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A (business) protocol describes, in high-level terms, a pattern of communication between two or more partici-
pants, specifically via the creation and manipulation of the commitments between them. In this manner, a protocol
offers both flexibility and rigor: a participant may communicate in any way it chooses as long as it discharges
all of its activated commitments. Protocols thus promise benefits in engineering cross-organizational business
processes. However, software engineering using protocols presupposes a formalization of protocols and a notion
of the refinement of one protocol by another. Refinement for protocols is both intuitively obvious (e.g., PayVia-
Check is clearly a kind of Pay) and technically nontrivial (e.g., compared to Pay, PayViaCheck involves different
participants exchanging different messages). This paper formalizes protocols and their refinement. It develops
Proton, an analysis tool for protocol specifications that overlays a model checker to compute whether one protocol
refines another with respect to a stated mapping. Proton and its underlying theory are evaluated by formalizing
several protocols from the literature and verifying all and only the expected refinements.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Multi-
agent Systems; F.3.1 [Specifying and Verifying and Reasoning about Programs]: Mechanical verification

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Commitments, Agent communication, Verification of multiagent systems

1. INTRODUCTION

We focus our attention on business service engagements as realized over the Internet. In
current practice, such an engagement is defined rigidly and purely in operational terms.
Consequently, the software components of the business partners involved are tightly cou-
pled with each other, and depend closely on the engagement specification. Even small
changes in one partner’s components must be propagated to others, even when such changes
are inconsequential to the business being conducted. Conversely, if the model leaves the
engagements unstructured, humans must carry out the necessary interactions manually,
with concomitant loss in productivity. We motivate protocols as providing a happy middle
ground between rigid automation and flexible manual execution.

Specifically, in contrast with traditional approaches, we model each partner as an au-
tonomous agent. The agents participate in a (business) protocol to realize a service en-
gagement. A protocol describes a pattern of communication between agents. Based on the
foregoing, we formulate the following key requirements on a suitable formalization of pro-
tocols. First, a protocol is public, meaning that it pertains to the messages sent and received
by participating agents, not how those agents are implemented. Thus, the semantics of a
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protocol should depend solely on the communications of the agents enacting it, not on their
internal policies. Second, the semantics should capture the business meanings of the mes-
sages, thereby avoiding operational constraints, and thus enabling the agents to deal better
with exceptions and opportunities [Yolum and Singh 2002]. Third, the semantics should
be modular: an agent who enacts a protocol correctly may concurrently enact additional
protocols. Fourth, designing engagements using protocols presupposes that we support
engineering methodologies such as those based on stepwise refinement. We address the
above criteria for protocols with an emphasis on their refinement.

We understand a protocol semantically in terms of exactly the set of runs (i.e., compu-
tations) that it allows. Following Mallya and Singh [2007], we posit that a putative sub-
protocol refines a putative superprotocol if and only if each run allowed by the subprotocol
is also allowed by the superprotocol. In general, a subprotocol would include additional
roles and actions: in determining refinement, we disregard those that do not feature in the
superprotocol. Doing so facilitates modularity, enhanceability, and reuse of protocols.

Consider a simple protocol Pay consisting of two actions where a payer first commits to
paying a payee, and next pays. Now consider a protocol PayViaMM where the payer first
pays a middleman, who in turn pays the payee. Both Pay and PayViaMM send a payment
from the payer to the payee. Even though PayViaMM involves an additional role (middle-
man) and PayViaMM uses different messages (two payment messages instead of one), we
expect PayViaMM refines Pay, because PayViaMM makes a payment as Pay specifies.
Similarly, we expect PayViaCheck and PayViaCredit also refine Pay. We imagine a ser-
vice engagement design exercise where protocol designers begin by identifying the need
for payment as Pay, then refine it to PayViaMM, and then to PayViaCheck. The designers
may build or find an existing repository of protocols (analogous to taxonomies of business
processes [Malone et al. 2003]). The question we address is how can protocols in such a
repository be expressed so that their refinements can be rigorously verified.

1.1 Proton: Approach and Contributions

We formulate refinement in technical terms and show how to compute it via a tool called
Proton. We specify a protocol declaratively in terms of (i) its roles, (ii) the guarded mes-
sages the roles exchange, and (iii) the meaning of each message as a set of actions on the
public state of the roles, sometimes termed the social state [Baldoni et al. 2010]. Com-
mitments between roles are central to our approach [Singh 1999]. Section 2.4 provides
additional details. For now, suffice it to say that a state of a protocol is determined by what
atomic propositions hold therein (some propositions specify the states of commitments).

We define the semantics of a protocol precisely in terms of the runs (i.e., sequences of
actions) it allows. Informally, a subprotocol refines a superprotocol if and only if the latter
allows all the runs the former allows. However, refinement is nontrivial because the proto-
cols may involve different roles and messages, the messages may have different meanings,
and the meanings may be at different levels of abstraction. Hence, we define refinement
only with respect to a mapping of meanings from the superprotocol to the subprotocol. For
example, the payment in Pay maps to two payments in PayViaMM.

Our approach for verifying refinement takes three inputs: formal descriptions of a puta-
tive superprotocol and subprotocol, and a mapping between them. We reduce the protocol
descriptions to their canonical forms, taking into account the mapping provided. We gen-
erate an input to an existing model checker consisting of (i) a specification of a temporal
logic model and (ii) temporal formulae whose truth in the model verifies refinement.
DRAFT, Vol. V, No. N, July 2011.
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1.2 Contributions

Our main contributions are as follows. One, we offer the first approach that computes
the refinement for protocols based on static analysis of protocol specifications. Two, we
formulate a notion of the serial composition of commitments, which can have broader
applications than this paper, e.g., in the treatment of commitments in coalitions.

Pay

PayViaSpouse

22

FullPay

55

PayViaMM

OO

OrderPayShip

jj

NetBill2oo

PayViaCheck

55

PayViaCredit

OO

OrderPayViaMMShip

jj OO

NetBill3oo

Fig. 1. Refinements demonstrated by Proton (arrows point from subprotocols to superprotocols).

Further, we have implemented our approach in the Proton tool that overlays the well-
known model checker MCMAS (http://www-lai.doc.ic.ac.uk/mcmas/). Fig-
ure 1 summarizes some protocol refinements that Proton verifies (under the obvious map-
pings) based on the above and other examples known from the literature.

1.3 Organization

Section 2 overviews our syntax and semantics and briefly reviews commitments. Section 3
introduces our running examples for payment and order protocols. Section 4 formalizes
our definitions of protocols, mappings between protocols, and protocol refinement. Sec-
tion 5 describes how Proton generates input for the MCMAS model checker and the CTL
formulae that must be satisfied for protocol refinement to hold. Section 6 pulls the previous
sections together, illustrating how protocol PayViaMM refines, or fails to refine, protocol
Pay under various mappings. Section 7 shows that the algorithmic implementation in Sec-
tion 5 is correct with respect to the theoretical framework of Section 4. Section 8 describes
the related literature and important future directions.

2. TECHNICAL FRAMEWORK

We adopt the following terminology. A subprotocol refines a superprotocol. In hyphenated
form, super-x and sub-x refer to element x as it occurs in the superprotocol and subprotocol,
respectively. For example, a super-role is a role defined in the superprotocol and a sub-
commitment is a commitment defined in the subprotocol.

2.1 Interpreted Systems

We adopt Lomuscio and colleagues’ [Lomuscio and Raimondi 2006; Cohen et al. 2009]
formalization of a multiagent system as an interpreted system. Importantly, protocols in-
volve roles, not agents. We presume no knowledge of the internals of an agent playing a
role and consider all possible strategies that a role may follow in a protocol.

Each role is described by a set of possible local states, a set of local actions, a local strat-
egy listing the legal actions in each local state, and a local progression function defining
the progression of the role’s local state based on the actions performed by all the roles.
To clarify the terminology, our role and strategy respectively map to agent and protocol in
work by Lomuscio and colleagues.
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Definition 2.1 Interpreted System. An interpreted system I is

I = 〈Σ, P, PV, Li,Acti,APi, ti, G,G0, F 〉

Σ = {1, . . . , n, e} is a set of three or more roles, including a distinguished role e that stands
for the environment. P is a set of atomic propositions. Let i ∈ Σ range over all roles and
the environment e. Li is a nonempty set of possible local states for each i. Acti is a set of
actions for each i. APi : Li × Le 7→ 2Acti is the local strategy for each i. In local state
l ∈ Li, le ∈ Le, role i can perform only the actions in APi(l, le). G ⊆ L1×· · ·×Ln×Le
is the set of reachable global states. For any global state g ∈ G, we write gi for the i-th
component in g, i.e., the local state of role i in g. G0 ⊆ G is a nonempty set of initial global
states. PV : P 7→ 2G is the evaluation function for propositions. The set of joint actions is
Act = Act1×· · ·×Actn×Acte. ti : Li×Le×Act 7→ Li is the local progression function
for role i ∈ Σ \ e, and te : Le×Act 7→ Le is the progression function for the environment.
All roles progress simultaneously. The global progression function is T : G×Act 7→ G and
is defined such that T (g, a) = g′ iff ∀i ∈ Σ \ e : ti(gi, ge, ai) = g′i and te(ge, ae) = g′e.
T must be serial (∀g ∈ G,∃a ∈ Act,∃g′ ∈ G : T (g, a) = g′). F is a set of Boolean
fairness conditions, each of which must be true infinitely often on all legal execution paths.
A path π in I is an infinite sequence of global states 〈g0, g1, . . . 〉 in G such that every pair
of adjacent states is a legal transition, i.e., ∀i ≥ 0 : ∃a ∈ Act : T (gi, a) = gi+1. The i-th
state in path π is denoted πi, and the set of all paths starting at g ∈ G is denoted Π(g).

Given an interpreted system I, we associate with it a Kripke modelK = (G,G0, T, PV )
where G is the set of possible worlds understood as the reachable states of K, built from
the set of initial states G0 by iterating the global progression function T ; and, the temporal
relation T ⊆ G× Act×G connects global states based on the joint actions. The labeling
function PV is the propositional labeling function.

The grammar of the temporal language CTL is (PropName is an atomic proposition)

φ ::= PropName | ¬φ | φ ∨ φ | φ ∧ φ |AGφ |AFφ |A[φUφ] | EGφ | EFφ | E[φUφ]

Our temporal formulae use the standard CTL temporal logic operators: A (for all paths),
E (for some path), G (on all future states on a path), and F (eventually on the path). The
following is the semantics for CTL, specified relative to the Kripke structure K at state
g. Given a model K for an interpreted system, I satisfies a CTL formula φ if and only if
K, g0 |= φ, where g0 ∈ G0 is a starting state.

K, g |= p iff p ∈ g
K, g |= ¬φ iff it is not the case K, g |= φ
K, g |= φ ∧ ψ iff K, g |= φ and K, g |= ψ
K, g |= φ ∨ ψ iff K, g |= φ or K, g |= ψ
K, g |= AGφ iff ∀π ∈ Π(g),∀i ≥ 0,K, πi |= φ
K, g |= AFφ iff ∀π ∈ Π(g),∃i ≥ 0,K, πi |= φ
K, g |= A[φUψ] iff ∀π ∈ Π(g),∃k ≥ 0,K, πk |= ψ and ∀0 ≤ j < k,K, πj |= φ
K, g |= EGφ iff ∃π ∈ Π(g),∀i ≥ 0,K, πi |= φ
K, g |= EFφ iff ∃π ∈ Π(g),∃i ≥ 0,K, πi |= φ
K, g |= E[φUψ] iff ∃π ∈ Π(g),∃k ≥ 0,K, πk |= ψ and ∀0 ≤ j < k,K, πj |= φ

We write a |= b if and only if for all models K and states g, K, g |= b holds whenever
K, g |= a holds.
DRAFT, Vol. V, No. N, July 2011.
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Protocol ::= protocol ProtoName {role 〈RoleName; 〉∗ prop 〈PropName; 〉∗
commitment 〈Commit; 〉∗ message 〈Message; 〉∗}

Commit ::= ComName = C(Debtor,Creditor,Ant,Csq)
Message ::= Snd→ Rcv : 〈[Guard]〉?MsgName means {actexp}
Debtor ::= RoleExp
Creditor ::= RoleExp
Ant ::= ActExp
Csq ::= ActExp
Snd ::= RoleName
Rcv ::= RoleName
Guard ::= MsgExp
ActExp ::= Actions

Map ::= map MapName : ProtoName 7→ ProtoName{role〈RoleMap; 〉∗
prop〈PropMap; 〉∗commitment 〈CommitMap; 〉∗}

RoleMap ::= RoleName 7→ RoleExp
PropMap ::= PropName 7→ ActExp
CommitMap ::= ComName 7→ CommitExp

RoleExp ::= RoleName | {RoleName 〈,RoleName〉∗}
MsgExp ::= MsgName | ¬MsgExp |MsgExp ∨MsgExp |MsgExp ∧MsgExp |MsgExp→ MsgExp
ActExp ::= Action | ¬ActExp |ActExp ∨ ActExp |ActExp ∧ ActExp |ActExp→ ActExp
CommitExp ::= ComName |CommitExp⊕ CommitExp
Actions ::= Action 〈,Action〉∗
Action ::= PropName | CREATE(ComName) | TRANSFER(ComName) | RELEASE(ComName)

| CANCEL(ComName)

Fig. 2. Proton input syntax in BNF.

2.2 Proton Syntax

Proton verifies whether one protocol refines another under a mapping. Figure 2 shows
Proton’s input syntax (here | separates alternatives, 〈A〉∗ is zero or more repetitions of
A, and 〈A〉? is an optional occurrence of A). Notice that PropName is simply an atomic
proposition.

The Protocol nonterminal describes the syntax for a protocol (as Listing 1 exemplifies).
A protocol declares roles, propositions, commitments, and messages. Each message m is
sent from a sender (m.snd) to a receiver (m.rcv), has a guard (m.guard) which must be true
before the message can be sent, a set of actions (m.actions), and means a conjunction of
these actions (m.actexp). Actions are either propositions (being set true) or a commitment
operation (being performed). Boolean negation (¬) is allowed in antecedent, consequent,
and guard expressions to check state, but a message meaning cannot set a proposition to
false using a negated action.

The Map nonterminal describes the syntax for a mapping between two protocols (as
Listing 3 exemplifies). A mapping maps individual roles, propositions, and commitments
from the putative superprotocol to expressions in the putative subprotocol. ProtoName,
MapName, RoleName, PropName, ComName, MsgName, and Action are names.

The serial composition operator, ⊕, chains two commitments together and is described
in Section 2.5. We write

⊕
i Ci for a left-associated chain (C1 ⊕ C2) ⊕ . . . ⊕ Cn. In

Section 2.6, we compare commitments between superprotocol and subprotocol, under an
abstraction mapping M , using commitment covering (≤M ).
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2.3 Proton Semantics

Proton’s semantics is based on interpreted systems: it constructs an interpreted system
from an input superprotocol, subprotocol, and mapping.

Each state g is a set of true propositions pi. All propositions are false in the initial
state g0. Actions cause state transitions. For this paper, we use a simplified model of ac-
tions, assuming actions (i) always succeed, (ii) have definite outcomes (no uncertainty),
and (iii) have no side-effects. The actions for role i, Acti, are the propositional and
commitment actions Acti = {pi} ∪ {a(Cj)|a ∈ ActC} ∪ {nop} where A is the set of
protocol propositions, C is the set of protocol commitments, for all pi ∈ A, ActC =
{CREATE, TRANSFER, RELEASE, CANCEL}, for all Cj ∈ C, and nop represents no-operation.

Operationally, messaging is point-to-point and synchronous. All protocol state is stored
in the “environment” (effectively, a distinguished agent), and is globally accessible by all
roles (a current simplification). At each time step, the environment schedules one role
to execute next (interleaved execution). When scheduled, the role’s agent (i) determines
which of its messages are currently enabled, by accessing the protocol’s global state and
evaluating each message’s guard expression, (ii) chooses an enabled message to send or
chooses “no-operation”, (iii) performs all actions in message’s meaning, in any order, and
(iv) updates the protocol’s state.

In every global state g of the interpreted system, each commitment Ci has a state,
Ci.status ∈ StatusC, where StatusC = {null, cond, detached, dis, xfer, rel, can}, whose
value can be any of the states in Figure 3. We define propositions for the expressions
C.status = x and C.status 6= x in each state g. For each commitment Ci, we evaluate the
occurrence of the commitment operations using the four propositions:

CREATE(Ci) 4
= Ci.status 6= null

TRANSFER(Ci) 4
= Ci.status = xfer

RELEASE(Ci) 4
= Ci.status = rel

CANCEL(Ci) 4
= Ci.status = can

As Section 1.1 mentions and Definition 4.6 formalizes, refinement depends upon a
mapping between protocols to account for their different levels of abstraction. Specifi-
cally, we must map each (i) super-role to a set of sub-roles, (ii) super-proposition to a
Boolean expression of sub-propositions, and (iii) super-commitment to an expression of
sub-commitments. Proton combines two protocols and a mapping to (i) construct an in-
terpreted system model I from the subprotocol’s propositions, commitments, and guarded
actions, as specified in Definition 4.2 and (ii) generate appropriate CTL formulae as spec-
ified in Section 5.5. The refinement in consideration holds if and only if the constructed
model satisfies all the CTL formulae that Proton generates.

2.4 Background on Commitments

Commitments are a formal and concise method of describing how agent roles commit
to performing future actions [Singh 1999; Yolum and Singh 2002]. We extend previous
commitment definitions in two ways. First, we allow both debtors and creditors to be
sets of roles, enabling us to handle commitment chains with multiple debtors and multiple
creditors. Second, we introduce a new TRANSFER commitment operation to unify and
replace prior uses of DELEGATE and ASSIGN.

A commitment C{debtors},{creditors}(antecedent, consequent) means that the debtors com-
DRAFT, Vol. V, No. N, July 2011.



Formalizing and Verifying Protocol Refinements · 7

mit to the creditors, that if the antecedent holds, they will bring about the consequent. In
an active commitment whose antecedent is false, the debtors are conditionally committed
to the creditors. When the antecedent becomes true, we say the commitment is detached,
and the debtors become unconditionally committed to the creditors.

Consider the following two example commitments drawn from the payment scenarios:
(i) CPayer,Payee(promise, pay): the payer conditionally commits to paying the payee; and
(ii) C{Payer,MM},Payee(promise, payP ∧ payM ): the payer and middleman commit to paying
the payee via payP (the payer’s payment) and payM (the middleman’s payment).

null
CREATE //

CREATE //

CREATE //

cond
DETACH �� DISCHARGE

��

TRANSFER

��

RELEASE

��

CANCEL

��

detached

DISCHARGE �� TRANSFER �� RELEASE �� CANCEL ��
dis xfer rel can

Fig. 3. State transition diagram for commitments (states in lowercase; transitions in small caps).

Figure 3 shows the state transition diagram for a commitment. The states of a commit-
ment are (i) null : where the commitment does not yet exist; (ii) cond (active and condi-
tional): after CREATE with antecedent and consequent being false, and with no other oper-
ations; (iii) detached (active and detached): after CREATE with antecedent true, consequent
false, and with no other operations; (iv) dis(discharged): after CREATE and consequent
being true; (v) xfer(transferred): after CREATE and TRANSFER; (vi) rel (released): after
CREATE and RELEASE; and (vii) can(canceled): after CREATE and CANCEL. A commit-
ment in states cond or detached is said to be active. A commitment in states dis, xfer, rel,
or can is said to be resolved. The commitment operations are (i) CREATE, performed only
by debtors, creates an active commitment; (ii) DETACH, which occurs implicitly when the
antecedent becomes true; (iii) DISCHARGE, which occurs implicitly when the consequent
becomes true; (iv) TRANSFER, performed by either debtors or creditors, deactivates the cur-
rent commitment and replaces it by another commitment; (v) RELEASE, performed only
by creditors, deactivates the commitment, thus releasing the debtors; and (vi) CANCEL,
performed only by debtors, cancels, deactivates, and “breaks” the debtors’ commitment.

We understand a protocol P as refining a protocol Q if and only if the correct enact-
ments of P are also correct enactments of Q. As in previous work, in a correct enactment
of a protocol each detached commitment must eventually resolve. Debtors may act before
they are required to do so and the consequent may become true before the antecedent. In
general, there is no guarantee that autonomous debtors do not arbitrarily CANCEL. In prac-
tice, the creditors would assume the debtors are trustworthy or the setting would include
an external mechanism (such as penalties) to ensure the debtors’ compliance.

2.5 Serial Composition of Commitments

In PayViaMM, where the payer commits to a middleman who commits to the payee, the
two commitments together effectively commit the payer to the payee. We introduce serial
composition as a general way to chain commitments over intermediaries, computing a
single, resultant commitment. The serial composition of commitments is a static construct,
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but the resultant commitment dynamically progresses through the states in Figure 3 as the
protocol progresses.

Definition 2.2. Let CA and CB be two commitments where CA.csq |= CB .ant. Then,
the serial composition of CA and CB is the commitment C⊕ = CA⊕CB whose components
are specified precisely as follows:

C⊕.debt := CA.debt ∪ CB .debt (1)
C⊕.cred := CA.cred ∪ CB .cred (2)
C⊕.ant := CA.ant (3)
C⊕.csq := CA.csq ∧ CB .ant ∧ CB .csq (4)

The state of C⊕ is defined based on the states of CA and CB . C⊕ is created exactly when
both CA and CB are created. C⊕ is respectively transferred, released, or canceled when at
least one of CA and CB is transferred, released, or canceled.

Singh’s [2008] formalization of commitments includes the similar idea of commitment
chaining, but serial composition additionally captures the intuition of a coalition of roles.
The above well-definedness condition CA.csq |= CB .ant follows Singh’s [2008] defini-
tion for chaining, although serial composition accommodates different roles. The second
commitment becomes active (CB .ant) whenever the first commitment resolves (CA.csq),
including the case where the first debtors perform without being required to do so (CA.ant
always false).

Informally, we say debtors are responsible for their commitments, and creditors are
beneficiaries of their commitments. In a detached commitment, the debtors are responsible
for eventually making the consequent true. Responsibility can be several (each debtor is
responsible for just its portion), joint (each debtor is individually responsible for the entire
commitment), or joint and several (the creditors hold one debtor fully responsible, who
then pursues other debtors). We use several responsibility so that, in serial composition of
commitments, a debtor is never compelled to assume additional responsibilities. The result
of serial composition is useful for reasoning about multiple commitments, but the original
commitment expression, with its individual commitments, must be retained to determine
which role(s) failed to perform if the resultant consequent is not produced.
C⊕ states the union of debtors is committed to the union of creditors to bring about

the consequent CA.csq ∧ CB .ant ∧ CB .csq when antecedent CA.ant is true. Debtors are
severally responsible for C⊕, so that debtors are never compelled to assume additional
responsibilities. Every debtor in CA.debt is partially responsible for discharging CA, and
thus is partially responsible for discharging C⊕. Also, every debtor in CB .debt has some
responsibility for C⊕. Equation 1 captures this intuition for debtors. Equation 2 captures
the analogous intuition for creditors.

If we order the states of a commitment as null < can < rel < xfer < cond <
detached < dis, then the state of a serial composition is the minimum of its constituents’
states: C⊕.status = min(CA.status,CB .status). That is, a serial composition progresses no
further than its least constituent.

Because of Equations 3 and 4, serial composition is neither commutative nor associative.
However, it creates commitments that are at least as strong as, and typically stronger than,
their inputs. CA ⊕ CB is typically stronger than CA because, even though both have the
same antecedent (CA.ant), in general, CA ⊕ CB has a stronger consequent (CB .csq vs.
DRAFT, Vol. V, No. N, July 2011.
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CA.csq ∧ CB .ant ∧ CB .csq). The lemma below shows serial composition is not always
stronger, because ⊕ is idempotent: a commitment can be usefully added to a commitment
chain only once.

LEMMA 2.3. If Ck is any commitment in a commitment chain
⊕

1≤i≤n Ci, then com-
posing Ck again does not increase the strength.

(
⊕

1≤i≤n

Ci)⊕ Ck =
⊕

1≤i≤n

Ci

PROOF. If
⊕

i Ci is well defined, then so is (
⊕

i Ci) ⊕ Ck. By inspection, Equations
(1–4) yield the same results for both sides.

2.6 Commitment Covering

Because commitments are crucial to our semantics of protocols, commitments are also cru-
cial to refinement. And because we need to compare two protocols, we need a mechanism
to compare two commitments. Specifically, each super-commitment must be covered by,
or make at least the same commitment as, another relevant sub-commitment. The com-
mitment comparison accommodates a mapping to account for the commitments being ex-
pressed at different levels of abstraction. Definition 2.4 extends Chopra and Singh’s [2009]
notion of commitment strength. In addition to the logical relationships between antecedents
and consequents, this definition incorporates the mapping of roles and propositions.

Definition 2.4 Commitment Covering. A stronger commitment CS covers (is stronger
than) a weaker commitment CW with respect to mapping M , written CW ≤M CS , if and
only if

∀d ∈ CW .debt M(d) ∩ CS .debt 6= ∅ (5)
∀c ∈ CW .cred M(c) ∩ CS .cred 6= ∅ (6)

M(CW .ant) |= CS .ant (7)
CS .csq |= M(CW .csq) (8)

where M(x) maps (super-) element x in CW to an expression of (sub-) elements in CS .

Every super-debtor is partially (severally) responsible for discharging the super-com-
mitment. Each super-role is mapped to (implemented by) a set of sub-roles M(d). We
require each super-debtor’s responsibilities be passed to one or more of its sub-debtors.
Together these sub-debtors assume the super-debtor’s responsibilities. Equation 5 captures
the requirement that every super-debtor’s responsibilities must pass to at least one of its
sub-debtors, so that responsibilities are not lost. Similarly, each super-creditor is a par-
tial beneficiary of the super-commitment. Equation 6 captures the requirement that every
super-creditor’s benefit pass to at least one of its sub-creditors.

In many situations, multiple sub-commitments must be combined to cover a single
super-commitment. In those cases, a super-commitment is covered by the serial com-
position of multiple sub-commitments.

We visualize our explanations by diagramming a commitment as a labeled arrow.

Cname(⊕)debt(∪) cred(∪)

ant(∧) csq(∧)
//

DRAFT, Vol. V, No. N, July 2011.
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The name of the commitment is written in the top center of the arrow. Debtors and creditors
are above the arrow and the antecedent and consequent below it. When multiple terms
appear in a position, they are implicitly combined using the operator in parentheses.

As a simple example, consider commitments C1 = CPayer,Payee(promise, pay), C2 =
CBuyer,Seller(order, pay), and an abstraction mapping M that is defined on roles and propo-
sitions as follows: (i) Payer 7→ {Buyer}, (ii) Payee 7→ {Seller}, (iii) promise 7→ order,
and (iv) pay 7→ pay. The diagram shows C2 covers C1.

C1Payer Payee
promise pay

//

C2Buyer Seller
order pay

//

≤M

GG

As another example, we obtain C(order, ship) ≤ C(order ∨ freeCoupon, ship) by Equa-
tion 7, since the stronger commitment detaches when order or freeCoupon is true. And,
likewise C(order, ship) ≤ C(order, ship ∧ expressDelivery) holds by Equation 8, since to
discharge the stronger commitment requires expressDelivery in addition to ship.

3. RUNNING EXAMPLES OF PROTOCOLS

Payer Payee
promiseMsg//

payMsg //

(a) Pay

Payer MM Payee
promiseMsg //

pledgeMsgoo
payPMsg//

payMMsg//

(b) PayViaMM

Buyer Seller
reqQuoteMsg //

sendQuoteMsgoo
orderMsg //
payMsg //
shipMsgoo

(c) OrderPayShip

Buyer MM Seller
reqQuoteMsg //

sendQuoteMsgoo
pledgeMsgoo

orderMsg //
payBMsg //

payMMsg//
shipMsgoo

(d) OrderPayViaMMShip

Fig. 4. Suggestive sequence diagrams for selected protocols (in general, alternative sequences may occur).

3.1 Protocol Descriptions

We introduce four running examples. Pay and PayViaMM are payment protocols whereas
OrderPayShip and OrderPayViaMMShip are order protocols involving payments. Sugges-
tive sequence diagrams are presented in Figure 4. Protocol Pay in Figure 4(a) is a basic
payment protocol between a payer and a payee. The payer may commit to pay the payee
by sending the promise message. Later, it sends a payment message directly to the payee.

Listing 1 shows the Proton specification of protocol Pay. Lines 2–5 declare roles Payer
and Payee, propositions promise and pay, and the commitment. Both promiseMsg and
payMsg messages are sent by Payer to Payee. A message may be sent only if its guard (the
expression between [ and ]) is true. The guard for payMsg in Line 8 is promiseMsg. If no
DRAFT, Vol. V, No. N, July 2011.
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Listing 1 Pay Protocol
1: protocol Pay {
2: role Payer; Payee;
3: prop promise; pay;
4: commitment
5: Cpay = C(Payer,Payee, promise, pay);
6: message
7: Payer→ Payee : promiseMsg means {promise, CREATE(Cpay)};
8: Payer→ Payee : [promiseMsg] payMsg means {pay};
9: }

guard is explicitly specified, as is the case for promiseMsg in Line 7, it is implicitly true.
A message’s meaning is expressed as a set of actions after means and between { and }.

In protocol PayViaMM (pay via middleman), if the payer chooses to do so, it commits
to paying the payee by sending the promise message. The middleman commits to sending
payM if the payer sends payP by sending pledgeMsg. The payer then sends a payment
indirectly to the payee, first paying the middleman, who in turn pays the payee. The
sequence diagram in Figure 4(b) shows a typical interaction. In this case, other acceptable
runs also exist: for example, the middleman may send the payM message before the payP
message. The Proton specification for PayViaMM is shown in Listing 2. Middleman
commits to Payer to pass along any payment it receives (Line 11). Payer will not pay
Middleman without this commitment (Line 12). Since payMMsg has an implicit guard of
true (Line 14), Middleman is allowed to pay early.

Listing 2 PayViaMM Protocol
1: protocol PayViaMM {
2: role Payer; MM; Payee;
3: prop promise;
4: payP; //payment from Payer to MM
5: payM; //payment from MM to Payee
6: commitment
7: CpayP = C(Payer,Payee, promise, payP);
8: CpayM = C(MM,Payer, payP, payM);
9: message

10: Payer→ Payee : promiseMsg means {promise, CREATE(CpayP)};
11: MM→ Payer : pledgeMsg means {CREATE(CpayM)};
12: Payer→ MM : [promiseMsg ∧ pledgeMsg]
13: payPMsg means {payP};
14: MM→ Payee : payMMsg means {payM};
15: }

Protocol OrderPayShip in Figure 4(c) supports a buyer placing an order with a seller.
The buyer requests a price quote for a good from the seller. The seller sends the price quote
along with its commitment to ship the good if the buyer orders. The buyer can accept the
seller’s offer by placing an order, which creates its commitment to pay for the good if it
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ships. The seller can ship first, or the buyer can pay first. Protocol OrderPayViaMMShip in
Figure 4(d) is similar to OrderPayShip except that it incorporates PayViaMM for payment.

3.2 Mapping Abstractions across Protocols

Since superprotocols represent higher-level abstractions than subprotocols, comparing pro-
tocols must address differences in abstraction level. To this end, we map elements (roles,
propositions, and commitments) of a putative superprotocol to elements of a putative sub-
protocol. We map every super-element to an expression of sub-elements, but a subprotocol
may contain sub-elements that do not correspond with any super-element.

Listing 3 Mapping M1: Pay to PayViaMM
1: map M1: Pay 7→ PayViaMM {
2: role
3: Payer 7→ {Payer};
4: Payee 7→ {Payee};
5: prop
6: promise 7→ promise;
7: pay 7→ payP ∧ payM;
8: commitment
9: Cpay 7→ CpayP ⊕ CpayM; //requires Cpay ≤M1

CpayP ⊕ CpayM
10: }

Consider mapping M1 in Listing 3 from Pay to PayViaMM. Each super-role is mapped
to a set of sub-roles. Line 3 maps the Payer super-role in Pay to the Payer sub-role in
PayViaMM. Each super-proposition in Pay is mapped to a Boolean expression of sub-
propositions in PayViaMM. Line 7 maps pay to the conjunction of payP and payM. Notice
that payP and payM are messages sent by different roles in PayViaMM ; thus even the
simple Line 7 demonstrates the generality of our mapping approach. Line 9 maps super-
commitment Cpay to the serial composition of sub-commitments CpayP and CpayM.

Listing 4 Alternative Mapping M2: Pay to PayViaMM
1: map M2: Pay 7→ PayViaMM {
2: role
3: Payer 7→ {Payer, MM};
4: Payee 7→ {Payee};
5: . . .
6: }

There can be multiple mappings between some protocol pairs. The Middleman role
does not appear in mapping M1. We can construct alternative mappings that group the
Middleman into coalitions with different super-roles. Mapping M2 in Listing 4 and Map-
ping M3 in Listing 5 are each the same as M1 except for their role mappings: M2 groups
the Middleman into a coalition with Payer and M3 into a coalition with Payee. PayViaMM
refines Pay under all three mappings M1, M2, and M3.
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Listing 5 Alternative Mapping M3: Pay to PayViaMM
1: map M3: Pay 7→ PayViaMM {
2: role
3: Payer 7→ {Payer};
4: Payee 7→ {Payee, MM};
5: . . .
6: }

We require each commitment to be explicit mapped. A commitment mapping must
not violate the role and proposition mappings, but that is not always sufficient to uniquely
determine the commitment mapping. It is possible that a super-commitment can be mapped
to multiple serial compositions that meet all constraints. In a hypothetical PayViaTwoMM
protocol, where the payment can be made through either Middleman1 or Middleman2, the
super-commitment C1 = CPayer,Payee(promise, pay) can be mapped to either of two serial
compositions (the protocol designer chooses between them based on other factors).

C1 7→ CPayer,MM1
(promise, payMM1)⊕ CMM1,Payee(payMM1, pay)

C1 7→ CPayer,MM2
(promise, payMM2)⊕ CMM2,Payee(payMM2, pay)

Mapping B1 in Listing 6 shows a possible mapping between Pay and PayViaMM, similar

Listing 6 Nonrefining Mapping B1: Pay to PayViaMM
1: map B1: Pay 7→ PayViaMM {
2: role
3: Payer 7→ {Payer};
4: Payee 7→ {Payee};
5: prop
6: promise 7→ promise;
7: pay 7→ payP ∧ payM;
8: commitment
9: Cpay 7→ CpayM ⊕ CpayP ; //wrong order

10: }

to M1 except the serial composition in Line 9 combines the commitments in the wrong
order. In Section 6, we show PayViaMM does not refine Pay under mapping B1.

4. FORMALIZING PROTOCOLS AND THEIR REFINEMENT

We assume a set of atomic propositions that describe the state of the world and states of
relevant commitments. We define actions as atomic propositions (being made true) and
commitment operations (being performed). Messages set propositions true, but not false.

Definition 4.1. A protocol is a sextuple 〈R,M, C,A,S,G〉 corresponding respectively
to (i) a set R of roles; (ii) a setM of message names; (iii) a set C of commitments; (iv) a
set A of Boolean propositions and commitment states; (v) a set S of states, S ⊆ 2M such
that ∅ ∈ S and if s ∈ S , gs ∈ G, and s ∈ gs.guard then s ∪ gs.msg ∈ S; and (vi) a
set G of guarded statements of the form 〈snd, rcv, guard,msg, actions〉 with snd, rcv ∈ R,
guard ⊆ S , msg ∈ M, and actions = {ai ∈ A} ∪ {ActC(Cj ∈ C)} ∪ {nop}. In addition,
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we impose the no overlap constraint: ∀gs1, gs2 ∈ G, if gs1.actions ∩ gs2.actions 6= ∅ then
gs1.guard ∩ gs2.guard = ∅.

Each message corresponds to an atomic proposition recording whether the message has
been sent. Each global state s ∈ S is a set of (the atomic propositions corresponding to)
the messages that have been sent in that state (Item v). Each guarded statement gs ∈ G
has a guard gs.guard which is a set of states, and a meaning gs.actexp—a conjunctive
expression of actions. A message msg can be sent by the sender (gs.snd) to the receiver
(gs.rcv) in state s only if s ∈ gs.guard. When m is sent, the action expression gs.actexp
becomes true in the next state. The actions corresponding to different messages may be
interleaved. The no overlap constraint ensures that if two or more super-actions contain the
same sub-action, and both super-actions are enabled in a state, then the occurrence of the
common sub-action in a sub-run is unambiguous as to which super-action it corresponds
to, which recall is key to our notion of refinement.

4.1 Protocol Enactment

We introduce a run, a possible computation through our model, as a basis for our semantics.
A run, notated π, is an alternating sequence of states and actions 〈s0, a1, s1, a2, s2, . . .〉
such that si+1 results from performing ai+1 in si. The length of π is written |π|.

We can now express two key intuitions. First, the semantics of a protocol is simply the
set of runs it allows. Underlying each run is a coarser message enactment: a sequence of
states and messages where each message’s guard is true in the state where the message
occurs. Second, a protocol refines another if and only if the runs of the first are also runs
of the second, with the proviso that the putative subprotocol may involve roles and actions
that are absent in the putative superprotocol. To capture the above, we need to relate
protocols to models. Our approach generates a model from the putative subprotocol and
then verifies (using suitable mapping) whether the putative superprotocol relates correctly
with the subprotocol in that model, that is, whether the runs of the two protocols relate as
explained above. Definition 4.2 specifies such a model.

Definition 4.2 Proton Model. Let P = 〈R,M, C,A,S,G〉 be a protocol. Then, the
Proton model for P is I = 〈Σ, P, PV, Li,Acti,APi, ti, G,G0, F 〉 where (i) Σ = R∪{e},
with e being the environment, (ii) P = A, (iii) ∀p ∈ A : PV (p) = {s|p ∈ s}, (iv) ∀i ∈
R : Li = {l} and Le =

∏
mi∈Mmi×

∏
Ci∈C Ci.status, (v) ∀i ∈ R : Acti = {m|m.snd =

i}∪{nop}, and Acte = {sched = r|r ∈ R}. (vi) ∀i ∈ R,∀s ∈ S : APi(s) = {m|sched =
i∧m.snd = i∧s ∈ m.guard}, (vii) ∀i ∈ R : ti(l) = l, and te =

∏
mi∈M tmi×

∏
Ci∈C t

Ci ,
(viii)G is the set of all states reachable fromG0 by transition function T in I, (ix)G0 = ∅,
and (x) F = {Ci.status 6= detached |Ci ∈ C}.

Where × is binary cross-product and
∏

is set cross-product. The protocol’s state is
the cross-product of the state of each message and commitment. Since both messages
and commitments involve multiple roles, each role has just a single state l and all state is
in the environment (iv). Proton supports interleaved rather than concurrent actions with
the environment scheduling one role at each step (v). Every role can perform the nop
action (no-operation) at every step (v). tmi is the transition function that tracks the past
occurrence of message mi, and tCi is the transition function that tracks the commitment
state of commitment Ci as defined by Figure 3 (vii).

Through a slight abuse of notation, for simplicity, we treat guards and actions as expres-
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sions in the following.

Definition 4.3 Enactment. Let P = 〈R,M, C,A,S,G〉 be a protocol and I be its Pro-
ton model. Then, an alternating sequence of states and messages 〈h0,m1, h1,m2, h2, . . .〉
is a message enactment of P if and only if h0 = ∅ and (∀j ≥ 0 : hj ∈ S,mj+1 ∈ M :
I, hj |= mj+1.guard and I, hj+1 |= mj+1.actexp).

A message enactment yields one or more runs with different interleavings of each mes-
sage’s actions. We define a function µ that maps each index in the message enactment to
the index in the run where the corresponding message expression mj .actexp becomes true.
Each message expression occurs in the same order in every run, and becomes true precisely
at the state where its execution completes.

Definition 4.4 Run. Let P = 〈R,M, C,A,S,G〉 be a protocol and I be its Proton
model. Then, an alternating sequence of states and actions 〈s0, a1, s1, a2, s2, . . .〉 is a run
of P if and only if s0 = ∅ and (∀j ≥ 0 : sj ∈ S, aj+1 ∈ A : I, sj |= aj+1.guard and
I, sj+1 |= aj+1.actexp).

We say a run is well defined to emphasize that it satisfies the guard and action expression
conditions above: that it is more than just an alternating sequence of states and actions. The
empty run 〈∅〉 is always well defined, since no agent is required to perform any action.

Definition 4.5 Generated Runs. Let P = 〈R,M, C,A,S,G〉 be a Proton protocol and
IP its model. Then, a run π = 〈s0, a1, s1, . . .〉 is generated by P if and only if there
exists a message enactment 〈h0,m1, h1, . . .〉, and there exists a strictly increasing function
on the natural numbers µ : N 7→ N such that (∀j ≥ 0 : I, sµ(j) |= mj+1.guard and
I, sµ(j+1) |= mj+1.actexp).

We write runs(P ) for the set of all runs generated by protocol P in IP .

4.2 Protocol Refinement

Definition 4.6 Mapping. M maps protocol P = 〈RP ,MP , CP ,AP ,SP ,GP 〉 to pro-
tocol Q = 〈RQ,MQ, CQ,AQ,SQ,GQ〉 if and only if M = 〈MR,MP ,MC〉, where

MR = {〈r,R〉 | r ∈ RP , R ⊆ RQ}
MP = {〈p, e〉 | p ∈ AP , e ⊆ 2AQ}
MC = {〈C,⊕iCi〉 |C ∈ CP ,Ci ∈ CQ,C ≤M ⊕iCi}

Informally, a run πQ embeds a run πP if all of πP lies within πQ. In effect, πQ does ev-
erything that πP does, and possibly more: as Mallya and Singh [2007] propose, a protocol
Q refines a protocol P if and only if every run of Q embeds some run of P . This captures
the intuition that any computation (run) allowed by Q is allowed by P as well.

Consider the mapping from Pay to OrderPayShip. In protocol Pay, promiseMsg means
{CREATE(Cpay)} and payMsg means {pay}. In protocol OrderPayShip, orderMsg means
{CREATE(Cpay)} and payMsg means {pay}. Therefore, promiseMsg and payMsg in Pay
mean the same, respectively, as orderMsg and payMsg in OrderPayShip.

Pay 7→ OrderPayShip
promiseMsg 7→ orderMsg

payMsg 7→ payMsg
DRAFT, Vol. V, No. N, July 2011.
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Pay has two message enactments: 〈〉 and 〈promiseMsg, payMsg〉. OrderPayShip has five
message enactments, which embed Pay’s runs as follows.

〈〉 : 〈〉
〈〉 : 〈reqQuoteMsg〉
〈〉 : 〈reqQuoteMsg, sendQuoteMsg〉
〈promiseMsg, payMsg〉 : 〈reqQuoteMsg, sendQuoteMsg, orderMsg, payMsg, shipMsg〉
〈promiseMsg, payMsg〉 : 〈reqQuoteMsg, sendQuoteMsg, orderMsg, shipMsg, payMsg〉

We define a mapped run where each sub-state s is enriched to a state M(s) by includ-
ing values for all super-propositions and super-commitments. We now compare enriched
sub-states M(s) in mapped sub-runs with super-states in super-runs. Below, we write
exp〈〈x 7→ y〉〉 to mean the expression resulting from the uniform substitution of symbol x
by expression y in exp.

Definition 4.7 Mapped Run. Let π = 〈s0, a1, s1, . . .〉 be a run andM = 〈MR,MP ,MC〉
be a protocol mapping. Then the M -map of π, M(π) = 〈M(s0), a1,M(s1), . . .〉 is a run
where for all s, M(s) ⊇ s and M(s) is the minimal set for which the following conditions
hold:

—(Propositions) if 〈m,E〉 ∈MP and s |= E, then m ∈M(s).
—(Commitments) if 〈C,

⊕
i Ci〉 ∈ MC and ∀i : s |= Ci.status, then C.status ∈ M(s)

where C.status = min(Ci.status).

Continuing with the above discussion, we map each sub-run and verify that it embeds
some super-run. The following definition captures the intuition that the embedding sub-
run steps through each of the states of the embedded super-run, but may potentially include
additional states. We ignore the transitions in each run.

To simplify the notation, we also introduce a projected mapping function M̂(q) =
M(q) ∩ AP that is the set of just the propositions and states in a (super-)protocol P .

Definition 4.8 Embedding. LetP andQ be two protocols. A run πQ = 〈q0, ·, q1, . . .〉 ∈
runs(Q) embeds a run πP = 〈p0, ·, p1, . . .〉 ∈ runs(P ), written emb(πQ, πP ), if and only
if there exists a strictly increasing function on natural numbers τ : N 7→ N such that
(∀i : 0 ≤ i ≤ |πP | : pi = M̂(qτ(i)) and (∀j : τ(i) ≤ j < τ(i+ 1) : M̂(qτ(i)) = M̂(qj)),
where M̂(q) = M(qj) ∩ AP .

Function τ maps from indices of πP to indices of πQ, and the conditions ensure every
time M̂(qj) changes, the new value matches the next pi.

Now we can define refinement in purely semantic terms that capture our intuition that
each mapped sub-run must embed some super-run. Notice that this definition implicitly
uses Proton models IP and IQ respectively for P and Q.

Definition 4.9 Refinement. Let P and Q be two protocols, and M a mapping from P
to Q. Then Q refines P under M if and only if (∀πQ ∈ runs(Q) : (∃πP ∈ runs(P ) :
emb(M(πQ), πP ))).

5. VERIFYING PROTOCOL REFINEMENT

Figure 5 shows the high-level process flow for verifying protocol refinement. The Proton
preprocessor reads the subprotocol, superprotocol, and mapping specifications and con-
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structs (as Section 6 details) the input for the MCMAS model checker in the Interpreted
Systems Programming Language (ISPL) [Lomuscio et al. 2009].

superprotocol
++

model in ISPL

++
mapping //

Proton preprocessor
2: decompose

3: diffuse, 4: map

33

++

MCMAS
model checker
1: embedding

subprotocol

33

CTL formulae in ISPL

33

Fig. 5. Proton process flow. Activities are shown in boxes and specification documents are not. Transformations
and comparisons are numbered 1 to 4 in sequence.

The input to MCMAS is a set of guarded statements for each role. MCMAS internally
generates a state transition system such as that shown in Figure 6. The system starts in
initial state s0. Action requestQuote transitions to state s1, action sendQuote transitions to
state s2, and so on. There is an edge for every action enabled in a state.

s4 ship
++s0

requestQuote// s1
sendQuote // s2

order // s3

pay 33

ship ++
s6

s5 pay
33

Fig. 6. A schematic of some possible enactments of the OrderPayShip protocol.

The Proton preprocessor generates an interpreted system model for the subprotocol.
There is one ISPL agent definition for each sub-role, and the state of all sub-elements
(propositions and commitments) are expressed as model state variables. The model checker
simulates the subprotocol’s actions. Because each super-element is mapped to an expres-
sion of sub-elements, the state of every super-element can be inferred from the subproto-
col’s state. As Section 5.5 shows, protocol refinement conditions are expressed as CTL
formulae. If all these CTL formulae are true, the subprotocol refines the superprotocol.

5.1 Intuition: Decomposition

A message can mean multiple things. To better understand and characterize a message, we
decompose each message into its meaning as a set of primitive, well-defined actions. The
meaning of a message is then the conjunction of all its constituent actions.

An action is either a Boolean proposition or a commitment operation. A propositional
action sets the value of the proposition to true. We do not support setting propositions to
false. Commitment actions are the operations CREATE, TRANSFER, RELEASE, and CAN-
CEL that change the state of a commitment.

We replace all message terms with a conjunction of their actions throughout a protocol,
decomposing protocol messages, converting from a “protocol of guarded messages” to a
“protocol of guarded actions.” Each msg term is replaced by a conjunction of its actions in
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both the guard and the action expression of every guarded statement.

means([guard] msg means{acti}) ⇒ [guard〈〈msg 7→
∧
i

acti〉〉 ]
∧
i

acti

5.2 Intuition: Diffusion

The result of decomposition is a set of guarded action expressions, but the model checker
executes actions, not action expressions. Therefore, each guarded action expression must
be converted to an equivalent set of guarded actions. However, computing the equivalent
guarded actions is nontrivial. For example, consider the guarded action expression

[guard] payP ∧ payM

A naı̈ve approach would be to apply the guard to each action separately: [guard] payP and
[guard] payM. Doing so would be overly restrictive because neither payP nor payM can
occur before the guard becomes true. Greater flexibility is needed.

Given a guarded conjunction of actions [guard] a1∧a2∧· · ·∧an, the action expression
becomes true when the last (in time) of the ais becomes true. Given a guarded disjunc-
tion of actions [guard] a1 ∨ a2 ∨ · · · ∨ an, the action expression becomes true when the
first (in time) of the ais becomes true. We minimally constrain when the ai become true
so the overall expression becomes true at exactly the same point, relative to the other ac-
tions, in both the super-runs and the sub-runs. For conjunctions, all the ai, except the last,
can move to any earlier point in time. For disjunctions, all the ai, except the first, can
move to any later point in time. The ai can even move all the way to the run’s beginning
(conjunction) or end (disjunction). Decomposition (Section 5.1) generates guarded action
expressions with conjunctions; abstraction mappings (Section 5.3) can generate guarded
action expressions with both conjunctions and disjunctions.

The recursive diffusion function dif transforms a guarded action expression to a set of
guarded actions.

dif([guard]
∨
i

expi) ⇒ {dif([guard] expi)} (9)

dif([guard]
∧
i

expi) ⇒ {dif([guard ∨
∨
j 6=i

¬expj ] expi)} (10)

dif([guard] act) ⇒ [guard] act (11)

where guard and expi are Boolean expressions of actions. Diffusion transforms the guarded
expression example above to

[guard ∨ ¬payM] payP
[guard ∨ ¬payP] payM

Both actions can still occur after the guard becomes true, so it allows at least all of the runs
allowed in the naı̈ve approach. Additionally, the first action to fire can fire at any time. If
payP fires before payM, then ¬payM is true when payP fires, so payP can fire at any time.
Diffusion thus covers possibilities that the naı̈ve approach omits.

Diffusion can generate multiple guarded statements for the same action, but MCMAS
requires a single guarded statement for each action. Therefore, we introduce the collec-
tion function col that converts a set of guarded statements back to canonical form, where
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there is a single guarded statement for each action. Consider each individual, input action.
Here, col collects potentially multiple guarded statements for that action in its input, and
generates a single guarded statement for that action in its output. The output guard for the
action is the disjunction of all the input guards. If an action appears in only one guarded
statement in the input, that guarded statement appears unmodified in the output.

col({ [guardi] acti }) ⇒ {[
∨
j

guardj ] acti | actj = acti}

Consider a partial protocol containing these two guarded statements. Since the mes-
sages overlap on action ship, condition freeCoupon ensures the no overlap constraint of
Definition 4.1.

[orderMsg ∧ ¬freeCoupon] paidShipMsg means {bill, ship};
[orderMsg ∧ freeCoupon] freeShipMsg means {ship};

Diffusion transforms those to the following three guarded statements.

[(orderMsg ∧ ¬freeCoupon) ∨ ¬ship] bill
[(orderMsg ∧ ¬freeCoupon) ∨ ¬bill] ship
[orderMsg ∧ freeCoupon] ship

Collection merges the two statements for ship, giving these two, final guarded statements.

[(orderMsg ∧ ¬freeCoupon) ∨ ¬ship] bill
[(orderMsg ∨ ¬bill] ship

Figure 7(a) schematically shows how the foregoing developments of decomposition, dif-
fusion, collection, and embedding combine together to check whether one protocol refines
another. However, by themselves, they do not address the fact that different protocols can
be written at different layers of abstraction.

super-gMsg
2:means // super-gExp

3:dif // super-gAct
3:col // super-gAct

sub-gMsg 2:means
// sub-gExp 3:dif

// sub-gAct 3:col
// sub-gAct

1:emb

(a) Decomposition, diffusion, collection, and run embedding

super-gMsg
2:means // super-gExp

4:map // super-gExp
3:dif // super-gAct

3:col // super-gAct

sub-gMsg 2:means
// sub-gExp 3:dif

// sub-gAct 3:col
// sub-gAct

1:emb

(b) Adds mapping between layers of abstraction

Fig. 7. Protocol refinement defined as transformations (horizontal lines) and comparisons (vertical lines) between
protocols of guarded messages (gMsg), guarded action expressions (gExp), and guarded actions (gAct). In each
subfigure, the top row refers to a superprotocol and the bottom row to a subprotocol.
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5.3 Accommodating Abstraction Mapping

Since superprotocols represent higher-level abstractions than subprotocols, comparing pro-
tocols must address differences in levels of abstraction. There is often no one-to-one cor-
respondence between super-elements and sub-elements. Protocol elements (roles, propo-
sitions, and commitments) must be mapped between the two protocols to compare them.

An important type of abstraction difference is the introduction of intermediaries or
middlemen in lower-level abstractions. Whereas two super-roles may communicate di-
rectly with each other using a single message in a high-level protocol, there is a natural
tendency for message communication to pass through multiple, intermediary sub-roles as
that protocol is refined to lower-level abstractions. Protocol refinement must allow super-
elements to span intermediaries. One super-proposition could map to an expression of
multiple sub-propositions, each controlled by different sub-roles (intermediaries), and one
super-commitment could be fulfilled through multiple sub-commitments and their inter-
mediate sub-debtors.

We say one protocol refines another protocol under a given mapping, because mapping
functions are an essential element for protocol refinement, and must be an explicit input.
A subprotocol might refine a superprotocol under one mapping, but not under a different
mapping. Our approach does not determine whether it is impossible for one protocol to
refine another protocol under any possible mapping.

A mapping expresses how terms in a putative superprotocol map to expressions in a
putative subprotocol. The mapping function map converts guarded action expressions
written with high-level abstractions xi in a putative superprotocol, to expressions ei of
low-level terms in a putative subprotocol. (Below, 〈〈xi 7→ ei〉〉 is a mapping assertion.)

map([guard] exp) ⇒ [guard〈〈xi 7→ ei〉〉] exp〈〈xi 7→ ei〉〉

5.4 Verifying Refinement: Summary

Figure 7(b) schematically shows the transformations and comparison required to demon-
strate protocol refinement. In both subfigures, horizontal lines show the transformations
of a single protocol: decomposition (means), mapping (map), diffusion (dif), and col-
lection (col). Vertical lines show the comparison between two protocols: run embedding
(emb). The nodes in the figure show how guarded messages (gMsg) are transformed first to
guarded action expressions (gExp), and then to guarded actions (gAct). In each subfigure,
the top row refers to a superprotocol and the bottom row refers to a subprotocol.

5.5 Generating CTL Formulae for Verification

MCMAS checks whether an interpreted system model satisfies specified CTL formulae.
In this section, we describe how Proton expresses conditions for commitment resolution,
overlapping messages, serial composition, and commitment covering as CTL formulae.
All such formulae must be satisfied for protocol refinement to hold.

5.5.1 Verify Run Embedding by Checking Guards. Protocol comparison is fundamen-
tally based on run embedding. Run embedding means, at every state, if the subprotocol can
perform an action then the superprotocol must also be able to perform that action. That is,
when an action’s sub-guard is true, its super-guard must also be true. Since run embedding
ignores actions not in the superprotocol, Proton generates CTL formulae for all actions that
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result from mapping all super-actions (∀a ∈M(Asuper)):

AG(a.sub-guard→ a.super-guard) (12)

5.5.2 Verify that Messages Do Not Overlap. So that every action a in a sub-run can be
uniquely associated with a message, we verify the no overlap constraint of Definition 4.1.
For every pair of guarded statements gs1 and gs2 that share a common action meaning a,

AG(¬(gs1.guard ∧ gs2.guard)) (13)

5.5.3 Verify that Detached Commitments Eventually Resolve. We require each de-
tached commitment must eventually resolve in every correct protocol enactment. We em-
ploy model checker fairness constraints (expressions that must be true infinitely often on
any run) to eliminate sub-runs in which the sub-roles fail to act properly and resolve their
detached commitments. Doing so restricts our verification to correct enactments of the
given protocols, thus avoiding false negatives due to incorrect enactments.

Fairness Csub.status 6= detached (14)

The states of super-commitments can be inferred from the states of sub-commitments.

5.5.4 Verify Commitment Covering. The truth or falsity of a statement in an unreach-
able state has no bearing on the enactment of a protocol, so we can replace a |= b state-
ments by the CTL formula AG(a → b). Doing so enables us to use the model checker
to verify commitment covering, which would otherwise need to be handled separately, as
indeed it was in a previous version of Proton.

Verifying one commitment covers another under map M, CW ≤M CS , is done in two
parts. First, the preprocessor verifies the debtor and creditor conditions (Equations 5–6).
Second, the model checker verifies the antecedent and consequent conditions (Equations 7–
8) hold in all (reachable) states with the CTL formulae

AG(M(CW .ant)→ CS .ant) (15)
AG(CS .csq →M(CW .csq)) (16)

5.5.5 Verify Serial Compositions are Well Defined. For serial compositions C⊕ =
CA⊕CB , the model checker verifies the well-definedness condition holds in all (reachable)
states on all paths with the CTL formula

AG(CA.csq → CB .ant) (17)

6. TOOLING, DETAILED EXAMPLES, AND EXPERIMENTAL RESULTS

In this section, we pull together the many elements: commitments, serial composition of
commitments, and commitment covering; the example payment and order protocols, and
various mappings between them; and the formal definitions. We concretely demonstrate
how PayViaMM refines, or fails to refine, Pay under various mappings.

Proton verifies protocol refinement using the process flow as shown in Figure 5 and the
pseudocode for refines(super, map, sub) shown in Listing 7. The inputs P andQ are proto-
cols, which in our syntax are in terms of guarded messages. The first lines of the algorithm
transform these into protocols expressed in terms of guarded actions. Proton generates an
interpreted system model from the guarded actions of the subprotocol. There is one MC-
MAS agent definition for each sub-role, and the state of the sub-elements (propositions and
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Listing 7 Calculate refines(P , M , Q)
1: QgMsg = Q . Input Q is a protocol of guarded messages
2: PgMsg = P . Input P is a protocol of guarded messages
3: QgAct = col(dif(means(QgMsg))) . protocol of guarded sub-actions
4: PgAct = col(dif(mapM (means(PgMsg)))) . protocol of guarded super-actions
5: model = genModel(QgAct) . generate ISPL model
6: for all actP ∈ PgAct.actions do . For all super-actions
7: genCTL(AG(actP .sub-guard→ actP .super-guard))
8: end for
9: for all CQ ∈ QgAct.C do . For all sub-commitments

10: genFairness(CQ.status 6= detached)
11: end for
12: for all CP ∈ PgAct.C do . For all super-commitments
13: CQ = CP .coveringCommitment
14: genCTL(AG(M(CP .ant)→ CQ.ant)
15: genCTL(AG(CQ.csq→M(CP .csq))
16: end for
17: for all CA ⊕ CB do . For all serial compositions
18: genCTL(AG(CA.csq→ CB .ant))
19: end for
20: for all overlapping guarded statement pairs gs1 and gs2 in P and Q do
21: genCTL(AG(¬(gs1.guard ∧ gs2.guard)))
22: end for
23: ctl = all generated CTL formulae
24: return MCMAS(model, ctl) . Are all CTL formulae satisfiable?

commitments) are MCMAS state variables or MCMAS evaluation expressions. The MC-
MAS model checker then simulates the subprotocol’s actions. Because each super-element
is mapped to an expression of sub-elements, the superprotocol’s state can be inferred from
the subprotocol’s state. Refinement requires the model of the subprotocol to satisfy a set
of CTL formulae. If all formulae are true, the subprotocol refines the superprotocol.

Cpay 7→ CpayP ⊕ CpayM if Cpay ≤M1
CpayP ⊕ CpayM

CpayPayer Payee
promise pay

//

CpayP⊕CpayM{Payer, MM} {Payee, Payer}
promise payP ∧ payM

//

≥M1

FF

CpayPPayer Payee
promise payP

//

⊕

FF

CpayMMM Payer
payP payM

//

We now check whether PayViaMM refines Pay under map M1. Using the commitment
diagrams from Section 2.6, this diagram demonstrates commitment Cpay from Pay is cov-
ered by the serial composition of CpayP and CpayM from PayViaMM under mapping M1

in Listing 3. The bottom-left arrow states that if promise becomes true, Payer commits to
making payP true. The bottom-right arrow states that if payP becomes true, MiddleMan
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commits to making payM true. In the serial composition (middle arrow), if promise be-
comes true, then Payer and MiddleMan (severally) commit to making both payP and payM
true. The well-definedness condition ensures that the discharge of the first commitment
entails the antecedent of the second commitment, thus detaching it. The Payee and Payer
are creditors of the input commitments, and are thus creditors of the serial composition.
The serial composition covers the commitment in Pay (top arrow).

Proton generates the following six CTL formulae to verify PayViaMM refines Pay un-
der M1. Equation 12, which verifies whether sub-guards imply super-guards, for actions
promise, payP , and payM , generates Equations 18–20, respectively. Equation 21 verifies
that CpayP ⊕ CpayM is valid. Equations 7–8, which verify the antecedent and consequent
conditions of CpayP ⊕ CpayM covers Cpay, generates Equation 22–23, respectively (the
debtor and creditor conditions in Equations 5–6 are checked directly by the Proton prepro-
cessor, not by MCMAS).

AG(> → >) (18)
AG(promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)→

(promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)) ∨ ¬payM ) (19)
AG(> → (promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)) ∨ ¬payP ) (20)
AG(payP → payP ) (21)
AG(promise→ promise) (22)
AG(payP ∧ payM → payP ∧ payM ) (23)

All of the above formulae are obviously true, except Equation 20, which can be rewrit-
ten AG(payP → promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)). It is true because the
progression of the model, controlled by message guards, ensures payP becomes true only
after promiseMsg. MCMAS verifies each generated CTL formula holds in the model, so
PayViaMM refines Pay under map M1.

Proton generates exactly the same input to MCMAS when checking whether PayViaMM
refines Pay under map M2 or map M3, because the subprotocol models are derived from
exactly the same PayViaMM protocol, the superprotocol Pay contains exactly the same
propositional and commitment super-elements, and exactly the same CTL conditions must
be checked. Therefore, PayViaMM refines Pay under both maps M2 and M3.

AG(> → >) (24)
AG(promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)→

(promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)) ∨ ¬payM ) (25)
AG(> → (promise ∧ CREATE(CpayP) ∧ CREATE(CpayM)) ∨ ¬payP ) (26)
AG(payM → promise) (27)
AG(promise→ payP ) (28)
AG(promise ∧ payP ∧ payM → payP ∧ payM ) (29)

Proton correctly reports failures. Proton generates these CTL formulae when checking
whether PayViaMM refines Pay under mapping B1 in Listing 6. Recall that B1 maps the
super-commitment to a serial composition in the wrong order. Equations 24–26 are the
same as Equations 18–20, and all hold in the model. Equations 29 obviously holds. But
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Superprotocol Subprotocol Map refines ⊕ cover formulae time
Pay PayViaSpouse M1 Yes 0 1 4 0.7
Pay FullPay M1 Yes 0 1 4 0.8

Pay PayViaMM M1 Yes 1 1 6 0.7

Pay PayViaMM M2 Yes 1 1 6 0.7
Pay PayViaMM M3 Yes 1 1 6 0.6

Pay PayViaMM B1 No 1 1 6 0.7

Pay PayViaCheck M1 Yes 2 1 7 1.1
Pay PayViaCredit M1 Yes 2 1 9 3.6

Pay OrderPayShip M1 Yes 1 1 5 1.0

Pay OrderPayViaMMShip M1 Yes 2 1 7 1.2
PayViaMM PayViaCheck M1 Yes 3 2 12 1.7

PayViaMM PayViaCredit M1 Yes 3 2 12 1.7
PayViaMM OrderPayViaMMShip M1 Yes 0 2 7 1.2

OrderPayShip OrderPayViaMMShip M1 Yes 1 2 11 1.4

OrderPayShip NetBill2 M1 Yes 0 2 9 1.2
OrderPayViaMMShip NetBill3 M1 Yes 0 3 12 1.8

Table I. Information about each demonstrated Refinement. The columns are: the name of the superprotocol; the
name of the subprotocol; the name of the map; whether subprotocol refines superprotocol under map; ⊕ is the
number of serial compositions; covers is the number of commitment covering checks; formulae is the number of
CTL formulae verified by the model checker; and time is the elapsed time (in seconds) for refinement verification.

Equation 27 does not hold because payM has a true guard in Listing 2, so the Middleman
can send payM at any time, even before promise. That leaves Equation 28, which comes
from the antecedent of Cpay which is promise and the antecedent of CpayM⊕CpayP which
is payP . In the states between the Payer promising and the Payer actually paying, the
formula does not hold, meaning Cpay can become detached without CpayM ⊕ CpayP also
becoming detached. The result is Cpay is not covered by CpayM ⊕ CpayP. MCMAS cor-
rectly reports these two formulae are false in the model, and PayViaMM does not refine
Pay under mapping B1.

As in Mallya and Singh’s [2007] approach, an interesting consequence of our treat-
ment of refinement is that aggregation functions like refinement. For example, consider a
protocol OrderPayShip. Because all enactments of OrderPayShip necessarily include an
enactment of Pay, OrderPayShip is naturally a refinement of Pay. The foregoing coheres
with the notion of subtype in object-oriented programming.

Proton verified all the refinements shown in Figure 1 and Table I. The first three columns
are the superprotocol, subprotocol, and mapping, respectively. OrderPayShip is identical
to the first NetBill scenario described by Mallya and Singh [2007]. NetBill2 and NetBill3
are scenarios 2 and 3 in the same paper. PayBySpouse is a new, simple, payment protocol
where one person promises and then his or her spouse pays. FullPay is similar to Pay, but
exercises all the commitment operations: CREATE, TRANSFER, RELEASE, and CANCEL.

Each superprotocol-subprotocol pair has a unique set of mapping names, so M1 for Pay
and PayViaMM is a different mapping than M1 for Pay and PayViaCheck. Mappings M1,
M2, M3, and B1 for Pay and PayViaMM are shown, respectively, in Listings 3, 4, 5, and 6.
The refines column is whether subprotocol refines superprotocol under map; the⊕ column
is the number of serial compositions in the mapping; the covers column is the number
of commitment covering checks; the formulae column is the number of CTL formulae
verified by the model checker; and the time column is the elapsed time in seconds for
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the complete refinement verification, including Proton preprocessing and MCMAS model
checking.

7. CORRECTNESS OF OUR REFINEMENT VERIFICATION METHOD

We now establish the correctness of the verification method of Section 5 with respect to
the formal definitions of Section 4. Theorem 7.1 is our main correctness result: it ties
the algorithm of Listing 7 with Definition 4.9. An interesting subtlety is that whereas
Definition 4.9 “maps up,” enriching the states in sub-runs, the algorithm “maps down,”
expanding expressions and ignoring elements not in AP .

THEOREM 7.1. Let P and Q be two protocols, and let M be a mapping from P to Q.
Then, refines(P,M,Q) returns true if and only Q refines P under M .

PROOF. Let IQ be the Proton model generated from Q. Define mappings MQ =
means(Q) and MP = M(means(P )).
⇒ Assume refines(P,M,Q). Then all of the CTL formulae in Listing 7 are true. Because

of Line 7, all sub-guards imply their super-guards. Because of the fairness condition at
Line 10, all detached commitments eventually resolve. Because of Lines 14–15, all com-
mitment coverings are valid. Because of Line 18, all serial compositions are valid. Because
of Line 21, no guarded statement pairs overlap.

Let πQ be a run in runs(Q). By Theorem A.7, there is a run π′Q ∈ runs(col(dif(MQ(Q)))).
By Theorem A.2, there exists a run π′P ∈ runs(col(dif(MP (P )))) And, by Theorem A.7,
there exists a run πP ∈ runs(P ). Therefore, for every πQ there is a πP and Q refines P
under M by Definition 4.9.
⇐ Assume Q refines P under M. For any πQ ∈ runs(Q) there exists a run πP ∈

runs(P ) such that emb(M(πQ), πP ) by Definition 4.9. By Theorem A.7, there exists a
π′Q ∈ runs(col(dif(MQ(Q)))) and a π′P ∈ runs(col(dif(MP (P )))). By Theorem A.2,
emb(M(πQ), πP ) implies (∀ai ∈ AP : I, g0 |= AG(ai.sub-guard → ai.super-guard)),
which implies the CTL formulae at Line 7 are true.

Because all detached commitments must eventually resolve, the fairness formulae at
Line 10 are true. Because all commitment coverings must be valid, the formulae at Lines 14-
15 are true. Because all serial compositions must be valid, the formulae at Line 18 are true.
Because protocols must be well defined, the formulae at Line 21 are true. Because all of
the CTL formulae evaluate to true, refines(P,M,Q) returns true.

8. DISCUSSION

Commitments support finer guard granularity than propositions can. A proposition divides
time into two stages: before and after it holds. A commitment divides time into four stages:
null, active and conditional, active and detached, and resolved.

null CREATE// cond ant // detached
csq // resolved

Rather than waiting for final resolution, a protocol can make progress sooner if an ac-
tion’s guard is enabled after one of the first three stages. Commitments increase protocol
flexibility, because guards can specify earlier stages.

For example, suppose the Buyer role in OrderPayShip decides whether to pay based on
the state of proposition ship. Since ship has only two stages, the role’s decision can only
be “all” (ship complete) or “nothing” (ship not complete). The “all” choice is represented
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by the guarded statement [ship] pay, and the “nothing” choice is represented by [true] pay.
Using commitments, the protocol can guard pay based on any of the four commitment
stages. A guard can enable pay as soon as the debtor commits to make ship true.

[CREATE(CSeller,Buyer(pay, ship))] pay

Incorporating commitments can improve flexibility over traditional protocol frameworks.
A necessary prerequisite of employing protocols is that the participants of a service

engagement agree on the format and meanings of the messages they exchange. Note that
such agreement is unavoidable: it is just that in today’s practice the meanings are not
expressed clearly and explicitly and any agreements are hardcoded in implementations.

Our definition of protocol refinement does not mean agents that can participate in a
superprotocol can necessarily participate unchanged in a subprotocol. In our model, agents
may need to be modified to participate in subprotocols. For example, an agent capable of
participating in a basic payment protocol needs to handle the additional messages required
in paying via check or credit card.

8.1 Relevant Literature

Proton is the first approach for protocol refinement that incorporates mapping super-elements
to expressions of sub-elements. Proton supports mapping super-propositions to Boolean
expressions of sub-propositions as well as mapping super-commitments to serial composi-
tions of chains of sub-commitments.

Mallya and Singh [2007] propose a definition of protocol refinement (which they call
subsumption) that compares the order of state pairs in state runs. For every pair of states in
the superprotocol, there must be some matching pair of states in the subprotocol with the
same order. However, this definition can create false positives when multiple state pairs
in the superprotocol each match the same state pair in the subprotocol or when one super-
state matches different sub-states. For example, all state pairs in the super-run 〈1, 2, 3〉 have
matching state pairs in the sub-run 〈2, 1, 3, 2〉 even though the two runs are very different.
Our definition compares runs step-by-step and thereby so avoids the above problems, even
if protocol looping is allowed.

Our definition of commitment covering is an extension of commitment strength as de-
fined by Chopra and Singh [2009], who identify the basic requirements in Equations 7
and 8. We extend Chopra and Singh’s definition with the role requirements in Equations 5
and 6, and we allow commitments to be at different levels of abstraction by including an
abstraction mapping function.

Singh [2008] states rules for commitment chaining similar to those proposed here, but
does not directly state a rule for stronger consequents, and does not directly state a rule
similar to serial composition. The concrete commitment created by serial composition
provides a midpoint in commitment reasoning, and can potentially make the comparison
of commitments across protocols more explicit.

When we say a group of debtors are jointly and severally responsible for eventually
making the consequent true, we mean this in the sense of Rescher’s [1998] legal responsi-
bility where “individual agents are responsible only for their own individual acts.” We do
not mean Rescher’s notion of legal responsibility where the group as a whole becomes a
legal person, nor his notion of moral responsibility where intentions are crucial (intentions
are absent from our formulation). In Norman and Reed [2002], group imperatives can be
addressed distributively (as a list of individuals) or as a collective. In both cases, group
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imperatives imply more than just a collection of individual imperatives. While joint and
several responsibility is similar to distributive responsibility, because only one member of
the group is required to act, it is different, because joint and several responsibility is only a
summary of individual responsibilities, and does not impose additional responsibilities on
roles that are members of a group.

Our work on protocols builds on the fundamental intuition that protocol states can be
effectively characterized in terms of the commitments of the participants, and that such
characterization can be used as a basis for correct enactments and for further reasoning.
The earliest works that developed the above theme include the commitment machines ap-
proach of Yolum and Singh [2002] for business protocols and McBurney and Parsons’
[2002] framework for sequencing multiple dialogue games, allowing one dialogue game
to be embedded inside another partially completed dialogue game.

We do not propose specific, desirable properties of protocols, but others have. Yolum
[2007], Singh and Chopra [2010], and El-Menshawy et al. [2010] describe desirable prop-
erties of protocols in general and commitment protocols in particular, including fairness,
safety, liveness, operability, and transparency.

We use Boolean guards to constrain actions, but other representations are possible. Bal-
doni et al. [2010] proposed constraints based on regulative specifications. Regulative speci-
fications constrain the execution flow using special-purpose operators on state values. Gab-
bay [1987] proposes using past-temporal expressions for controlling when actions can oc-
cur and future-temporal expressions for controlling which actions must occur in the future.
Past-temporal expressions are more expressive than our guard expressions.

8.2 Directions for Future Research

Constructing a mapping function from a superprotocol to a subprotocol can be a challeng-
ing task. Advice to guide protocol designers, in the form of a basic mapping methodology,
would be a valuable addition to this work. Winikoff [2006; 2007] proposed a methodol-
ogy for the related task of designing commitment-based protocols. Some of these ideas
could be valuably adapted into a future commitment mapping methodology. The approach
begins with an easily understood, but not exhaustive, set of sequence diagrams, and then
specifies specific steps to generalize the protocol and expand its set of runs.

Our model and formulation of refinement respects intuitions similar to those of Mallya
and Singh [2007]. Mallya and Singh describe protocol composition and establish results
relating composition and refinement. We expect that similar results would apply in our
framework, and plan to formalize and reason about composition in future work.

Model checkers have been extended to handle epistemic and strategic modal operators
[Alur et al. 2002; Fagin et al. 1995]. We have begun investigating the inclusion of such
concepts into our definitions. Building on top of a model checker that already handles
those concepts, such as MCMAS, will simplify our future extensions. Another important
enhancement would be to expand the class of protocols to those that support iteration.
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A. SUPPLEMENTARY THEOREMS

The first theorem connects interpreted system models with our definitions.

THEOREM A.1. Let P = 〈R,M, C,A,S,G〉 be a protocol and let I be its Proton
model. A run is allowed by a Proton model I (Definition 4.2) if and only if it is a well-
defined run (Definition 4.3).

PROOF SKETCH. Proton models allow interleaved, but not concurrent, messages. At
each step, the environment schedules some role r ∈ R. Role r chooses some enabled
message m ∈ Actr, and the ISPL joint action Act is equal to m,

Runs for both ISPL and Definition 4.3 begin in state ∅. At every step in a run, a message
is enabled in ISPL by local strategy AP r if and only if that message’s guard is enabled.
Therefore, a message can be appended to an ISPL run if and only if it can be appended to
a Proton run.

The next theorem shows embedding from Definition 4.8 is equivalent to the model
checker verifying guards with Equation 12. The idea behind this theorem is that it as-
sumes the two protocols are already mapped, so the guards of the superprotocol can be
evaluated in the Proton model generated from the subprotocol.

Let πi denote the path consisting of the first i steps of π, let |π| be the length of path π,
and let π + 〈a, s〉 be path π extended by action a resulting in new state s.

THEOREM A.2. Let P and Q be two protocols, and M a mapping between them. Let
IQ be the Proton model forQ as specified in Definition 4.2. Let πP = 〈p0, b1, p1, . . . 〉, and
πQ = 〈q0, c1, q1, . . . 〉. Then, for all runs πQ ∈ runs(Q), there exists a run πP ∈ runs(P )
such that emb(M(πQ), πP ) if and only if (∀ai ∈ AP : I, g |= AG(ai.sub-guard →
ai.super-guard))

PROOF. From Theorem A.1, checking for well-defined runs is the same as checking the
interpreted system model. Figure 8 diagrams the relationships between entities in πP and
πQ.

Let RHS be emb(M(πQ), πP ), and let LHS be (∀ai ∈ AP : I, g |= AG(ai.sub-guard→
ai.super-guard)).
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πP :
bi // pi

bi+1 //

τ

��

pi+1

bi+2 //

τ

��
πQ :

cτ(i) // qτ(i)
cτ(i)+1// qτ(i)+1

cτ(i)+2 // . . .
cτ(i+1)−1// qτ(i+1)−1

cτ(i+1) // qτ(i+1)

cτ(i+1)+1 //

Fig. 8. The mapping between entities in πP and πQ.

⇒ Assume RHS. Let LHSj = (∀i : τ(i) ≤ j, ai ∈ Aj : I, g |= AG(ai.sub-guard →
ai.super-guard)) where set Aj = {bk | j = τ(i) ∧ bk ∈ πiP }We prove LHSj by induction
on path length j in πQ.

—Base case:
• Define A0 = ∅.
• Define τ(0) = 0.
• LHS0 is vacuously true.

—Inductive Step: Assume LHSj . Consider action cj .
—Case: There are no more actions cj . We are at the end of πQ and setting j = |πQ|

gives LHS|πQ| = LHS.
—Case: cj .actexp /∈ AP . This corresponds to the case τ(i) < j < τ(i+ 1).
• cj has no effect on P .
• M̂(qτ(i)) = M̂(qj) by Definition 4.8.
• Define Aj+1 = Aj .
• Therefore, LHSj+1 = LHSj is true.

—Case: cj ∈ AP . This corresponds to the case j = τ(i+ 1).
• Define j = τ(i+ 1).
• pi = M̂(qτ(i+1)−1) by Definition 4.8.
• pi+1 = M̂(qτ(i+1)) by RHS.
• Since qτ(i+1) = qτ(i+1)−1 ∪ cτ(i+1).actexp and pi+1 = pi ∪ bi+1.actexp, then
cτ(i+1).actexp = bi+1.actexp, and cτ(i+1) = bi+1.

• Let ai+1 = cτ(i+1) = bi+1 be the name of the action in LHS.
• Define Aj+1 = Aj ∪ bi+1. bi+1 might already be a member of Aj .
• M̂(qτ(i+1)−1) |= cτ(i+1).guard, since πQ is well defined.
• pi |= bi+1.guard, since πP is well defined,
• Therefore, cτ(i+1).guard = bi+1.guard in state pi.
• cτ(i+1).guard→ bi+1.guard in state pi, by previous step. Induction shows it holds

for all states in all πQ ∈ runs(Q). Since we do not consider all runs πP ∈ runs(P ),
there may be states where bi+1.guard is true, but cτ(i+1).guard is not true.

• ai+1.sub-guard→ ai+1.super-guard.
• Since there is a πQ ∈ runs(Q) for every true guard, it is true for all reachable states

(AG).
• Therefore, LHSj+1 is true.

⇐ Assume LHS. Let RHSj = (∀i : τ(i) ≤ j : πiP is well defined∧emb(M(πjQ), πiP )).
Given any πQ, we will construct a πP such that RHSj by induction on path length j in πQ.

—Base case:
DRAFT, Vol. V, No. N, July 2011.
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• q0 = M(q0) = ∅ = p0.
• Define τ(0) = 0.
• Define πiP = 〈p0〉 which is well defined.
• Since p0 = ∅ = M̂(q0), then emb(M(π0

Q), π0
P ) = RHS0.

—Inductive Step: Assume RHSj . Then emb(M(π
τ(i)
Q ), πiP ) so that pi = M̂(qτ(i)). Con-

sider the next action cj+1 ∈ πQ.
—Case: There are no more actions cj+1. We are at the end of πQ and setting j = |πQ|

gives RHS|πQ| = RHS.
—Case: Action cj+1 → AP .
• cj+1 does not change M̂(qj) by Definition 4.8.
• RHSj+1 = RHSj is true.

—Case: cj+1 equals some b′ ∈ AP .
• cj+1 ∈ AP and cj .guard and cj .actexp are also elements in AP .
• Define τ(i+ 1) = j + 1.
• Let ai+1 in LHS equals cj+1 = cτ(i+1) and b′ = bi+1 in RHS, so that ai+1 =
cτ(i+1) = bi+1. And ai+1’s sub-guard is cτ(i+1).guard and ai+1’s super-guard is
bi+1.guard.

• Define pi+1 = pi ∪ bi+1.actexp.
• Define πi+1

P = πiP + 〈bi+1, pi+1〉.

Show πi+1
P is well defined.

(1) • qτ(i+1)−1 |= cτ(i+1).guard, since πQ is well defined.
• M̂(qτ(i+1)−1) |= cτ(i+1).guard, since cτ(i+1).guard is an element of AP .
• M̂(qτ(i)) |= cτ(i+1).guard by Definition 4.8.
• pi |= cτ(i+1).guard by Definition 4.8 and RHSj .
• ai+1.sub-guard→ ai+1.super-guard by LHS.
• Since cτ(i+1) = ai+1 = bi+1 are all the same action, cτ(i+1).guard→ bi+1.guard.
• Therefore, pi |= bi+1.guard.

(2) pi+1 = pi ∪ bi+1.actexp by definition above.

Show emb(π
τ(i+1)
Q , πi+1

P ).

• pi = M̂(qτ(i+1)−1) by Definition 4.8 and RHSj .
• Since cτ(i+1) = ai+1 = bi+1 are all the same action, pi∪bi+1.actexp = M̂(qτ(i+1)−1)∪
cτ(i+1).actexp.

• This reduces to pi+1 = M̂(qτ(i+1)).

Therefore, RHSj+1.

The next definition characterizes that action a whose a.actexp causes m.actexp to be-
come true.

Definition A.3 Decisive. Let P be a protocol, let e, e′ be two Boolean expressions, and
let s be any state and s′ = s∪ e′ be the next valid state after s where e′ holds. e′ is decisive
for e, at a state s if and only if s |=/ e′, and s′ |= e′ implies s |=/ e ∧ s′ |= e.

DRAFT, Vol. V, No. N, July 2011.



App–4 · Gerard and Singh

The state s′ in the definition is the state in which e becomes true. An expression e′ is
decisive for expression e in state s if and only if, making e′ true also makes e true. A
change in e′ causes a change in e.

In particular, we say an action a is decisive for message m at state s exactly when
expression a.actexp is decisive for expression m.actexp at state s.

The next theorem shows that diffusion and collection properly maintain the guards and
action expressions as a message is decomposed from a protocol P to its derived protocol
P ′ = col(dif(means(M(P )))). We prove it for mappings that contain individual actions
and conjunctions, as well as mapping that contain disjunctions even though disjunction is
not required by later proofs. This theorem is used between the superprotocol’s super-gMsg
and super-gAct, and between the subprotocol’s sub-gMsg and sub-gAct in Figure 7(b).

THEOREM A.4 DIFFUSION AND COLLECTION PRESERVE GUARDS. LetP be any pro-
tocol, let M be any mapping function, and let gs ∈ G be any guarded statement in P , pos-
sibly containing guarded action expressions. If gsi is any guarded statement derived from
gs by diffusion, and if gsi is decisive for gs at state s then

s |= gsi.guard↔ s |= gs.guard

PROOF. Show diffusion preserves guards.
Diffusion breaks one guarded statement gs into a set of guarded statements gsi. Let

LHSi = ((gsi is decisive for gs at s) → (s |= gsi.guard ↔ s |= gs.guard)) where gsi
is derived from gsi−1 by diffusion and collection. We prove LHSi by induction on the
structure of gsi.actexp.

—Base case:
• gs0 = gs and gs0.guard = gs.guard is trivially true for all states s.
• LHS0 is true.

—Inductive Step: Assume LHSi.
—Case: There is no outermost operator in gsi.actexp.
• Then gsi.actexp is a single guarded action.
• gsi+1.guard = gsi.guard by Equation 11.
• gsi+1.guard = gs.guard by LHSi.
• LHSi+1 since this holds in all states s.

—Case: The outermost operator of gsi.actexp is disjunction.
• Equation 9 applied to gsi creates multiple guarded statements, one for each dis-

junct. Let gsi+1 be any of those disjuncts.
• gsi+1.guard = gsi.guard by Equation 9,
• Each gsi+1 is decisive for gs.
• gsi+1.guard = gs.guard by LHSi.
• LHSi+1 since this holds in all states s.

—Case: The outermost operator of e.actexp is conjunction.
• Equation 10 applied to gsi creates multiple guarded statements, one for each con-

junct. Let gsi+1 be any of those conjuncts.
• For gsi+1 to be decisive at s, all other conjuncts must be true at s.
• gsi+1.guard = gsi.guard by Equation 10 because all other conjuncts are true.
• gsi+1.guard = gs.guard by LHSi.
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• LHSi+1 since this holds in all states s for which gsi+1 is decisive.

By the no overlap constraint of Definition 4.1, in any state s, at most one of the guarded
statement combined by collection can be enabled at a time. Therefore, collection also
preserves guards.

The next three theorems relate runs of a protocol P expressed in terms of messages and
the runs of its derived protocol P ′ = col(dif(M(P ))) expressed in terms of actions. These
theorems relate runs between both (1) the super-gMsg and super-gAct protocols, and (2)
the sub-gMsg and sub-gAct protocols as shown in Figure 7. The first theorem proves every
run of P embeds a run of P ′.

THEOREM A.5. If Let P = 〈R,M, C,A,S,G〉 be a protocol, possibly containing
guarded action expressions, and let M be any mapping function. Let P ′ = col(dif(M(P )))
be the protocol derived from P by mapping, diffusion, and collection. Then

∀πr ∈ runs(P ) : (∃πs ∈ runs(P ′) : emb(πs, πr))

PROOF. Denote πr = 〈h0,m1, h1, . . . 〉 ∈ runs(P ) with message mi ∈ M, and
πs = 〈g0, a1, g1, . . . 〉 ∈ runs(P ′) with mapped action ai ∈ M(A). Let LHSi =

(π
µ(i)
s is well defined∧emb(π

µ(i)
s , πir)). We will construct a well-defined run πs ∈ runs(P ′),

and show LHSi by induction on 0 ≤ i ≤ |πr|.

—Base case:
• Define g0 = ∅.
• Define π0

s = 〈g0〉 which is well defined.
• Define µ(0) = 0.
• Then h0 = ∅ = M̂(g0) = M̂(gµ(0)).
• LHS0 is true.

—Inductive Step: Assume LHSi where hi = M̂(gµ(i)). Let mi+1 be the next message in
πr.
—Case: No such mi+1 exists. All messages in πr have been considered. πs = π

µ(i)
s is

a well-defined run and µ demonstrates emb(π
|πs|
s , π

|πr|
r ) = emb(πs, πr). LHS|πr| =

LHS is true.
—Case: mj+1 exists.
• Let n = |means(mi+1)| be the number of actions in mi+1’s meaning.
• Define gk+1 = gk ∪ ak+1.actexp ∀k : µ(i) ≤ k < µ(i) + n.
• Define πµ(i+1)

s = π
µ(i)
s +

∑
k:µ(i)≤k<µ(i)+n〈ak+1, gk+1〉 by appending all the

actions ak in means(mi+1) onto the end, in any order.
• Let ad be the decisive action for mi+1 in πr where µ(i) ≤ d ≤ µ(i) + n.
• Define µ(i+ 1) = d.

Show π
µ(i+1)
s is well defined.

(1) Show gk |= ak+1.guard∀k : µ(i) ≤ k < µ(i) + n
• hi |= mi+1.guard because πr is well defined.
• For each action aj ∈ means(mi+1), mi+1.guard → aj .guard by Equa-

tions 9, 10, and 11. Since collection disjoins guards, each of the actions’
guard is true after collection.
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• Therefore, hi |= ak.guard∀k : µ(i) ≤ k < µ(i) + n.
(2) gk+1 = gk ∪ ak.actexp ∀k : µ(i) ≤ k < µ(i) + n by the definition above.

Show emb(π
µ(i+1)
s , πi+1

r ).
• gµ(i+1) = gµ(i)

⋃
µ(i)≤k<µ(i)+n ak.actexp by definition of gµ(i+1) above.

• M̂(gµ(i+1)) = M̂(gµ(i)
⋃
µ(i)<k≤µ(i)+n ak.actexp).

• For all j, M̂(gj ∪ aj+1.actexp) = M̂(gj+1) if aj+1 is not decisive for mj+1 in
πs.

• For all j, M̂(gj ∪ aj+1.actexp) = M̂(gj+1) ∪mj+1.actexp if aj+1 is decisive
for mj+1 in πs.

• M̂(gµ(i+1)) = M̂(gµ(i))∪mj+1.actexp, by applying the previous two reductions
for all aj+1.

• M̂(gµ(i+1)) = hi ∪mj+1.actexp, since hi = M̂(gµ(i)) by LHSi+1.
• M̂(gµ(i+1)) = hi+1 by the definition of hi+1.
• Therefore, LHSi+1 is true.

The next theorem shows the reverse: every run in P ′ embeds a run in P .

THEOREM A.6. If Let P = 〈R,M, C,A,S,G〉 be a protocol, possibly containing
guarded action expressions, and let M be any mapping function. Let P ′ = col(dif(M(P )))
be the protocol derived from P by mapping, diffusion, and collection. Then

∀πs ∈ runs(P ′) : (∃πr ∈ runs(P ) : emb(πs, πr))

PROOF. Denote πr = 〈h0,m1, h1, . . . 〉 ∈ runs(P ) with message mi ∈ M, and πs =
〈g0, a1, g1, . . . 〉 ∈ runs(P ′) with mapped action ai ∈M(A).

Let LHSj = (i = argmaxk µ(k) ≤ j : πir is well defined ∧ emb(πjs, π
i
r)). We will

construct πr ∈ runs(P ) and show LHSj by induction on the path length 0 ≤ j ≤ |πs|. We
allow additional actions in πs after µ(i) as long as they have no effect on P .

—Base case:
• Define h0 = ∅,
• Define π0

r = 〈h0〉,
• π0

r is well defined.
• Define µ(0) = 0.
• Then M̂(g0) = M̂(gµ(0)) = ∅ = h0 implies emb(π0

s , π
0
r) with µ(0) ≤ 0.

• LHS0 is true.
—Inductive Step: Consider the next action aj+1 ∈ πs.

—Case: No such aj+1 exists. All actions in πs have been considered. πr = πir is a well-
defined run, and µ demonstrates emb(π

|πs|
s , π

|πr|
r ) = emb(πs, πr) with ∀i : µ(i) ≤ j.

LHS|πr| = LHS.
—Case: aj exists but it is not decisive for any m ∈ AP .
• Leave πir unchanged which is still well defined.
• Leave µ unchanged.
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• No additional hi = M̂(gµ(i)) conditions are required to established emb(πj+1
s , πir)

with ∀i : µ(i) ≤ j, and the existing conditions are true by the induction hypothesis.
• LHSj+1 is true.

—Case: aj+1 exists and it is decisive for some m ∈ AP .
• There is at most one such messagem by the no overlap constraint of Definition 4.1.

Denote the message by mi+1 = m.
• Define hi+1 = hi ∪mi+1.actexp.
• Define πi+1

r = πir + 〈mi+1, hi+1〉.
• Define µ(i+ 1) = j + 1.

Show πi+1
r is well defined.

(1) Show hi |= mi+1.guard.
• gj |= aj+1.guard because πs is well defined.
• M̂(gj) |= M̂(aj+1.guard).
• M̂(gj) |= mi+1.guard because aj+1.guard = mi+1.guard by Theorem A.4.
• M̂(gµ(i+1)−1) |= mi+1.guard by definition of µ(i+ 1).
• M̂(gµ(i)) |= mi+1.guard by Definition 4.8.
• Therefore, hi |= mi+1.guard by LHSj .

(2) hi+1 |= mi+1.actexp by definition of hi+1 above.

Show emb(πj+1
s , πi+1

r ).
• gj+1 = gj ∪ aj+1.actexp since πs is well defined.
• M̂(gj+1) = M̂(gj ∪ aj+1.actexp).
• For all j, M̂(gj ∪ aj+1.actexp) = M̂(gj) ∪ mj+1.actexp if aj+1 is decisive for
mj+1.actexp in πs.

• M̂(gj+1) = M̂(gj) ∪mj+1.actexp, by applying the previous reduction.
• M̂(gµ(i+1)) = M̂(gµ(i+1)−1) ∪mj+1.actexp, by definition of µ(i+ 1).
• M̂(gµ(i+1)) = M̂(gµ(i)) ∪mj+1.actexp, by Definition 4.8.
• M̂(gµ(i+1)) = hi ∪mj+1.actexp, since hi = M̂(gµ(i)) by LHSj .
• M̂(gµ(i+1)) = hi+1 by the definition of hi+1.

—LHSi+1 is true.

THEOREM A.7. If Let P = 〈R,M, C,A,S,G〉 be a protocol, possibly containing
guarded action expressions, and let M be any mapping function. Let P ′ = col(dif(M(P )))
be the protocol derived from P by mapping function M, diffusion, and collection. Then

∀πr ∈ runs(P ) : (∃πs ∈ runs(P ′) : emb(πs, πr))

∀πs ∈ runs(P ′) : (∃πr ∈ runs(P ) : emb(πs, πr))

PROOF. Follows immediately from Theorems A.5 and A.6.
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