality. We ad-
dress the narrow, but practically highly valuable, scope of e-
commerce and related decision support. Here, the perspective
of rationality dominates since the trustworthiness of a business
partner is largely governed by its self-interest.

It has been long recognized that trust and reputation are
important in achieving desirable and sustainably beneficial out-
comes in online auctions and automated business-to-business
transactions. Doing business with an agent that has a reputation
for being trustworthy generally has the benefit of reducing the
risk of a poor outcome. Agents’ reputations and perceived
trustworthiness can significantly affect the demand and price
an agent will receive in domains such as online auctions [3]
and supply chains [4]. As business transactions increasingly
become automated [5] and autonomous agents become more
crucial components of business strategy, successful agents will
need to model trustworthiness effectively.

Ideally, from a trust perspective, the mechanisms under
which agents interact would be incentive compatible (IC),
meaning agents’ optimal strategies would be to be honest
and truthful. Whereas IC mechanisms can be designed for
a variety of interaction models [6], often maximizing profit
for the agent running the mechanism is a higher priority. For
example, eBay’s (http://ebay.com) reputation system exhibits a
bias toward transaction volume to maximize profit [7], because
sellers can game the reputation system [8]. Additionally,
implementing an IC mechanism can be infeasible in certain
settings in terms of computation or communication [9].

Trustworthiness reflects the worthiness of a trustee to aid
or protect a trustor. For example, a trustworthy trustee will
properly fulfill some task for a trustor or refrain from inap-
propriately revealing a secret. As trustor a learns more about
trustee b, the amount of trust that a places in b should ideally
approach the amount of trust of which b is truly worthy.

A key intuition is that a trustworthy agent is patient, i.e.,
interested in long-term relationships: for example, we expect a
store for local residents to sell better wares than a tourist trap.
In general, anything is worth less in the future than now. With
exceptions such as for storage, degradation, and depreciation,
having money or a usable item is generally worth more now
than later for reasons such as the uncertainty of the future and
opportunity to use the item or money in the mean time. For
example, most people would prefer $100 today over $100.01
next week. But one’s premium for immediacy is bounded:
typically, most people would prefer $1,000 tomorrow to $10
today. An agent’s intertemporal discount factor reflects its
break even point for the present versus the next time unit.
For example, if you are neutral between $90 today and $100
tomorrow, then your discount factor is 0.90 (per day).

Further, trustworthiness and patience can vary with the
context: a nearly bankrupt business facing its creditors may
sell items without sufficient quality checks. We use context
to refer to the risk environment that an agent facing, such as
facing a pending bankruptcy or succeeding in a steady market.
Outside of the mathematical use with respect to variables, we
use domain to refer to a type of interaction, such as the role
of a provider in a web services market versus the role of a
seller in an online auction.

Definition 1: An agent employs exponential intertemporal
discounting in some context when its utility gain, U , from
some event in that context at time t is U = γtu, where u
is the utility the agent would have perceived had the event
occurred at the present time (t = 0) and γ ∈ [0, 1] is the
agent’s discount factor.

An agent’s discount factor captures how much it would
value something at future points in time relative to the present.
A discount factor can be influenced by intrinsic factors, such
as patience for an individual, or extrinsic factors, such as cost
of capital for a firm driven by market rates. A higher discount
factor can yield a greater payoff because the agent is not
myopically optimizing, but this rule has exceptions [10], [11].

Even though we intuitively associate trustworthiness with
the expectation of future long-term relationships, most current
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approaches do not necessarily reflect this intuition. Existing
measures of trustworthiness [12] typically use arbitrary ratings
or are highly dependent on the domain, distribution, and
manner of interactions. A small body of related work has
discussed some aspects of the relationship between discount
factors and trust [13]–[15]. However, with two exceptions
[11], [16], we are unaware of related work directly employing
discount factors as a measure of trustworthiness.

Contributions
We develop a model of trustworthiness as discount factor that
naturally captures the above intuitions. First, we formalize key
technical assumptions typically left implicit: comparison (by
a trustor of trustees); strength (by a trustee of its tasks), and
stability (of the trustee’s behavior). Second, we demonstrate
discount factor as an objective measure of trustworthiness,
isolated from subjective effects. We prove that any scalar
trust measure is isomorphic to the discount factor. Third, we
show that our model is the only approach that meets crucial
desiderata for a computational approach to trust.

Fourth, we develop an approach by which an agent may in-
fer the trustworthiness of another based on the latter’s actions.
To this end, we consider a series of e-commerce situations
where buyers and sellers estimate each other’s trustworthiness
based on signals such as the quality of products sold, prices
offered and accepted, and eagerness to conclude a transaction.
Lastly, we show how information on trustworthiness may be
aggregated and estimated, and conclude with a discussion of
some practical ramifications.

2 MOTIVATION

The need for trust systems arises in two situations: adverse
selection and moral hazard [17]. Adverse selection occurs with
typed agents, meaning an agent is predisposed to some course
of action due to its one or more (fairly constant) attributes. An
agent’s type can range from a strict behavior regimen, such as
accepting every offer or always producing high-quality items
or being patient, to a parameter the agent uses in evaluating
its utility, such as its willingness-to-pay for some item. The
presence of typed agents means that agents may be able to
improve their utility by determining which agents are of what
type, and interacting only with agents of a favorable type. An
example of a typed agent would be an agent selling faulty
electronics at high prices. The agent may be unable to change
the quality or price of the goods it sells, and other agents
may do best to avoid purchasing from this agent. The ability
of an agent to improve its utility by choosing with whom to
interact is strongly affected by the interaction mechanism. An
example where an agent may not be able to choose which
other agents with which it will interact is an auction setting
with perfectly substitutable goods where buyers and sellers are
randomly matched by the auctioneer at a set price.

Conversely, in a setting where agents choose trading part-
ners, if agent a manufactures poorer quality items than the
other agents, knowing that a manufactures poorer quality items
can enable some other agent, b, to increase its own utility
by not purchasing from a. Determining trust with adverse

selection can be framed as a multiagent learning problem, as
the agents perform signalling behavior to increase the accuracy
of their beliefs of other agents’ types.

Moral hazards are created when agents do not bear the
full cost of their actions and are thus incentivized to perform
actions that may harm the utility of others. For example, a
seller who deals with a gullible buyer has the moral hazard
of falsely advertising its goods. To address moral hazards,
trust systems attach sanctions to unwanted behavior. If agent
a performs some unwanted behavior, then a trust system can
attach some information to a. This information can be used
by a centralized mechanism or individual agents to sanction
or avoid interacting with a, with the effect that a would have
an incentive to alter its behavior.

Motivating Example: Online Market
An online auction is a practical motivating scenario for a
trust system. As our running example, we outline the general
mechanics of this scenario to motivate our results and formally
analyze it in Section 6. The auction is continually cleared, with
buyers choosing which sellers’ offers to accept, if any. Exactly
one buyer or seller moves at a time. The order of buyers’ and
sellers’ turns are chosen from a stochastic process to simulate
realistic market transactions, but each agent gets one turn
per unit time. Each agent’s goal is to maximize its expected
utility and, to account for time preference, is endowed with a
privately known discount factor.

Sellers post or update offers to sell items. A seller’s costs
are private but follow publicly known probability distributions.
Cost are initialized before the auction begins. An offer states
the asking price and the (true or exaggerated) quality of the
item. We define quality as the probability density function
(PDF) that an item will irreparably fail as a function of time.
The expected lifetime of an item is its mean time to failure
(MTTF). Section 6.1 considers the cases where a seller can
(1) only produce a fixed quality and (2) control the quality of
its items.

Buyers see all current offers and choose which and when
to accept. When deciding what to purchase, buyers can see
the seller’s offer as well as a history of “comments” by other
buyers about the seller’s discount factor, price, and quality.
After each transaction, a buyer can post a public comment on
the seller. In our formal approach, a comment is a numerical
observation of one or more of quality, valuation, time, or
discount factor. A comment is formulated as a measurement
or inequality, such as “I observed the good offered by agent a
at price 5.29 to be of a quality that held up for 1 week of use
before breaking” or “agent a’s discount factor is greater than
0.60.” Sellers can see what price and quality other sellers are
currently offering and update their offers accordingly.

Each buyer has its own expected utility gain per unit time
for having each additional item, a willingness-to-pay per unit
time. Buyers have a price sensitivity with respect to quality,
based on the expected useful life of an item coupled with the
agent’s discount factor and willingness-to-pay. When a buyer
makes a purchase, it loses the utility of the amount of the
purchase price and gains utility for each unit time that the
item is functional.
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We note that because the seller controls the price, our
model’s descending Dutch auction style resembles Craigslist
(http://craigslist.org) and the retail presence on eBay, where
the seller’s “minimum bid” is effectively the ask price. This is
in contrast to the ascending English auction commonly associ-
ated with consumer-to-consumer transactions on Amazon and
eBay. We choose to examine the seller-price auction because
the analysis yields somewhat simpler results and is therefore
easier to discuss in the cases of interest.

3 DEFINING TRUSTWORTHINESS

To define trustworthiness, we first must have definitions of
how agents interact. We define an event, i, as a pair, 〈ui, ti〉
consisting of a change in utility, ui, by the agent performing
the event at a specified time, ti. We define an event as an
isolated change in utility, given all externalities, conditions,
and decisions that create the event. An event may have
additional side effects, such as altering the utility of another
agent, but as these are not essential to our discussion and
formalisms, we exclude them in our notation and define an
event as a pair for clarity.

We use the following notation. Each agent, a, has a total
expected utility function, U , that returns the agent’s total
utility given its trustworthiness and a set of events of utility
changes. The function may be written more formally as
U : Γ×{〈<,<〉∗} 7→ <, meaning that the total utility function
takes in a real value of trustworthiness, γa ∈ Γ, and a set of
events, I ∈ {〈<,<〉∗}, and returns a real number of total
utility of the events. We write it in the form U(γa, I).

In our running example, an event is a cash flow or an change
in ownership or status of a good. At the time when a seller
transfers the ownership of the item to the buyer, the buyer
receives some utility at that time. The utility gain that the buyer
receives may be an expected value if the buyer is planning on
reselling the item, perhaps after additional manufacturing or
configuration, for a profit. When the seller receives money for
the good or service, the event is to add money to the seller’s
account at the time when the buyer pays.

As in the running example, we restrict our attention to trust
with respect to future actions. This would eliminate some
English uses of the word “trust” such as “I trust book reviews
on Amazon,” because there is no future action there. It would
allow “I trust Amazon to send me the book on time,” which
involves a future action.

3.1 Assumptions
We assume trustworthiness is reasonably fixed for the time
frame in which the agents act. This is reasonable because
if trustworthiness changed quickly, for example, if sellers
frequently and unpredictably changed their type, a measure of
trustworthiness would not be useful for predicting outcomes.

This does not mean that trustworthiness is fixed for a
given agent. Models in which agents’ types change [18] are
compatible with our approach. Assumption 1 merely requires
that the rate of change for agent types is sufficiently lower
than the rate of interactions so that knowing another agent’s
type is useful in an agent’s decision model.

Assumption 1: An agent’s trustworthiness are consistent
enough to be meaningful across interactions; recent measure-
ments of an agent’s trustworthiness, if accurate, should usually
reflect the agent’s current trustworthiness.

Utility theory lies at the core of e-commerce and postulates
that agents have valuations for goods or services. A common
currency is obviously desirable for commerce [19], and en-
ables agents to compare their valuations.

Assumption 2: A utility loss or gain by one agent can be
directly compared to the utility loss or gain of another agent.

Quasilinearity, that total utility can be closely approximated
by summing the utilities of individual events, is frequently
assumed in consumer theory and e-commerce [20].

Assumption 3: Each agent has quasilinear utility; given two
events yielding utilities at the present time of u1 and u2, the
agent’s total utility, U , is U = u1 + u2.

Individual rationality means that an agent will not enter into
nor fulfill a commitment unless doing so maximizes the agent’s
utility. A buyer will not normally purchase an item that is
greater than its willingness to pay for that item. Individual
rationality is a core foundation of autonomous agents in much
of the e-commerce literature [21].

Assumption 4: Agents are individually rational.

3.2 Intuitions about Trustworthiness

Trustworthiness inherently involves settings where agents di-
rectly or indirectly engage in behavior that affects each others’
utilities. The concept of a commitment helps capture this
relationship. A debtor (agent) commits to a creditor (agent) to
bring about an event [22]. In essence, a commitment reflects
a dependence of the creditor on the debtor.

Definition 2: C(b, a, i) is a commitment from debtor b to
creditor a that b will bring about an event i at time ti yielding
a positive real utility to a and a negative utility, ui, to b.

We restrict attention to commitments that require a negative
utility for the debtor simply because commitments that yield
positive utility to all parties with no risks does not require trust
in our sense. In other words, we seek to capture the intuition
about a debtor’s trustworthiness based on the troubles it will
go through to fulfill its commitments.

Often, in e-commerce, commitments would occur in com-
plementary pairs so the overall situation would be win-win.
For example, when a buyer commits to paying a seller and
the seller to providing goods to the buyer both benefit from
the transaction. Indeed, given individual rationality (Assump-
tion 4), every commitment that an agent enters must entail
the expectation of aa complementary commitment, such that
the expected sum of the utilities is positive. Agent a may
have beliefs as to how it will be repaid, such as having a
50% chance of b deciding on event i and a 50% chance of b
deciding on event i′. When evaluating its total utility function,
a should evaluate this as the expected value U(γa,i)+U(γa,i′)

2 ,
which holds due to Assumption 3.

The success or failure of a commitment provides a basis
for the creditor to measure the trustworthiness of the debtor.
For example, b may commit to deliver an item of a specified
quality to a. If b fulfills a commitment C(b, a, i), a neutrally or
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positively updates its view of the relationship between a and
b. If b fails to fulfill this commitment, a negatively updates its
view of the relationship between a and b.

We now motivate some key intuitions regarding trustwor-
thiness, which we then combine in our proposed definition of
trustworthiness. Figure 1 illustrates the intuitions except scalar.

Strength Comparison Stability

Fig. 1. Illustration of intuitions about trustworthiness.

Scalar. Representing trustworthiness as a single value is a
natural convention. One may ask, “How much do you trust
b to produce and deliver some item with quality of at least
X?” and receive a reply of “A lot.” Such a value can be
quantified; many online services provide ratings as points or
percent of customers satisfied. A scalar representation does
not preclude an agent from holding additional beliefs of the
value or accuracy of trustworthiness, such as a probability
distribution, nor from requiring additional information when
making a decision of whether to trust, such as how much
the trustee values something. Further, we can use different
scalars for each context. More formally, we say that the set of
trustworthiness values is the set of real numbers, Γ = <.

Comparison. A trustor a can compare two trustees b and c.
Specifically, a considers b more trustworthy than c if, all else
equal, b would suffer a greater hit than c would to fulfill a
commitment to a. In essence, a must know something about
the valuations and costs incurred by both b and c and be able to
compare these values as supported by Assumption 2. This does
not mean that a will receive more utility from b’s commitment
than c’s commitment, only that b is fulfilling a more costly
commitment. Formally, agent a would consider agent b more
trustworthy than agent c if, all else equal, for some event i with
positive utility to a, there exist commitments Cb = C(b, a, i)
and Cc = C(c, a, i) such that b would fulfill Cb and c would
not fulfill Cc.

If c does not fulfill its commitments to a, by our definitions,
this necessarily entails the loss of expected utility by a. If a
paid c to deliver an item at a specified quality and c fails to
deliver the item or provides an item of low quality, a will have
gained less utility than it expected and incurred a negative
net utility. This decrease in net utility causes strain on the
relationship, causing a to either retaliate against c, such as
by posting negative comments about c causing other agents to
avoid transactions with c, or to avoid future loss by reducing its
involvement with c by not making further purchases from c. In
either case, c will initially have greater utility from incurring
less cost by providing a lower quality item, but possibly lose

more utility over the long term.

Strength. The behavior of each agent is internally consistent.
Given equal impact on a relationship, if an agent is willing
to do something difficult to keep a commitment, it should
be willing to do something easy. If an agent is willing to
deliver 1,000 gallons of kerosene to fulfill a commitment,
then the agent should be willing to deliver 600 gallons of
kerosene if everything else in the overall commitment stays
the same (provided that storing or disposing of the other 400
gallons is not more difficult or costly than delivering it). From
the perspective of the debtor, this property does not require
actual fulfillment, it only requires that the agent be willing
to exert the effort. If an item arrives late due to extenuating
circumstances, this does not mean that the seller is necessarily
less trustworthy. However, the creditor may only lessen its
negative interpretation of an unfulfilled commitment if the
creditor has some belief of noise in the signal of whether
commitments are fulfilled. Formally, consider events i, j where
ui ≤ uj and agents a, b. If b fulfills C(b, a, i) then b fulfills
C(b, a, j).

Stability. The idea of stability is that agents should tend
to behave in a manner that reflects a consistent underlying
level of trustworthiness, which stems from Assumption 1. This
essentially means that an agent, at the present time, considers
its trustworthiness to be consistent for modeling future inter-
actions. Using our online market example, an agent should
be approximately equally trustworthy if a commitment will
be set up now or one month from now, presuming the agent
and market remain constant with regard to price, demand,
supply, reputations, and reliability of available information.
For example, suppose a firm can be trusted now to successfully
deliver an order of 20 microphones of a certain quality within
two weeks of payment. Then, if all else (e.g., external prices,
internal staffing, and such) remains consistent, the firm can
be trusted to deliver the same order if it were placed several
months later again within two weeks of payment. Suppose the
same firm is indifferent between committing to a delivery of
20 microphones and a delivery of 5 speakers today. If again,
the environment and agents’ valuations stay the same, the firm
should be indifferent between those two commitments if asked
again in a month. More formally, if an agent is indifferent
between two commitments or sets of events, I1 and I2, then
it should also be indifferent if the time is shifted by some
arbitrary s. This may be expressed as

U(γ, I1) = U(γ, I2) ⇒ U(γ, {〈ui, ti + s〉 : i ∈ I1})
= U(γ, {〈ui, ti + s〉 : i ∈ I2}). (1)

Stability means that an agent should tend to behave in a
similar manner across a period of time, but this does not
mean that an agent is indifferent between when an event or
commitment may happen. An agent may prefer to receive
an item sooner rather than later. We are simply stating that,
given identical circumstances, an agent would enter the same
commitments if they were shifted by some time because
the agent is stable. If properties of the environment, agents’
valuations, or agents’ trustworthiness change, the agents may
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model such changes and factor them into their decision making
however appropriate.

Definition 3: The trustworthiness of agent b is a belief by
another agent a that takes on a scalar value, is relatively
stable across time (stability), and is used to compare agents
(comparison) to determine which would be willing to exert
more effort (strength ) to fulfill a commitment.

4 TRUSTWORTHINESS AND DISCOUNT
FACTOR ISOMORPHISM
We now derive our main result: an agent’s discount factor is
a direct measure of its trustworthiness given assumptions.

Because previous changes of utility are accounted for in an
agent’s current utility, it is only useful to evaluate the impact
of future changes to utility. We therefore restrict the domain
of ti to [0,∞).

Theorem 1: Given commitment as in Definition 2, trustwor-
thiness as in Definition 3, and Assumptions 1, 2, 3, and 4, the
representation of trustworthiness satisfying these definitions is
isomorphic to an intertemporal discount factor.

Proof: By Definition 2, the utilities of any two events i
and j are independent. This definition, coupled with Assump-
tion 3 of quasilinearity, implies that an agent’s total utility, U ,
is a summation of some utility function for each event, f , over
all of the events, with ∂f

∂ui
> 0. With trustworthiness γ and

the set of events I , this is given by

U(γ, I) =
∑
i∈I

f(γ, ui, ti), (2)

Given comparison (supported by Assumption 2) and
strength, an agent, b, is considered more trustworthy than
another, c, if b will fulfill a commitment requiring a larger
expenditure than c. This implies there is a commitment of
some cost that b will fulfill and c will not; below this cost, both
agents would fulfill the commitment. We only need to examine
an individual event, and can restate this property using the
event utility function, f .

Let us evaluate agents b and c with trustworthiness γb and
γc respectively. Let agent a expect a commitment, 〈u1, t1〉, to
be fulfilled by the agent in question where, by Definition 2,
u1 < 0. Further, suppose that if the commitment is fulfilled,
a will provide some utility back to the respective agent in the
continued relationship: as Section 3.2 explains, at least two
complementary commitments are required for agents to enter
into commitments. We examine the simplest case, where this
returned utility is expressed by a single event, 〈u2, t2〉, such
that u2 > 0 and t2 > t1.

From Assumption 4, f(γ, u1, t1)+f(γ, u2, t2) > 0 for b and
c; otherwise the relationship is destructive and rational agents
would not engage in the commitments. Suppose b chooses to
fulfill its commitment and c chooses to not fulfill its com-
mitment. Their decisions show U(γb, {〈u1, t1〉, 〈u2, t2〉}) >
U(γb, ∅) and U(γc, {〈u1, t1〉, 〈u2, t2〉}) ≤ U(γc, ∅). If no
events occur to change an agent’s future utility, the agent’s
utility does not change, so U(γb, ∅) = U(γc, ∅) = 0. This im-
plies, given the above assumptions of the two-event interaction
set, that

U(γb, {〈u1, t1〉, 〈u2, t2〉}) > U(γc, {〈u1, t1〉, 〈u2, t2〉}). (3)

Because b fulfilled a commitment that was larger than c would
fulfill, by comparison and strength, b is more trustworthy than
c. If b is more trustworthy than c, then its trustworthiness
value is higher, meaning γb > γc. We can take the limit as
(γb − γc) → 0, to find that

∂U

∂γ
≥ 0 (4)

holds in this scenario with two events. This means that more
trustworthy agents, when their trustworthiness is common
knowledge, attain higher expected utility than untrustworthy
agents in two-event scenarios, all else being equal.

Stability, supported by Assumption 1, entails that agents
are consistent in their trustworthiness. The outer operation of
U in (1) is a summation, and the number of terms in each
summation (the number of events in each set of events) are
not necessarily equal. Therefore, the only two possibilities
that allow both equalities to hold are that time has no effect
on events’ utilities or that a change in time results in a
constant multiplicative factor across all terms in a summation
independent of the utilities.

First, we consider the case where a change in time results
in a constant multiplicative factor. The event utility function f
must contain a multiplicand of the form xt. This is because,
given x ≥ 0, xt exhibits the appropriate behavior of xt+s =
xs ·xt with xs being constant for a constant time s. The second
case, where time has no effect on f , can be represented by
the first case with x = 1.

At this point, x remains an undefined attribute that affects
the utility evaluation. Supposing x did not affect the trust-
worthiness of an agent, if b is more trustworthy than c, then
(3) must hold. Setting x = 0 for agent b would violate this
inequality. As this contradicts the assumption that x cannot
affect the trustworthiness of the agent, x therefore directly
affects the trustworthiness of an agent.

Given scalar, only one attribute may affect the trustworthi-
ness of an agent. We now check to make sure that x satisfies
the constraints of γ. In the two-event scenario, when U > 0
as given by Assumption 4, ∂U

∂x = t1u1x
t1−1 + t2u2x

t2−1.
Because x ≥ 0, t2 ≥ t1, u1 < 0, u2 > 0, and U =
u1x

t1 + u2x
t2 > 0, we can solve U for u2 > −u1x

t1−t2 ,
and substitute the infimum of u2 in this expression (and any
greater number) into the expression for ∂U

∂x to find ∂U
∂x ≥ 0.

This satisfies (4), thus satisfying strength and comparison (x
came out of a derivation of stability).

Substituting γ for x and rewriting in the form of (2), we
find U(γ, I) =

∑
i∈I γtiui. Revisiting (4), ∂U

∂γ =
∑

i∈I ti ·
γti−1ui. To prevent imaginary terms for events with ti < 1,
the constraint of γ ≥ 0 is required. This final utility equation
coupled with the domain of γ is, by Definition 1, exponential
intertemporal discounting.

5 DESIDERATA FOR TRUST SYSTEMS
Devising optimal designs of general-sum multiplayer games is
a difficult and domain-dependent problem. However, general
desiderata can help guide interaction design. Such desiderata
include individual rationality, guarantee of attaining a mini-
mum payoff, guarantee of payoff to be within some ε within a
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best response strategy, and Pareto optimality when an agent is
playing against its own strategy [23]. However, the desiderata
for trust and reputation systems are not as straightforward
[24] because trust and reputation are supplemental to primary
interaction mechanisms. A primary interaction mechanism is
one, such as a market, that affects agents’ utilities directly.

A key motivation for work on trust is that the primary inter-
action mechanism is not incentive compatible. Were it so, the
agents would act honestly out of self interest. Our desiderata
not only apply well when the primary mechanism is not IC, but
also work when it is IC. IC is highly desirable for mechanism
design, but achieving IC may not be computationally feasible
[9]. Further, an IC mechanism may not be in the best interest
of the agent or firm running the mechanism, because an IC
mechanism may not maximize profit.

Many papers on trust propose desiderata [12], [25]–[28].
Dingledine et al.’s [24] desiderata list is the only comprehen-
sive one we have found, but even their desiderata list focuses
on aspects that are specific to certain kinds of reputation
systems. We now propose desiderata that apply even when
no central authority is available to enforce interactions or
sanctions, and which focus on top-level goals that directly
benefit the agents or system. A desirable system must be:

EVIDENTIAL. An agent should use evidence-based trustwor-
thiness measurements to predict future behavior. This is the
essence of a trust system, with an agent rationally assessing
others’ behavior and acting upon its knowledge. Evidence also
includes temporal relevance; new evidence that an agent has
successfully changed its type, if credible, should indicate to
another agent that old evidence may no longer be relevant. In
the online market example, an agent should measure trustwor-
thiness in a quantifiable and repeatable manner based on the
quality of goods and timeliness of their offers, to determine
how to best engage in future interactions.

AGGREGABLE. Trustworthiness measurements should be ac-
curate, precise, and possible to aggregate. This is key because
aggregation enables an agent to communicate about trust-
worthiness and to put together indirect information obtained
from other agents to increase knowledge of other agents’
trustworthiness. In the market model, this aggregation involves
reading others’ comments, albeit with skepticism, to maximize
the information considered.

VIABLE. The system should be practical in its computation
and communication requirements. An approach that requires
an exponentially large number of messages among buyers
and sellers or requires each agent to perform an NP-Hard
computation on a large dataset would not be tractable.

ROBUST. Measurements should be robust against manip-
ulation; agents may signal or sanction to determine which
agents are of what type and to resist strategic manipulation
of the measurements. Manipulation can come in many forms,
such as building up a reputation and then spending it, opening
many pseudonymous accounts to communicate an inflated
reputation to legitimate agents (Sybil attack), and opening
a new account to expunge a bad reputation. We do not
assume an incentive compatible reputation mechanism [6]. IC
would be ideal for ROBUSTNESS, but can be impractical in

some problem domains, either because of computational or
communicational complexity conflicting with VIABILITY, or
because of unenforceability if agents can deviate from the
specified mechanism without credible consequences.

FLEXIBLE. Trustworthiness should be applicable across
multiple situations within the same context. Trustworthiness
measurements should carry over across products, services, and
even interaction mechanisms. Suppose a seller is running a
web service from which buyers can purchase directly, but also
sells some of its items in a simultaneous ascending auction
run by a third party. A buyer should be able to carry over
knowledge of trustworthiness about the seller from direct sales
to infer information about the quality of the items sold on
the third party’s auction and vice versa, even though the
mechanisms are different. If a buyer becomes a seller, its
reputation as a buyer should be indicative of its behavior as
a seller, provided other agents can infer some knowledge of
valuations, capabilities, and beliefs in the new domain.

PRIVACY ENHANCING. The system should maximize
agents’ privacy by minimizing the collection of information.
The implications on a system can be quite broad. We use
privacy in this sense to indicate that the public exposition of
an agent’s attributes is minimized. We differentiate privacy
from anonymity. Anonymity is the antithesis of reputation;
an agent must be (at least pseudonymously) identifiable in
order for others to learn about its trustworthiness. Privacy can
prevent an agent’s identity outside of the system from being
known. Thus maximal privacy would reduce the burden of an
agent entering or leaving the system. This is because some cost
is incurred by an agent divulging its identity in the system,
such as the opportunity cost of preventing the agent from
assuming a new identity within the system when its reputation
is bad. Less privacy can also imply that the agent has some
external account or information that the system could use to
sanction it. In this sense, privacy acts as a liability limitation
much in the way that a firm partially disassociates liability
from its employees. The benefits of privacy are that agents
have reduced friction of entering and leaving the system. The
drawbacks include 1) a possible influx of unfavorably typed
agents and 2) agents with bad reputations reverting to a neutral
reputation. Both drawbacks are dependent on how other agents
measure and handle trustworthiness.

5.1 Existing Trust Systems
Yu et al. [29] provide a method for discovering peers and com-
municating reputations that maintains accuracy against noisy
ratings and malicious peers. However, Yu et al.’s mechanism is
weak against ROBUSTNESS because it measures other agent’s
quality of service (QoS) and only requires that the aggregate
QoS be above a certain threshold. This creates a moral hazard
wherein strategic agents will maintain reputations just above
the threshold. Their mechanism does not meet FLEXIBILITY
well, because it is not clear how to weight and aggregate QoS
across domains of interaction.

Teacy et al. [27], Jøsang [30], and Huynh et al. [25]
present methods of aggregating trustworthiness from peers
that can account for uncertainty. Kamvar et al. [26] propose

6



a self-policing peer-to-peer reputation system that is highly
distributed. Like the work of Yu et al. above, the trust
measurements and communications of these three works take
into account neither the possibility of different domains nor
of different utilities involved, thus violating FLEXIBILITY. For
example, their methods do not account for whether an agent is
trustworthy enough to deliver a single order of a million items
if the agent was known previously to be trustworthy to deliver
one item. Similarly, these methods assume agents have a
specific type and always perform the same actions, at least on a
probabilistic basis, regardless of the other agents and situations
involved, thus violating ROBUSTNESS. Such an assumption
can be reasonable when one agent is interacting with many
anonymous agents, such as a company selling a particular
brand of food, but often do not hold under nonanonymity when
the agents are rational and fewer, or can precisely control their
interactions with others.

Zacharia and Maes’ [28] mechanism seeks to achieve low-
level behavioral goals, such as enabling agents with higher
reputations to have more influence on others’ beliefs. How-
ever, their subjective trustworthiness measures only weakly
achieve AGGREGABILITY. Like the aforementioned trust and
reputation systems, their measures are highly specific to the in-
teraction domain, which does not meet FLEXIBILITY. Zacharia
and Maes tested their system only against malicious agents
that build up reputation and then spend it, and do not examine
strategic agents, so we are unable to assess how well their
system meets ROBUSTNESS.

Saha et al. [31] support EVIDENTIALITY, because their
method uses agents’ reputations to directly evaluate the future
expectations of utility that would be achieved by each possible
interaction. However, their method does not meet AGGRE-
GABILITY because agents cannot aggregate information from
sources other than their own interactions. Saha et al.’s method
is also potentially weak against ROBUSTNESS if agents can
easily change identities and exploit favors offered to unknown
agents. Further, their method does not meet VIABILITY be-
cause agents cannot communicate their knowledge.

Resnick and Sami [32] focus on preventing various types of
reputation manipulations, supporting ROBUSTNESS. Whereas
their model appears to meet most of the rest of the desiderata,
their model discards potentially useful information, partially
conflicting with AGGREGABLE. This is particularly limiting
in the case when information on a particular product or agent
can change, and the system is slow to adapt because of the
sudden increase in information entropy.

5.2 Discount Factor and Desiderata

Using an agent’s discount factor as its trustworthiness meets
EVIDENTIALITY by definition, because each agent can mea-
sure others’ discount factors and apply them in a direct manner
to evaluate its optimal strategy.

Discount factor measurements meet AGGREGABILITY be-
cause they can be combined to increase accuracy and preci-
sion. The measurements consist of a range or PDF of another
agent’s discount factor, and can be combined via probability
theory to yield further accuracy [11]. The only difficulty with

discount factor measurements is that the measuring agent must
account for its best understanding of what the measured agent
is experiencing, and must account for the measured agent’s
best response. Computing the best responses to find the Bayes-
Nash equilibria can be a hard computational problem [9]. In
our model, we have found the computational complexity of
some discount measurements to be relatively simple or readily
approximatable, such as when sellers are slowly dropping their
prices in a market with more demand than supply. However,
in other situations, such as when an agent is aggregating
and deciding the validity of many conflicting reports about
one agent from other agents, the computational complexity
may be high, yielding a potential conflict with computational
efficiency in VIABILITY. Further study is required to find the
computational complexity for computing other agents’ dis-
count factors in various interactions and to determine whether
efficient algorithms exist.

In general, agents would not demonstrate a discount factor
lower than their actual unless they are competing with others
for limited resources. Agents have difficulty credibly demon-
strating discount factors above their own because their impa-
tience prevents them from waiting for the postponed, larger
utility. For these reasons, discount factors as trustworthiness
measures are aligned with ROBUSTNESS. Further, discount
factors are strongly influential in many different domains and
situations, such as an agents’ desire for quality, the rate at
which sellers drop their prices, and how quickly agents come
to an agreement in negotiation, discount factors. Whereas
the exact method of measuring discount factors changes with
the role and situation, discount factors as trustworthiness can
maintain their strengths with other desiderata across these
domains, regardless of domain-specific valuations and capa-
bilities, thus satisfying FLEXIBILITY.

Discount factors’ ability to cope with an open system
facilitate PRIVACY ENHANCING in the sense that they offer
a low barrier to entry and generally do not require external
information to be revealed. If one agent knows nothing about
another agent, the maximum entropy distribution of the other
agent’s discount factor is a uniform distribution on [0, 1),
which offers some protection against unknown agents as
the expected discount factor is 1

2 . If an agent has a priori
knowledge of the distribution of discount factors of agents
to be encountered, it may use that distribution instead. If
unfavorably typed agents repeatedly assume new identities to
expunge poor reputations, or attempt to open a large number
of pseudonymous accounts to bolster their own reputation
(Sybil attacks), then an a priori distribution can be sufficiently
pessimistic in a new agent’s discount factor at the expense
of how quickly an agent can recognize a new but favorably
typed agent. Using discount factors as trustworthiness does
not prevent implementations from requiring agents to reveal
valuation information, and agents may have some ability to
evaluate others’ valuations. Therefore, discount factors do not
maximize this desideratum, but do not directly violate it.

6 MARKET MODEL EXAMPLES
This section illustrates examples of how discount factor may
be measured and utilized with our example online market.
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The formalization of the full complex model is beyond the
scope of this paper, and we leave extensions involving multiple
buyers, sellers, and items simultaneously for future work. We
include these basic results to motivate our central thesis of the
effectiveness of modeling trustworthiness as discount factors.
The first two involve typical trust settings. The third and fourth
show how agents can gain knowledge of discount factors
outside of something that would normally be measured as
trustworthiness while contributing to the agents’ knowledge
of trustworthiness.

We focus more attention on measuring discount factors
than on using them in decision models, as the former has
received considerably less attention whereas the latter has
been widely used [6], [10], [11], [17], [31]. Benzion et al.
[33] measure the discount factors of people directly by asking
them specific questions. Although it is useful to determine an
individual’s discount factors from an economic perspective,
such measurements may not work in a strategic setting. The
literature on measuring private discount factors in strategic
interactions is rather sparse. To the best of our knowledge, the
following works represent most of what is currently known.
The models developed by both Rubenstein [34] and Güth et
al. [35] yield equilibrium strategies for bargaining between
agents when the agents have private discount factors. However,
both models require the agents’ discount factors to be one of
two discrete values. Smith and desJardins [16] measure the
minimal upper bound of an agents’ discount factors, although
their model requires the assumption that agents only reason
with one level of mutual information, rather than assuming
agents’ actions are common knowledge.

6.1 Discount Factors and Production Quality

To demonstrate both how a seller’s discount factor can be
measured and how a seller may use its discount factor di-
rectly in decision making, we employ the frequently studied
grim trigger strategy [36], where an agent permanently stops
interacting with another after a bad interaction. This strategy
is typical of some trustworthiness settings, particularly when
many other agents supply a substitutable alternative. For
example, people may not return after a bad experience at a
restaurant or may not purchase a replacement printer from the
same manufacturer if their previous printer required frequent
maintenance. Agents in these settings would have preferred to
have avoided these bad transactions in the first place.

Consider buyer b deciding whether to purchase an item
advertised at a high quality from seller s for some specific
price. The seller will make π profit on a low-quality item, and
π profit on a high-quality item, where π > π. This means
π/π − 1 is the percent increase in profit by selling the low-
quality item. Suppose s knows b communicates with a set of
other agents, B, that also buy from s, where B is common
knowledge. If s is found selling items below its advertised
quality, buyers in B will avoid purchasing from the seller,
causing the seller to indefinitely lose a total of |B| · π utility
worth of potential profit every time interval.

We assume b would prefer to not buy the item than to
pay the current price for a low-quality item. Buyer b can use

its knowledge of the seller’s discount factor, γs, to evaluate
whether the seller will produce an item at the advertised high
quality. If b believes the seller will produce a high-quality
item, then it should proceed with the purchase. The seller will
produce the high-quality item if it is more profitable, if

π > π −
∞∑

t=1

γt
s · |B| · π. (5)

In making its decision whether to purchase the item, b
will also evaluate (5) using its current knowledge of all of
the values involved. If b makes the purchase and finds the
item to be of high quality, then b additionally learns that
π/π − 1 < γs/(1 − γs)|B|. If the item were of low quality,
then the inequality operator would be reversed. Whereas b
may not know the value of π/π − 1, which is effectively the
percent increase in profit, with some reasoning b can still find
a discount factor measurement. First, b can use a maximum
likelihood estimator based on any other information b has
available to find the range in profit, similar to how s may
estimate the magnitude of B. Second, b can look at comments
and feedback from other agents in B to see what types of
products and services were offered to previous agents. If the
goods or services offered by s match, then it is likely that
the ratio of profitability is the same, and b can substitute any
change of B.

If s is a typed agent, always producing high-quality goods,
then buyers’ expectation of γs will approach the highest
possible value given the valuations involved. If the difference
in profit between a high-quality and low-quality item (π − π)
is large, then γs will be observed to be close to 1. And, a
typed agent producing low-quality goods will attain a low γs.

Example 1: Suppose seller s is offering a high-quality item
that cost it $4 at $5, but could substitute a low-quality item that
costs it only $1. Further suppose it is common knowledge that
if the product turns out to be of low quality, the one-time buyer,
b, will tell three other agents that each normally purchase one
high-quality item per unit time. If b buys the item, then from
(5), the discount factor where s would be indifferent between
offering high and low quality is 5−1

5−4 − 1 = γs/(1 − γs) · 3,
yielding γs = 1/2. Agents observing this transaction would
see that b reported γs ≥ 1/2 if s provided a high-quality item
and γs ≤ 1/2 if s provided a low-quality item. Given no other
information about s’s discount factor and using the maximum
entropy distribution (i.e., uniform) yields an expected value of
E(γs) = 3/4 if s provides a high-quality item, and E(γs) =
1/4 otherwise.

To illustrate how trustworthiness can be aggregated, con-
sider another potential buyer, c, reading a comment left by
b of obtaining a high-quality item noting γs ≥ 1/2, and a
comment left by another buyer that γs ≤ 7/8. If c believes
these comments, c believes γs ∈ [1/2, 7/8], with an expected
value of 11/16. Figure 2 illustrates the PDFs for this belief.
Now, suppose c is deciding whether to buy a different item
from s for $10, and that s must decide between producing a
high-quality item at a cost of $7 or a low-quality item at a
cost of $4. Buyer c will only influence one other agent not to
buy from s if it receives a low-quality item. By evaluating and
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Fig. 2. PDFs of discount factors given observations.

simplifying (5) as 10−4
10−7 − 1 > 11/16

1−11/16 · 1 yields 1 > 11/5.
Because this inequality does not hold, c concludes s will
provide a low-quality item and therefore it should not buy
from s.

6.2 Discount Factor and Product Choice
Measuring a buyer’s trustworthiness can be important in a
number of settings. If the buyer does not pay after the seller
delivers the item, then the best the seller can do is refuse
to sell to the buyer in the future and warn other sellers
about the buyer. This sanctioning is the same as discussed in
Section 6.1, only with roles reversed. If collusion is policed in
the system, but imperfectly so, an untrustworthy buyer would
be more likely to collude with other agents because it heavily
discounts the utility loss of being caught. Colluding buyers
could extort a seller into selling at low price because they
could leverage their numbers to produce bad reviews for the
seller and thus reduce the seller’s future revenue. Whereas
other agents may eventually discover the collusion, a large
number of bad reviews could still harm some of the seller’s
future revenue.

We investigate one subtle method of measuring buyers’ dis-
count factors. We examine what can be inferred about a buyer’s
discount factor given its purchasing choice between different
items. Because a buyer’s valuation is private information, the
results here do not give a direct measurement of the buyer’s
discount factor. However, the results give a constraint between
the buyer’s valuation and discount factor. These constraints
can be used to refine existing information about an agent’s
valuations and discount factor.

Example 2: Suppose agent a purchases tires for a fleet of
delivery vehicles. If a purchases tires with a mean expected
life of 5 years rather than tires with a mean expected life of 10
years for an additional 80% higher cost, another agent b simply
cannot infer that the agent has a low discount factor. If b has a
belief about a’s valuations or current financial situation, b may
be able to qualitatively infer that either a has a low discount
factor, or a is currently in a difficult financial situation, or
some combination of both situations apply. Even though a’s
actual state remains ambiguous to b, b still knows more about
a after having observed a’s choice.

From our motivating example, we assume that the only re-
liability information provided is mean time to failure (MTTF),
which we represent as q. The maximum entropy distribution,

assuming discrete time intervals, is the geometric distribution
with the cumulative distribution function (CDF) Q(t) = 1 −
(1 − 1/q)t+1, where the probability that the item will fail
at each time step is 1/q. We represent buyer b’s expected
utility gain from an item per unit time, that is, its willingness
to pay per unit time, as, wb. The buyer’s expected utility of
purchasing an item k at price pk with a failure rate CDF of
Qk(t), E(Ub(k)), can be represented as

E(Ub(k)) = −pk +
∞∑

t=0

γt
b(1−Qk(t))wb. (6)

Using a geometric distribution of Qk with mean qk thus sim-
plifies to E(Ub(k)) = −pk +wb(1−1/qk)/(1−γb(1−1/qk)).

Whereas (6) determines a buyer’s utility for obtaining an
item, it may also be used by other agents to infer information
about a buyer’s discount factor or willingness-to-pay. Consider
a buyer, b, deciding between two items: k1, at price p1 with
an MTTF of q1, and k2, at price p2 with an MTTF of q2. Say,
b purchases k1. If item k1 is universally superior to item k2,
that is, it is cheaper (p1 ≤ p2) and longer-lasting (q1 ≥ q2),
then the only information gained by other agents is that

E(Ub(k1)) > 0. (7)

This information can still be useful because it puts a constraint
on b’s possible values for its discount factor and willingness-
to-pay. If some other agent, a, believes b’s discount factor to
be particularly low, then a can use this assumption to infer that
wb . p. Alternatively, if a has knowledge of b’s willingness-
to-pay, a can use this knowledge to gain bounds on b’s discount
factor by solving Inequality (7) for the desired variable. In
some cases, such as when an agent has a high discount factor
or a willingness-to-pay greater than the ask price, no further
information is revealed because the bounds are less restrictive
than the domain of the variable.
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Fig. 3. Expected utility of three purchases.

Now, we consider what information b would have revealed
to other agents if k1 was not universally superior to k2. In this
case, we know that E(Ub(k1)) ≥ E(Ub(k2)). Solving this
inequality for either γb or wb can yield zero or one values,
and potentially more with distributions other than geometric.
Each value is the end of a boundary within which b’s variable
lies. Solving for these boundaries may be generalized for b
choosing between multiple items. By finding the values at
which b would be indifferent between each pair of items and
then finding the range where k1 yields the highest utility,
another agent can obtain bounds on γb or wb. Figure 3 shows
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an example of choosing between three items, where if an agent
knows that wb = 30, then the agent gains the knowledge that
γb ∈ [0.14, 0.80].

Because b knows its actions are monitored by other agents
and b desires to have a perceived discount factor greater than
its own, b has an incentive to buy an item that makes it
appear as if it had a larger discount factor. Similarly, b may
prefer to reveal a lower value for wb to sellers in order to
bring the price down to a lower value faster. Despite these
incentives, purchasing actions must be both credible and utility
maximizing for b. Except in certain seemingly rare situations,
such as where excessive reliance on communication causes b
to have an inflated reputation, we have generally found that
an agent’s optimal strategy is to play in a manner such that
other agents will measure its discount factor to be in a truthful
range. In our models and previous work [11], the cost for
an agent to over-inflate its reputation typically exceeds the
benefit of being able to exploit the reputation in the future,
influenced by damage that would be done to its reputation by
being inconsistent.

6.3 Measuring Discount Factor By Price

A key benefit of using discount factors as trustworthiness is
that further information can be obtained in some settings that
normally would not involve trustworthiness directly. Suppose
a seller, s, will be selling an item in our market model, but has
uncertainty about what price it can obtain. We examine what
can be learned about a seller’s discount factor in a single seller,
single item, single impatient buyer market. This simplification
yields a negotiation, and if valuations and discount factors for
both agents were all public knowledge, the agents could agree
on a price without this delay [37].

Example 3: The website Craigslist (http://craigslist.org) is
a good example of the scenario we formalize in this section.
If an agent is selling a used snowblower in the fair weathered
Los Angeles market, information on what price the market
will bear would likely be scarce. The seller may believe that
a few people might be looking for a snowblower for a distant
vacation home in the mountains, for a prop in a movie, or just
for spare parts. Using these beliefs, along with the knowledge
of what a new snowblower would cost to be shipped to
the LA area, the seller might start off at a moderately high
price and slowly lower the price if no bids are received.
The rate that the seller drops the price can be an indication
of the seller’s discount factor. Even if the seller undergoes
a significant valuation change, such as needing to sell the
snowblower because of an unexpected move to a smaller
location, examining multiple observations of price drop rates
can provide information regarding the valuation changes.

Suppose we have one buyer with a willingness-to-pay of
w, drawn from a probability distribution. Further suppose that
either the distribution of w accounts for the buyers’ discount
factors or that the buyers have a low enough discount factor
such that w is approximately what they would pay. The seller
knows its own discount factor, γs. The seller can update its
asking price once per unit time, its strategy being to price the
item at σt at time t, and we denote the complete strategy as

σ = {σ1, σ2, . . . , σ∞}. The seller’s expected utility, Us(σ),
can be written as (for notational convenience, we set σ−1 to
the supremum of the distribution of w)

Us(σ) =
∞∑

t=0

(
γt

s · P (σt ≤ w ∩ w < σt−1) · σt

)
. (8)

The seller’s optimal strategy is that which satisfies
argmaxσ Us(σ). Figure 4 shows results of numerical solutions
for the seller’s optimal ask price at each time given discount
factors of 0.40, 0.60, 0.80, 0.90, and 0.95. In this example,
the buyer’s willingness-to-pay distribution is exponential with
mean 50.
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Fig. 4. Optimal ask price schedules for example sellers.

To find the seller’s optimal strategy analytically, assuming
myopic buyers, we can view each σt as an independent
variable and maximize the expected utility in (8). We express
the distribution of the buyers’ willingness-to-pay by the prob-
ability density function (PDF), v(w), and the cumulative dis-
tribution (CDF), V (w) =

∫ w

−∞ v(x)dx. Because the variables
are mutually independent, we can maximize (8) by setting
∀σt ∈ σ : dUs/dσt = 0. The initial case, t = 0, is separate
from the general case yielding the equations for t > 0 as

σ1 =
V (σ0) + v(σ0)σ0 − 1

γsv(σ0)
and (9)

σt+1 =
v(σt)σt − V (σt−1) + V (σt)

γsv(σt)
. (10)

If we assume a uniform distribution of valuation between
0 and some maximum value, w, and assume limt→∞ σt =
0, we can solve the linear constant coefficient homogeneous
recurrence relation created by applying (9) and (10) as

σt =
w

(1 +
√

1− γs)

(
1−

√
1− γs

γs

)t

. (11)

We have found this result to match our numeric results
(computed in http://www4.ncsu.edu/~cjhazard/research/buyer_
delay_discount_factor.xls) as shown in Figure 4. The deriva-
tion can be found in the Appendix.

Note that the optimal ask prices decrease exponentially over
time based on the discount factor at a constant rate; we have
also found this numerically with an exponential distribution
of w. From this information, a buyer could predict a seller’s
discount factor based on a small number of asks. When not in
steady-state, the seller will also need to model its payoff based
on its belief of the buyers’ beliefs of its discount factor in case
any buyers erroneously believe the seller’s discount factor is
significantly higher or lower than it really is. Nevertheless, this
result provides a lower bound on a single seller’s discount
factor. Cramton [38] analyzes a similar situation of delay
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in bargaining, except when the discount factors are publicly
known and valuations are unknown.

6.4 Measuring Discount Factor By Delay

Like the sellers, each buyer has its own discount factor and is
trying to maximize its utility. This section also focuses on just
one buyer and one seller. We model what the seller can learn
about an interested buyer’s discount factor and willingness-to-
pay, assuming both are constant over time, if the buyer does
not purchase at the current asking price, but waits for the seller
to lower the price.

A buyer’s utility, U(t) is a function of the time it accepts a
seller’s offer of price σt. The buyer’s willingness-to-pay, wb,
and discount factor, γb, can be used to write its utility as

Ub(t) = γt
b(wb − σt). (12)

The buyer will have the opportunity to continually reevaluate
its optimal time to accept the seller’s offer, but the optimal
absolute time does not change. This can be seen for some
time offset, x, as Ub(t+x) = γt+x

b (wb−σt+x) = γx
b γt

b(wb−
σt+x). Because the comparative difference between utilities
at different times is scaled by the constant based on the time
difference, γx

b1
, the acceptance time that maximizes utility is

the same regardless of when the buyer is reevaluating, making
the optimal strategy a subgame perfect solution concept.

When a buyer makes a purchase, the seller observes that
at the time of purchase, T , the buyer’s utility was the largest.
Because the price schedule is strictly decreasing, the decisions
at T−1 and T +1 yield the tightest bounds. The corresponding
inequalities are Ub(T ) > Ub(T − 1) and Ub(T ) ≥ Ub(T +
1). If the seller does not have any information on neither the
buyer’s discount factor nor the buyer’s utility, then the seller
only observes a relationship between the two. This observed
relationship can be expressed as

wb − σT−1

wb − σT
< γb ≤

wb − σT

wb − σT+1
, (13)

or alternatively as

σT − γbσT+1

1− γb
< wb ≤

σT−1 − γbσT

1− γb
. (14)

The seller can use its beliefs of the distributions of w or γ
along with (13) and (14) to obtain a PDF of the opposite
variable, as we will discuss in Section 7.

Competition brought by multiple buyers decreases the de-
lays that buyers are willing to incur to wait for reduced prices
from sellers. For example, if two buyers are waiting for two
sellers to decrease their ask prices, and the buyer with the
higher willingness-to-pay waits long enough such that the
price falls below the other buyer’s willingness-to-pay, then the
item may be taken by the other buyer. The first buyer must then
wait until the seller with the higher discount factor gradually
brings its ask price down. Not only does the delay incur lost
opportunity to the buyer with the higher willingness-to-pay,
but the seller with the higher discount factor will use smaller
price decrements and the said buyer’s optimal strategy may
include paying a higher price than the first item.

As the number of buyers increases in proportion to the num-
ber of items sold, the ability of a patient buyer to successfully
employ strategic delay decreases. Having more buyers means
that the difference between a buyer’s willingness-to-pay and
the next highest willingness-to-pay decreases, increasing the
chance that a drop in price will bring the item within range of
more buyers. In the same way that an excess of supply pushes
the price of items to 0, the limit as the number of buyers goes
to infinity is that the expected profit of buyers goes to 0. In
this case, the market is undersupplied, and even buyers with
large discount factors rationally behave as myopic buyers.

7 AGGREGATING OBSERVATIONS

Because our discount factor measurements 1) employ Jeffrey-
like probability conditioning by admitting overlapping obser-
vations that do not necessarily cover the full probability space
and 2) encompass the full probability space under the assump-
tion that the measurement is accurate, we can employ Bayesian
inference interchangeably with the principal of maximum
entropy, obtaining the same results [39]. This means we can
use the principle of maximum entropy to find agent’s initial
uninformed beliefs, then use Bayesian inference to update the
probability distributions representing agents’ beliefs of others’
discount factors and willingness-to-pay. These mathematical
tools allow agents to aggregate information about other agents’
discount factors and valuations from a variety of different
measures, including those we discussed in Section 6. We
generalize the aggregation of beliefs depicted Figure 2 across
probability distributions and types of observations.

Given no a priori knowledge or beliefs about another agent’s
discount factor, the maximum entropy distribution is uniform
on the range of [0, 1). Suppose agent s observes agent b
perform an action that would require b’s discount factor, γb, to
be between 0 and 3/4 inclusive. The cumulative distribution
function (CDF)1 of b’s discount factor, as a function of
discount factor x, is Fγb

(x) = P (γb ≤ x) = x, yielding
P (γb ≤ 3/4) = 1 and P (γb > 3/4) = 0. Using conditional
probability, the new CDF in the range of [0, 3/4] becomes
Fγb

(x) = P (γb ≤ x|γb ∈ [0, 3/4]) = P (γb ≤ x ∩ γb ∈
[0, 3/4])/P (γb ∈ [0, 3/4]) = 4x/3.

If agent s observes b perform an action, but s can only
observe a relationship between b’s discount factor and its
willingness-to-pay rather than a direct observation of either,
s can still gain some information about both of b’s attributes.
Consider the case in Section 6.4, where the observed relation
between the willingness to pay and discount factor follow an
inequality. We rewrite the relation γb ≤ (wb − σT )/(wb −
σT+1) in a more general form to encompass other possi-
ble observations, dropping the subscripts for convenience, as
γ ≤ h(w). We use the random variable H to represent a
random variable on the range of h that is isomorphic to the
random variable of the agent’s willingness-to-pay. As long as
the function h is monotonic, we can map between the CDF

1. By standard definition, a CDF is a nondecreasing function with domain
(−∞,∞) and range [0, 1]. If a random variable’s domain is a subset of
(−∞,∞), then the CDF is defined as a piecewise function to yield 0 below
the random variable’s domain and 1 above the domain.
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of w, Fw, and the CDF of this transformation, FH , for some
willingness-to-pay of x using h as Fw(x) = FH(h(x)). The
probability density function (PDF), fH , may be found in the
usual fashion as fH = dFH

dx .
Given the relationship γ ≤ h(w), agent s would like to

update its beliefs about the observed agent’s γ and w. We use
the CDFs Fγ and FH to denote the current beliefs of γ and w
respectively, and the CDFs F ′

γ and F ′
H to represent the beliefs

after the new observation has been taken into account. By the
definition of conditional probability,

F ′
γ(x) = P (γ ≤ x|γ ≤ H) =

P (γ ≤ x ∩ γ ≤ H)
P (γ ≤ H)

(15)

and

F ′
H(x) = P (H ≤ x|γ ≤ H) =

P (H ≤ x ∩ γ ≤ H)
P (γ ≤ H)

. (16)

Simplifying, we have

F ′
γ(x) =

∫ x

−∞ fγ(y) · (1− FH(y)) dy∫∞
−∞ fH(y) · Fγ(y)dy

and (17)

F ′
H(x) =

∫ x

−∞ fH(y) · Fγ(y)dy∫∞
−∞ fH(y) · Fγ(y)dy

. (18)

After observing an inequality relation between discount
factor and a function of willingness-to-pay, (17) and (18)
indicate how an agent’s beliefs of another agent should be
updated. If the observation yielded an equality relation, such
as in Section 6.3, similar results can be derived by simply
substituting equalities for the inequalities in the initial formu-
lation, leading to the use of PDF functions in place of the
CDF (and 1 minus CDF) functions in (17) and (18).

Example 4: Agent s is selling an item as described in
Section 6.4. Buyer b has received extremely accurate in-
formation about s from other buyers. However, s has no
a priori knowledge about b other than b’s willingness to
pay follows an exponential distribution with mean of $1.00,
yielding Fw(x) = 1−e−1·x. With no a priori knowledge of b’s
discount factor, s assumes the maximum entropy distribution,
the uniform distribution, yielding Fγ(x) = x.

The seller’s initial asking price is $1.50. Given b’s knowl-
edge of the seller’s discount factor, b predicts that the seller’s
next utility maximizing price will be $1.40. Just as s asks
$1.50, b purchases the item, because b would attain more
utility by purchasing the item now at $1.40 than waiting for
the price to decrease further due to b’s discount factor. The
seller observes the second half of the inequality expressed by
(13) as discussed earlier in this section, with σT = $1.60, and
σT+1 = $1.40.
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Fig. 5. Change in PDF of believed discount factor.

By updating its knowledge via (17) and taking the derivative
to convert to the PDF, s’s belief of γb is expressed by the PDF
fγb

(x) = 1.38398e0.1/(x−1), as shown in Figure 5. If s makes
another observation about b, s will also need to compute the
updated PDF for b’s willingness to pay, and use both of these
functions and combine this with the new observation.

The aggregation methods presented in this section will work
in many situations, as long as the prior beliefs and observations
follow the principal of maximum entropy. If noise and error
in signalling are introduced, the beliefs will need to account
for the probability of error. If an agent’s willingness-to-pay
or discount factor can change via a certain process, then the
distributions must be recomputed as time progresses and the
entropy must be increased according to the uncertainty from
the process of change.

8 DISCUSSION

Agents with low measured discount factors behave in ways
that are generally considered untrustworthy. An agent with a
low discount factor would produce poor quality items, exert
low effort on service tasks, and not offer or return favors. In
each case, the agent will prefer smaller utility gain now to a
larger gain in the future. If an agent a with a low discount
factor were entrusted with a secret by agent b, perhaps for
mutual benefit, a would not have a strong incentive to keep
the secret. Agent a would not put much value on its future
relationship with b, and would reveal the secret to some third
agent, c, if agent c offered a little short term gain. Having a low
discount factor means an agent is myopic and impatient. Under
our definitions and assumptions, trustworthiness is therefore
roughly equated to patience.

Agents with high measured discount factors often behave
in a trustworthy manner. However, the way discount factors
as trustworthiness can depart from intuition is when an agent
with a high discount factor faces a moral hazard where it does
not expect sanctioning to be effective. The agent with the high
discount factor would not necessarily be honest when it is not
being observed. It is possible for an agent that steals items
from other agents to have a high discount factor if the agent
believes that the probability of being caught or the utility loss
due to punishment will be sufficiently low. One scenario is the
agent’s beliefs are wrong and other agents observe the unde-
sirable behavior, attributing the behavior to lower valuations
or a lower discount factor. Conversely, if the agent’s beliefs
are accurate and other agents cannot differentiate an agent that
is always altruistic (strongly typed) from an agent that is only
altruistic when observed (purely utility maximizing), then no
objective trust system could measure this.

The discount factor method requires each agent to model
another agent’s valuations in addition to its trustworthiness.
This model affords the first agent an analytically predictive
model of the second. Almost any trust model can be tailored
to different domains and contexts, such as automobile repair
and cooking. However, discount factors can model a single
trustworthiness value across the domains, as long as sufficient
information is available about the agent’s valuations and
capabilities (as defined by the value an agent will receive
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from another’s action) in the different domains. This means
even if an agent repairs automobiles well but cooks poorly,
its trustworthiness can be consistent across the domains as
long as the contexts are equivalent and the agent’s valuations
and beliefs can be modeled. Even if information is scarce,
agents can have mutual information about the information
scarcity and attribute nontrusting behaviors to the scarcity of
information.

Using its expectation of another agent’s valuations in de-
cision models helps an agent evaluate the trustworthiness of
agents in complex situations. Suppose b regularly purchases
cheap office supplies from s, and always finds them to be of
good quality. In this context, s is trustworthy. Because the
profit margins on the items are small, b is only able to know
that, for example, γs > 0.9. Now suppose a is looking to buy
an expensive office chair. The discount factor that b reports
may not indicate that s will sell a high-quality office chair
in the different setting, depending on the possible profits. If
s focuses on office supplies, it may not have the economies
of scale to make larger profits on high-quality office chairs,
increasing the incentive to provide one of low quality. Note
that discount factors coupled with valuations also can work
in the reverse; a supplier of expensive niche items may not
be able to efficiently offer cheap bulk goods, and may not
experience much sanctioning if it were to provide poor quality
goods to an unknown single-transaction customer.

Agents’ discount factors may change along with Assump-
tion 1 due to various reasons. External factors include a change
in the market or the agent’s ownership, and internal factors
include an agent deciding to leave a given market at a specified
future date.

Practical examples of multiagent interactions involving
many individuals, firms, and other organizations can exhibit
a range of behaviors, including agents that act strategically,
agents that behave in a consistent manner directed by a rigid
set of beliefs, and agents that fall between the extremes.
Discount factors offer a measurement of trustworthiness that is
applicable to the range of agent behavior where both adverse
selection and moral hazards exist.

Whereas we focus on discrete events in this paper, the total
utility function U can also be extended to evaluate events with
continuous utility. Markets typically involve agents receiving
utility instantaneously as cash flows, but sometimes agents
accrue utility over time, such as when leasing a piece of
equipment for a specified duration. This continuous utility can
be modeled with discrete events in two ways. The example of
leasing equipment demonstrates one way, in that the equipment
may simply add value to other events occurring in a duration,
such as a piece of equipment that can improve the quality of
a manufactured good. The second way to model continuous
utility is better explained by the example of a person watching
a play or movie. Throughout the entertainment, the person is
continuously gaining utility. This can be computed as the limit
as the changes in utility become infinitesimally small, but take
place over an infinitesimally small time period, by effectively
using a Riemann sum to compute the utility as the area under
the curve specified by the events’ utilities.

The above concepts and techniques open up some important

avenues for future research. One is to expand the discount
factor measurements to markets with multiple buyers and
sellers and more complex market interactions. For example,
in a market with more supply than demand, a seller may
optimally adopt a discount factor lower than its own in
order to increase its chances of selling an item. From this
example, a second avenue is to determine when a rational
agent will act according to its discount factor and when it
will act as if it had another discount factor in response to
its current situation. Combining discount factor measurements
with other techniques, such as statistics or other reputation
measures, for determining other properties about agents, such
as their capabilities and valuations, comprises a third avenue
to expand the work into additional applications in and beyond
e-commerce. A fourth avenue is to apply the discount factors
model and Bayesian inference to comments left by one agent
about another, to check for conflicting information in the
comments, examine discount factors of those agents posting,
and evaluate each comment from the best knowledge of the
situation at the time the comment was written. We have
begun to study how to evaluate the trustworthiness of such
information [11], but much remains to be done.
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