
Trustworthy Service Selection and Composition

CHUNG-WEI HANG and MUNINDAR P. SINGH

North Carolina State University

We consider service-oriented computing (SOC) environments. Such environments are populated
with services that stand proxy for a variety of information resources. A fundamental challenge in
SOC is to select and compose services—to support specified user needs directly or by providing

additional services. Existing approaches for service selection either fail to capture the dynamic
relationships between services or assume that the environment is fully observable. In practical
situations, however, consumers are often not aware of how the services are implemented. We

propose two distributed trust-aware service selection approaches: one based on Bayesian networks
and the other on a beta-mixture model. We experimentally validate our approach through a
simulation study. Our results show that both approaches accurately punish and reward services
in terms of the qualities they offer, and further that the approaches are effective despite incomplete

observations regarding the services under consideration.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online In-
formation Services —Web-based services; I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence—Intelligent agents

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Trust, probabilistic modeling, service-oriented computing

1. INTRODUCTION

In service-oriented computing (SOC) [Singh and Huhns 2005] environments, com-
puting resources are modeled as services, which can be used directly or composed
into other services. Services are being widely adopted in modern distributed en-
vironments, such as for cloud computing [Amazon.com 2009]. In many domains,
often multiple services provide similar functional properties. For example, several
practical services, offered by airlines and travel agencies, provide airline tickets.
Therefore, distinguishing and selecting services with the desired nonfunctional char-
acteristics becomes essential both for direct interaction and for specifying composite
services. We address the problem of selecting services based on criteria such as user
requirements and service qualities.
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Traditional SOC approaches address only service discovery, not service selection
as such. Specifically, Web Service Definition Language (WSDL) helps describe the
functionality (that is, the methods) a service supports, but not the qualities of
service it offers. Even the semantic approaches, such as OWL-S, which characterize
the functionality of a service more precisely than WSDL, do not address service
qualities. In other words, traditional SOC approaches are confined to considering
the functional properties of services as a basis for matching services to user needs.
The functional properties are generally defined for service types. In a practical
setting, however, a successful service enactment episode depends not just on the
service types but on the specific service instances involved. Moreover, the qualities
offered by a service instance might vary over time, sometimes rapidly. Our approach
considers service qualities as they apply to service instances.

Recent research on trust modeling provides us with a promising starting point
for a solution to service selection. Trust is a key basis of interaction in an open
setting, indicating the relationships between the parties involved. For example, in a
service-oriented context, a party Alice may trust another party Bob, because Alice
expects Bob will provide a service of the desired functionality and quality. We
define trust-aware service selection as selecting desired services based on the trust
placed in their ability to deliver specified values of the specified qualities.

Estimating trust from direct experience with a service is not straightforward,
because some services may not directly expose details of their composition to their
consumers. A consumer may interact with a composite service without knowing
much about the qualities of the services that underlie it. In such a case, evaluating
the trustworthiness of a service is nontrivial. For example, a consumer may book
an itinerary at a travel agency, which may use underlying services for flights, ho-
tels, and ground transportation. Suppose the consumer is not satisfied with the
composite service because of its late response time. The service selection should
penalize the composite service, as well as some or all of the constituent ones. If the
hotel service, for instance, is determined to be the cause of an unsatisfactory quality
value, the service selection should reflect the changes in the way that consumers or
other composite services would become reluctant to interact with it. Also, as the
amount of experience of the rater (as captured in the model) increases, the model
should be able to suggest superior compositions.

Thus, service selection should consider service compositions to model how a qual-
ity of a component service can affect the whole composition. For example, the
reliability of a composite travel service may be affected by the reliability of the
constituent hotel and flight services. If a constituent service is not reliable, the
composite service is possibly not reliable either. Thus, the composition model
should represent not only the relationships between services, but also any depen-
dencies between them. Of course, it may turn out that the qualities of constituent
services do not influence the composite service. For example, a composite service
may be constructed so that its reliability may not correspond trivially to the trust-
worthiness of that constituent service. This would make it difficult to collect and
evaluate information about service qualities, thereby complicating service selection
in the presence of service compositions.
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Contributions

This paper provides a trust-aware service selection approach that addresses the
above challenges, and which supports the following operations.

—Selecting service instances to form suitable compositions based on the qualities
desired.

—Rewarding and punishing constituent services in an appropriate manner so as to
maintain the best information as needed to support successful compositions.

This paper presents a formal service selection model in probabilistic terms. It
develops approaches applying which a consumer may monitor and explore desired
service compositions. This paper shows how our approach dynamically rewards and
punishes the services involved despite incomplete knowledge of the composition. An
important contribution is in systematically treating the relationships between some
key service composition operators and different types of service qualities.

In this manner, this paper addresses adaptive service selection from the stand-
point of service composition, which has largely been ignored in the literature.

2. RELATED WORK

Milanovic and Malek [2004] compare various modern web service composition ap-
proaches. They identify four necessary requirements for service composition: con-
nectivity, nonfunctional qualities, correctness, and scalability. However, Milanovic
and Malek’s definition of service qualities is not extensible. Our approach, in con-
trast, is extensible, and can deal with a changing set of service qualities.

Menascé [2004] studies how qualities of service are aggregated in different service
composition scenarios. For example, suppose service A invokes service B, which
may invoke C and D with probabilities pc and pd, respectively. Menascé’s approach
requires knowing the invocation probabilities of the constituent services. But this
information is not always available because of two reasons. First, the providers have
no incentive to reveal such information. Second, modeling the invocation proba-
bilities is not trivial. By contrast, our service composition model makes no such
assumptions. Our approach monitors and explores the desired services dynamically.

Wu et al. [2007] model a consumer’s assessment of a service’s quality via a näıve
Bayes network, where the root represents the overall capability of a service and
a child represents the capability of a particular quality of the service. Wu et al.
apply a fuzzy representation to express the levels of the service capabilities. Their
approach enables consumers to estimate the overall quality assessment. In contrast,
our approach applies Bayesian networks and probability mixtures to model service
composition to evaluate each quality of a service separately. Then a consumer can
select services based on its preferences among the various qualities.

Lin et al. [2008] select services according to the consensus of group preference
order of various qualities. Consumers express their preferences among the values
of the qualities in fuzzy terms. Lin et al. use fuzzy logic to resolve the conflicts be-
tween the subjective interpretations of service qualities from each consumer. Then
they aggregate different fuzzy views from both consumers and providers to reach
a consensus of the preferred order of quality metrics. Similar to Wu et al. [2007],
Lin et al. enable consumers to consider more than one quality in combination. Our
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approach treats each quality separately. Consumers express their subjective pref-
erences in terms of trust. Consumers may show different levels of trust to the same
service because of their subjective interpretations of quality metrics.

Yue et al. [2007] apply Bayesian networks to model the relationships between el-
ementary services. Yue et al.’s approach constructs web service Bayesian networks
(WSBN) based on the invocations between the services. Then they can produce
service composition guidance from the Markov Blanket [Pearl 1988] of a given ser-
vice. However, this approach fails to consider the dynamism of service composition
because the relationships are fixed. Our model captures the dynamism by updating
the Bayesian network, which subsequently affects the trustworthiness of a service.

Liu [2005] views a service-oriented environment as an ecosystem and distinguishes
three levels: (1) trust: atomic service (service selection), (2) composition: compos-
ite service (service composition), and (3) emergent behavior: network economy
(organizational behaviors, consumer communities, business alliances, and trusted
third parties). At the trust level, Liu suggests that an ideal trust representation
be (a) flexible and adaptive to diversified needs of agents, and (b) exchangeable
so agents can help each other. Liu adopts XML Topic Maps for knowledge rep-
resentation. Then she applies collaborative filtering to select services based on
their semantic similarity. At the composition level, Liu proposes ant crawling for
consumers to discover semantically similar services and further classify those into
clusters, thus generating a new composition plan. Finally, at the emergent behav-
ior level, the topology of the environment (defined via referrals) evolves based on
low-level interactions between agents. A service survives only when it is needed by
others. New services are born from composition plans. Useless services are elim-
inated. Unfortunately, Liu does not implement or evaluate her ideas. However,
we agree with Liu on the hierarchical view of the trustworthy service selection and
composition. We implement and evaluate our approach via simulations.

Paradesi et al. [2009] build a trust framework for web service compositions. They
adopt the trust representation from Wang and Singh [2010] and introduce operators
for combining trust in different types of service compositions including sequence,
concurrent, conditional, and loops. In contrast, instead of service compositions,
we study how quality is composed in these types of service compositions. Our
experiments show our approaches are general enough to deal with various types of
quality composition.

Maximilien and Singh [2004] develop a trust-aware approach to select services
based on a well-defined ontology that provides a basis for describing consumers’
requirements and providers’ advertisements. The ontology enables consumers to
define nonfunctional properties. Their approach does not consider service com-
position whereas ours does. We model service compositions to deal with partial
observability of the services behind compositions.

Wang and Singh [2010] develop a trust model for multiagent systems that formal-
izes how how agents map evidence to trust and vice versa. Our work studies how
to estimate the trustworthiness of services that are constituents of a composite ser-
vice. We develop a systematic way to represent qualities of service compositions via
operators that correspond to typical ways of composing services. Our contribution
is a way to handle service selection in the context of service compositions.
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3. TRUST-AWARE SERVICE SELECTION MODEL

We represent trust based on the beta probability distribution [Evans et al. 2000],
which can be integrated with Wang and Singh’s model [2006; 2010]. Intuitively, the
trustworthiness of a service should be estimated based on both direct and indirect
experience. Direct experience means the previous quality of service received from
the service, whereas indirect experience comes from referrals by peers. Previously,
Hang et al. [2009] show how to model trust from indirect experience. This is beyond
our present scope.

Services
Model of

Services
Select

ComposeInteract and

Evaluate
Learn

Fig. 1. Our trustworthy service selection approach, schematically.

Figure 1 shows our approach schematically. Several services exist in the com-
putational environment. Each consumer maintains its own local model to guide
itself to reward or penalize services based on its direct interactions with them. In
one scenario, a consumer maintains models of some or all of the available services.
Using this model, it selects some services and composes them into a composite ser-
vice. Next, the consumer interacts with and evaluates the composite service with
respect to the service qualities of interest. Based on the evaluation, the consumer
applies a learning method to update the model it is maintaining for the services.
In an alternative scenario, the consumer may not be responsible for composing ser-
vices and would simply select an atomic service or a composite service that another
party has composed. In this case, it would need to learn about the services from
less information than in the first scenario. Our approach handles both of these
scenarios.

We introduce two service selection approaches, which can construct models from
incomplete observations (direct experience) of a consumer. We emphasize incom-
plete observations because not all qualities are observable from the consumers’ point
of view. For simplicity, we normalize the qualities to the real interval [0, 1]. Thus
we represent an observation of a particular quality of a service instance d at time
t as a real number xt

d between 0 and 1. Some qualities, say, error, can be simply
considered as 1 (positive) or 0 (negative). We write an observation Dt of the whole
composition at time t as Dt = (xt

1, x
t
2, . . . , x

t
d), where d is the number of services

in the composition.
Section 3.1 presents our Bayesian approach, which models service compositions

via Bayesian networks in partially observable settings. The Bayesian approach cap-
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tures the dependency of providing a good service quality between the composite
and the constituent services. It also adaptively updates trust to reflect most recent
quality. Section 3.2 describes our beta-mixture approach. This approach can learn
not only the distribution of the composite quality, but also the responsibility of a
constituent service in the composite quality without actually observing the con-
stituent’s performance. These two approaches provide different information about
the services. The Bayesian approach uses online learning to track service behav-
ior and shows how the composite service’s quality depends upon its constituents’
quality. The beta-mixture model learns the quality distribution of the services and
provides how much each constituent service contributes to the composition.

3.1 Bayesian Approach

A Bayesian network is a directed acyclic graph G = 〈V,R〉 with random variables
V as nodes, and edges R as the direct relationships between variables. We denote
atomic and composite services with lowercase and uppercase, respectively. An edge
from service a to B means B is composed of a. In Bayesian network terminology,
the source node of an edge is the parent of its target. Thus, a is B’s parent and
B is a child of a. Notice that this terminology is opposite to the more typical
composition hierarchy where a composite service would be a parent (or ancestor)
of its constituent services. We use the Bayesian network terminology in this paper.

Note that an edge can originate from either an atomic or a composite service but
must terminate on a composite service. A conditional probability associated with
each node represents trust (a probability) of the node variable given an estimate
of its parent’s trustworthiness. Let each node in the Bayesian network equal trust,
that is, the probability of obtaining a good outcome from the service corresponding
to the node. The good outcome in this case depends on a specified quality. An
edge represents composition. For example, in Figure 2, the composite hotel service
H is composed of the Four Seasons Hotel service f : i.e., f is a parent of H. Then
the trustworthiness of H is the probability of obtaining a good outcome in terms
of a particular quality value from H, given f provides a good outcome. T , a travel
service, is composed of hotel service H and car rental service C, which is itself
composed of the Enterprise Rent-A-Car service e.

P (T ) = P (T |H = 0, C = 0)P (H = 0, C = 0)

+P (T |H = 0, C = 1)P (H = 0, C = 1)

+P (T |H = 1, C = 0)P (H = 1, C = 0)

+P (T |H = 1, C = 1)P (H = 1, C = 1)

CH

T

f e

Fig. 2. Service composition example. The trust the consumer places in service T is the marginal

probability P (T ): i.e., the probability of obtaining a satisfactory quality from T . P (T ) can be
calculated by marginalizing over all the parents of T . In this example, P (T ) is computed as shown.
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The conditional probability table associated with each node provides a basis for
determining how much responsibility to assign a service that underlies a service
composition. Thus, the consumers can view the conditional probabilities as the
level of trust they place in the services in the composition. Modern approaches
model trust as two values: probability and certainty. In our Bayesian approach,
currently we only consider probability values. We defer incorporating certainty,
e.g., as formalized by Wang and Singh [2010], to future work.

In a fully observable setting, we can estimate the trustworthiness θi of service
xi by applying maximum likelihood estimation (MLE) to maximize the likelihood
of the observations [Buntine 1994]. For example, let a consumer have mi = 10
good outcomes and li = 5 bad outcomes with service xi. Then the consumer can
calculate the trustworthiness θi of service xi as mi

mi+li
= 2/3.

To address over-fitted results produced by MLE (e.g., whenmi = 10, ni = 0; then
θi = 1), we further apply Bayesian Inference by introducing a beta distribution
P (θi) associated with two hyperparameters (αi, βi) over trust θi as a conjugacy
prior [Bishop 2006] to update trust (now a beta distribution) of service xi. Let the
consumer’s current trust in service xi be (αi, βi) = (5, 5). Suppose the consumer
observes three additional outcomes: two good and one bad. The consumer can
update the trust estimate by adding the new observations (2, 1) to the previous
estimate (5, 5). That is, (αi, βi) = (7, 6). The consumer can predict that the
probability of obtaining a satisfactory quality from the next interaction is αi

αi+βi
.

To incorporate the dynamism of service behavior, a discount factor γ ∈ [0, 1] reduces
the impact of the old information when we update the trust estimate [Hang et al.
2008]. In other words, in the previous example, we would obtain a new trust
estimate (αi, βi) = (5γ + 2, 5γ + 1). The appendix provides additional details of
parameter estimation using MLE and Bayesian Inference.

Dealing with Incomplete Data

Quite often in service-oriented settings, some variables may not be observable,
meaning that the data would be incomplete. In this case, we can use expectation
maximization (EM) to optimally estimate parameters [Lauritzen 1995; Singh 1997].

The idea here is that, since some variables are not observable, we can consider
the variables without data as latent variables and calculate the expected values
of those variables. Let Dobserved and Dmissing be the observed and missing data,
respectively. Then we can apply exact inference, e.g., variable elimination [Zhang
and Poole 1996], to infer P (xt

i|Dobserved, θ
t
i), where xt

i ∈ Dmissing and θt
i is the

current parameter estimate. We can use P (xt
i|Dobserved, θ

t
i) to estimate the missing

counts (that is, mi and li). The above is the E step of the EM algorithm.
For example, suppose there is a travel service T , which includes a hotel service h.

If a consumer observes that T has reliability 1 at time-step t (that is, xt
T = 1) but

does not observe the reliability of h at time t, then we can use the expected reliability
of h, P (h = 1, T = 1), as the nominal observation (that is, xt

h = P (h = 1, T = 1)).
The completed data, that is, (xt

T , x
t
h) = (1, P (h = 1, T = 1)), can be used as the

observation in the M step to update the parameter estimates using Bayesian infer-
ence. The new parameter estimation of θt+1

i can be calculated by the posterior mean
of θt

i . The E and M steps are executed iteratively until the estimation converges
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[Dempster et al. 1977]. The EM process is in essence a sequential (on-line) learning
method: it can be repeated whenever the consumer makes new observations. The
appendix provides an extended example.

3.2 Beta-Mixture Approach

Finite mixture models are powerful statistical probabilistic tools for modeling com-
plex data [McLachlan and Peel 2000]. They have been widely used in machine
learning, bioinformatics, and computer vision. One of the most popular mixtures
for continuous data is the Gaussian mixture.

In general, finite mixture models can be viewed as the superposition of multiple
probability density components. Suppose there are component distributions. Then
the finite mixture model can be formulated as

p(D) =

K
∑

k=1

πkpk(D|θk), (1)

where D = {x1, . . . , xN} are the observations, pk is the kth component distribution
with parameter θk, and πk is the mixing coefficient. Mixing coefficients, which are
also probabilities, control the portion of each component in the linear combination
of the whole mixture, that is,

∑K

k=1 πk = 1 and 0 ≤ πk ≤ 1. We can understand
each mixing coefficient as an indicator of the corresponding component’s responsibil-
ity, indicating how much contribution the component makes toward the composite
quality. The mixture distribution is governed by parameters π and Θ, which can
be estimated by maximizing the log-likelihood function using the EM algorithm.
Specifically,

L(Θ) = ln p(D|πΘ) =

N
∑

i=1

ln

{

K
∑

k=1

πkp(xi|θk)

}

. (2)

Let us define binary latent random variables zk, each an indicator of whether an
observation is from component k. Exactly one of the zk equals 1; the rest are zero.
Thus, p(zk = 1) = πk, p(z) =

∏K

k=1 π
zk

k , and p(D|zk = 1) = pk(D|θk). Then the
distribution can be rewritten as

p(D) =
∑

z

p(z)p(x|z) =

K
∑

k=1

πkpk(D|θk) (3)

The E step first uses current parameters Θold to compute the posterior distribution
p(z|D,Θold). Then it uses the posterior distribution to calculate the expectation of
the log-likelihood function as

Q(Θ,Θold) = EΘold(L|D) =
∑

z

p(z|D,Θold) ln p(D, z|Θ). (4)

In the M step, we first maximize the expectation to determine the new parame-
ter Θnew = arg maxΘQ(Θ,Θold). Then we verify if the log-likelihood with new
parameters has converged; otherwise, we repeat the E and M steps.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 4, October 2010.



Trustworthy Service Selection · 9

Beta-Mixture Model

Although our observations (that is, trust values) are continuous, we use the beta-
mixture model [Bouguila et al. 2006] instead of Gaussian mixture for two reasons.
First, our trust values lie between 0 and 1. The beta distribution is designed for the
distribution in a bounded interval. Second, the beta distribution can be integrated
with our trust framework, which is also based on the beta distribution.

For each composition, we use a beta mixture to model the trust distribution.
The number of components is the number of the direct constituent services in the
composition. Each component is a beta distribution.

4. EXPERIMENTAL EVALUATION

To simulate different types of compositions, we consider composition operators as
commonly defined in leading business process and scientific workflow approaches.
Specifically, we consider the Web Services Business Process Execution Language
[BPEL 2007]. BPEL defines three types of interactions between web services, in-
cluding sequence, case, and (parallel) flow. Let a composition operator be denoted
by a function f . That is, xS = f(xs0 , . . . , xsk) means that S is a composite service
and the si are its (direct) children.

In our evaluation, we use the following basic scenario wherein a service C is
composed of constituent services a and b by applying a composition operator f .
We can express how the quality of C is composed from the qualities of a and b as
xC = f(xa, xb). Depending on the type of interactions and quality, composition
operators can be defined suitably.

Table I. Composition operator examples of different qualities and their interaction types.

Quality Sequence Flow Case

Latency sum max switch

Throughput min sum switch

Failure product product switch

Table I shows some examples of how some quality metrics are composed in these
types of interactions. Let us briefly discuss five composition operators:

—switch chooses exactly one of its children based on a predefined multinomial
distribution. It simulates the composite quality based on one of children. This
corresponds broadly to the case interaction type.

—max composes quality by inheriting from the child with the highest quality value.
This relates to latency for flow.

—min composes quality by inheriting from the child with the lowest quality. This
relates to throughput for sequence.

—sum yields the composite quality value as the sum of the quality values obtained
from all children. This relates to throughput for flow.

—product yields the composite quality value as the product of the quality values
obtained from all children. This relates to failure (which we can think of as the
inverse of availability) for flow.
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Note that our approach is not limited to the above operators.
In the following experiments, we consider the basic scenario introduced above,

wherein we let f be switch, max, min, sum, or product. In each experiment, the
constituent services a and b are first initialized to separate beta distributions. At
each time-step, the quality values of a and b are sampled based on these distribu-
tions. Then the composite quality is calculated using the appropriate composition
operator f .

4.1 Bayesian Approach Evaluation

To evaluate our Bayesian approach, we initialize the hyperparameters (α, β) of the
constituent services a and b as (10, 5) and (2, 8), respectively. Thus a on average
offers better quality than b. For switch, the probabilities of choosing a and b
are 0.8 and 0.2, respectively. There are a total of 100 observations. The Bayesian
approach goes through the partial observations in order and learns the quality and
dependencies of all services online.

4.1.1 Comparison: Näıve Approach. We introduce a näıve approach for the
purpose of comparison. The näıve approach is the same as the Bayesian approach
except that it does not use the EM algorithm. Consequently, it lacks the ability of
dealing with missing observations. With the näıve approach, (conditional) trust-
worthiness cannot be learned if the quality is not observed. Although the composite
quality is always observable, the näıve approach still fails to learn it because the
composite trust is marginalized from the conditional trust. We show how the näıve
approach suffers in the face of missing observations.

Fig. 3. Trust estimation of composite service C for the switch operator.

4.1.2 Experimental Results. Figure 3 shows that the Bayesian approach out-
performs the näıve approach for switch. The Bayesian approach estimates the
trustworthiness well regardless of the amount of missing observations. In contrast,
the accuracy of the näıve approach becomes low for 40% missing observations and
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Fig. 4. Bayesian approach: conditional trust estimation of composite service C given good service
a (left), and conditional trust estimation of composite service C given good service b (right), for

switch

quite low for 80% missing observations. Similar results (Figure 4) are observed for
conditional trust. The accuracy of the näıve approach is significantly reduced by
the incomplete observations. The Bayesian approach deals with partial observabil-
ity better by using the EM algorithm. Figure 5 shows the average errors of the
observations for all composition operators with 40% and 80% missing observations
using both the Bayesian and the näıve approaches.

SWITCH SUM PRODUCTMIN MAX SWITCH SUM PRODUCTMIN MAX
0.00

0.05

0.10

0.15

0.20

QoS of C

QoS of C given a

QoS of C given b

Bayesian Approach Naive Approach

Fig. 5. Prediction errors of Bayesian and näıve approaches with 80% missing data.

Now we evaluate how the Bayesian approach identifies the constituent services’
influence on the composition based on conditional trust. In order to highlight the
difference, we choose different hyperparameters of services a and b than in the
above; specifically, we set a’s hyperparameters to (10, 10) and b’s to (6, 8). Figure 6
(left) compares the conditional trust in C given a and b with overall trust in C

ACM Transactions on Autonomous and Adaptive Systems, Vol. 5, No. 4, October 2010.



12 · Hang and Singh

for max. We observe that, in 77% of the sampled observations, service a yields
better performance than service b. In other words, in the max composition, 77%
of the composite quality comes from service a. The conditional trust in C given a
corresponds to the probability of C performing well given a performs well. We know
when a performs well, max tends to select a more often. Therefore, the conditional
trust in C given a is much higher than the overall trust in C. In contrast, since max

mostly selects a, the conditional trust in C given b is extremely close to the overall
trust in C. However, those 23% observations that come from b make the conditional
trust in C given b higher than the overall trust placed in C. As we would expect,
min selects b 77% of the time. As Figure 6 (right) shows, the conditional trust
placed in C given b is much higher than the conditional trust in C given a and the
overall trust in C. The conditional trust in C given a is slightly higher than the
overall trust in C because of those 23% observations from a.

Fig. 6. Conditional trust in composite service C for max (left) and min (right).

4.2 Dealing with Dynamic Behavior

This experiment examines the Bayesian approach’s ability of tracking the dynamic
behavior of services. We introduce two dynamic behavior profiles:

—The random walk profile models the general more or less predictable behavior of
a service. The random walk service changes behavior every period. Its current
behavior xt depends on the previous behavior xt−1, and is defined as xt = xt−1 +
ψU(−1, 1), where ψ is a real number between 0 and 1, and U(−1, 1) represents
the uniform distribution from −1 to 1. In our setting, the random walk service
changes behavior every ten time-steps, and ψ = 0.8.

—The cheating profile models a service that turns bad once its reputation is built
up. Its behavior is defined as xt = 1 when t ≤ d/2, and xt = 0 otherwise, where
d is the total number of observations. We set the discount factor γ = 0.6. The
total number of observations is 100.

Here, we replace the constituent service b with a random-walk or a cheating
service. Figure 7 shows how our trust values predict the actual behavior of the
random walk and the cheating service with 0%, 20%, and 40% missing data. The
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result shows that our approach captures the dynamism of the constituent services,
although the missing data slows down convergence noticeably.

Fig. 7. Trust in a random-walk (left) and a cheating (right) constituent service.

4.2.1 Summary of the Bayesian Approach. The above experiments show our
Bayesian approach can (1) model the relationships of the service composition; (2)
distinguish good and bad services in a partially observable setting; and (3) extract
the conditional probabilities from the relationships. In the second simulation, our
approach tracks the random walk and cheating constituent services adaptively. A
limitation of the Bayesian approach is that it fails to estimate the (unconditional)
trustworthiness of the constituent services. Also, the Bayesian approach requires
at least partial observability.

4.3 Beta-Mixture Approach Evaluation

We now apply our beta-mixture approach to model the composite distribution with
different composition operators. The number of mixture components is known to
be two because C has two children, a and b. For each experiment, we sample 100
observations. Note that in this experiment, the quality of the constituent services
a and b is totally unobservable. The only information from which the beta-mixture
approach can learn is the composite quality.

4.3.1 Comparison: FCM-MM Approach and Nepal et al. To enable comparison,
we first introduce the FCM-MM approach. This approach uses Fuzzy C-Means
Clustering (or FCM) [Bezdek 1981] to partition the observations into two clusters.
The portion of each cluster with respect to the total is calculated as our π. Then
the Method of Moments (MM) [Fielitz and Myers 1975] is adopted to estimate the
beta parameters α and β of each component based on clustered observations.

We also compare our approach with [Nepal et al. 2009]. Their approach propa-
gates reputation from a composite service to its constituents. The propagation is
based on heuristics, with predefined and fixed mixing coefficients.
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4.3.2 Evaluation Measurement. Here we introduce the Kolmogorov-Smirnov test
(or K-S test) for goodness-of-fit measurement. The K-S test is used to compare a
sample with a reference probability distribution. A p-value from the K-S test is
calculated by quantifying the distance between the sample and the reference dis-
tributions. A higher p-value means the distribution explains the sample better. In
general, by convention, a p-value higher than 0.05 is considered a good fit. That is,
a p-value lower than the 5% significant level rejects the null hypothesis—the sample
is not consistent with the reference distribution. Figure 9 shows the comparison of
our beta-mixture approach and the FCM-MM approach.

Because Nepal et al.’s approach is not based on probabilities, we cannot apply the
K-S test to compare our approach to theirs. Instead, we compute prediction errors
by measuring the absolute difference between the actual and predicted qualities.

Table II. Actual and estimated parameters by FCM-MM and beta-mixture, and their K-S test

goodness-of-fit measurements.
Actual FCM-MM Beta-Mixture

α β π α β π α β π

switch 20 20 0.45 17.46 18.31 0.52 19.87 20.37 0.50

2 9 0.55 3.24 19.36 0.48 2.39 13.46 0.50

(K-S test) 0.90 0.99 0.99

sum 20 20 16.42 5.59 0.41 17.33 6.22 0.31

1 6 42.04 32.08 0.59 44.49 29.63 0.69
(K-S test) N/A 0.31 0.40

product 20 20 10.43 65.45 0.64 10.43 65.45 0.43

5 9 15.44 45.91 0.36 12.50 48.85 0.57
(K-S test) N/A 0.25 0.65

min 3 4 5.82 15.32 0.54 4.42 6.52 0.96
5 4 17.01 15.28 0.46 5.38 69.52 0.04

(K-S test) N/A 0.54 0.97

max 3 4 13.47 18.29 0.39 107.09 295.96 0.06
4 4 28.47 15.05 0.61 9.98 7.13 0.94

(K-S test) N/A 0.61 0.91

Fig. 8. Beta-mixture ap-
proach: estimated beta
mixture and actual distri-
bution and samples of trust
in quality for a switch

composition. Beta-mixture
learns accurate distribu-
tions of both component
services. One provides
good service (left peak); the
other provides bad service
(right peak).
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4.3.3 Experimental Results. Table II summarizes the results for all composition
operators using the beta-mixture and FCM-MM approaches. Figure 8 and the
appendix provide detailed results for all operators.

SWITCH SUM PRODUCT MIN MAX

0.0

0.5

1.0

1.5

FCM+MM

Beta-Mixture

Fig. 9. Kolmogorov-Smirnov test comparison for FCM-MM and beta-mixture.

Since switch follows the setting of a mixture model (that is, each observation
comes from one of the components with a probability), the beta-mixture approach
performs quite well in this case, yielding a p-value close to one. The parameters of
each component distribution and the mixing coefficients are estimated accurately.

For sum and product composition, the beta-mixture approach approximates
the composite distribution fairly well with solid p-values, but yields inaccurate
parameter estimations of the constituents. The observation histograms from sum

and product (shown in the appendix) tend to follow a unimodal distribution. In
this case, it is harder to estimate the parameters from each component. However,
if the quality from the constituent services can be partially observed, the accuracy
of the component parameters can be improved. We defer this to future work.

min and max are similar to switch in the sense that the composite quality
inherits from one of the components, except that the mixing coefficients are un-
known. The p-values show that the beta-mixture approach is still highly promising
in estimating the composite quality distribution. Note that unlike switch, min

and max tend to yield a dominant component. In this case, the mixing coefficient
of that component is close to one, making the remainder of the mixing coefficients
extremely small. In other words, the distributions of these weaker components are
not learned well because of the lack of evidence. For example, in Table II, the
second component in the min case and the first component in the max case are
dominated. Their corresponding α and β are not accurate. However, the beta-
mixture approach can still distinguish the strong from the weak components via
the estimated mixing coefficients, which tell us which of the constituent services
are better than others.

Figure 10 compares our beta-mixture approach with Nepal et al.’s approach. Our
approach yields better trust predictions than Nepal et al. in all cases. The prede-
fined parameters (mixing coefficients and reputations) of Nepal et al. are initialized
by FCM-MM. Consequently, once initialized, their mixing coefficients cannot be
updated, i.e., remain fixed. Although the reputations of constituent services are
propagated dynamically, the accuracy is limited by inaccurate mixing coefficients.
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Fig. 10. Prediction error comparison of Nepal et al. and beta-mixture.

4.3.4 Summary of the Beta-Mixture Approach. Our experiments show the beta-
mixture approach provides a powerful way of estimating the quality distribution of
a composite service without knowing the quality of its constituents. It accurately
estimates the responsibilities of each constituent service in the overall composite
quality. However, the beta-mixture approach has two drawbacks when learning
the parameters of the constituent services. First, when the composite distribution
is unimodal, it is difficult to learn the component distributions. The accuracy in
this case may be improved if the qualities of the constituent services are partially
observable. Second, the constituent services that rarely contribute are difficult to
learn because of the lack of evidence, although beta-mixture can correctly identify
those services. Besides, beta-mixture cannot track dynamic behavior.

5. CONCLUSIONS AND FUTURE WORK

This paper presents two probabilistic approaches for trust-aware service selection
that accommodates service composition. The approaches capture the relationships
between the qualities offered by a composite service and the qualities offered by
its constituents. The trust information is learned sequentially from directed obser-
vations and further combined with indirect evidence in terms of service qualities.
Our approaches can deal with incomplete observations, which arise when the con-
stituent services are not observable. Each consumer maintains its local knowledge
of the environment and monitors the quality metrics of the parties with whom
it is interacting. We show how to model the relationship between service quali-
ties and important service composition operators. Our approach is evaluated via
simulations. We are seeking datasets from a real service-oriented deployment.

Two possible limitations of the Bayesian approach in practical settings are (1) the
lack of unconditional trust in the constituent services, and (2) the assumption of at
least partial observability. A possible limitation of beta-mixture is that it cannot
deal with dynamic behavior. How these two approaches can be used together to
compensate for each other is our future work.

Our approach is able to accommodate a variety of service composition operators
in a uniform manner, thus covering the situations that arise in scientific and busi-
ness applications. Our approach is neutral with respect to the specific qualities
considered as long as they can be measured. In particular, it would apply to sub-
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jective qualities such as the quality of user experience or system-level qualities such
as privacy preservation of user data. We would define the appropriate mixtures for
the composition operators with respect to such qualities, and then our approach
would apply equally well.

This work suggests important directions for future work. An important direction
involves situations where the composition operators inherently have the effect of
hiding or diminishing the information about the constituent services. Section 4.3.3
discusses this situation. We can address this challenge by considering multiple
service compositions, each potentially involving different but overlapping sets of
constituent services, thereby acquiring further information about additional con-
stituent services, even if they cannot be readily observed directly. Another direction
of interest is to apply Structural EM [Friedman 1998] instead of parameter estima-
tion, which would learn not only the trust information but also the graph structure.
The learned structure can be used as a basis for suggesting new service composi-
tions. A third direction of interest is to expand the above methods to deal with
situations where the consumers participate in a social network wherein they may
exchange referrals and ratings about services. Such indirect evidence can be aggre-
gated with the trust information, thus helping consumers discover strangers and
identify desired services more quickly than otherwise.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/taas/2010-5-4/p1-URL.
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A. BAYESIAN NETWORKS

We provide some additional technical background in this section.

A.1 Parameter Estimation

Given an acyclic Bayesian network graph G over d variables, x1, x2, . . . , xd, the associated joint
distribution is written as

P (x1, . . . , xd) =

d
∏

i=1

P (xi|xpai ) =

d
∏

i=1

θi (5)

where θi is the conditional probability P (xi|xpai ), and xpai is the set of parent variables of xi.
Suppose the consumer obtains n complete observations, D = {(xt

1, . . . , xt
d
), t = 1, . . . , n}. In a

fully observable environment, θi can be learned from the observed data by maximum likelihood
estimation (MLE) [Buntine 1994].

In our model, each parameter θi represents trust—the conditional probability of obtaining a good
outcome from xi given obtaining a good outcome from each of the services in xpai . We assume
that all variables xi are pairwise independent and identically distributed (i.i.d.). θ is the set of all

parameters θi. The likelihood function is defined as the probability of the observations given the
parameters. Following Bishop [2006], we write this as:

P (D|θ) =

n
∏

t=1

P (xt
1, . . . , xt

d|θ) (6)

=

n
∏

t=1

d
∏

i=1

θi (7)

=

d
∏

i=1

∏

xi,xpai

θ
n(xi,xpai

)

i
(8)

=

d
∏

i=1

θ
mi
i

(1 − θi)
li (9)

where n(xi, xpai ) is the number of observations that satisfy the variable assignment, mi =
n(xi, xpai ), and li = n(xpai) − mi. Then, given the observations, the parameters that maxi-
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mize the likelihood are

θ̂i =
mi

mi + li
.

For example, suppose a consumer obtains 10 good outcomes out of 15 interactions with service
xi, given that xpai provides good services. Then we have, mi = n(xi = 1, xpai = 1) = 10 and
li = n(xpai = 1)−mi = 15−10 = 5. From these observations, the consumer can calculate that the

estimated trustworthiness θ̂i is 10
15

. By using MLE, a consumer can estimate the trustworthiness
of a service from the consumer’s observations of it.

A.2 Bayesian Inference

Note that when the number of observations is small, MLE may yield over-fitted results. Consider
an extreme case where xt

i
= 1 for t = 1, . . . , n. That is, all the observations are the best possi-

ble. The parameter θ̂i maximizing the likelihood is n
n

= 1, which is not reasonable. Thus, we
use Bayesian inference to treat this problem by introducing a beta distribution P (θi) over the
parameter θi as a conjugacy prior [Bishop 2006, chap. 2].

P (θi) =
Γ(αi + βi)

Γ(αi)Γ(βi)
θ

αi−1
i

(1 − θi)
βi−1 (10)

Here αi and βi are hyperparameters controlling the distribution of the parameter θi, and Γ(x) =
∫ ∞

0
ux−1e−udu. The coefficient

Γ(αi+βi)
Γ(αi)Γ(βi)

in Equation 10 ensures
∫ 1

0
P (θi)dθi = 1. We simplify

the coefficient to a function B of the hyperparameters αi and βi, yielding

P (θi) = B(αi, βi)θ
αi−1
i

(1 − θi)
βi−1 (11)

The expected value or mean of θi is given by E(θi) = αi

αi+βi
. Bayesian inference uses observations

to update the prior. The parameters θi can be learned using Bayes’ rule.

P (θi|D) =
P (D|θi)P (θi)

P (D)
(12)

That is, the posterior distribution P (θi|D) is proportional to the multiplication of the prior P (θi)

and the likelihood function P (D|θi). Now we combine Equations 9, 11, and 12 to obtain

P (θi|D) = B(mi + αi, li + βi)θ
m+αi−1
i

(1 − θi)
li+βi−1 (13)

Note that the posterior distribution is also a beta distribution with hyperparameters mi + αi and
li + βi. Here we assume the values of xi are independent of θi, that is, P (D|θi) = θi. Then
the predictive distribution of xi given the observations D is defined by the mean of θi given the

observations D. This enables consumers to learn the parameters from the observations without
the problems caused by MLE in some extreme cases.

P (xi|D) =

∫ 1

0

P (xi|θi)P (θi|D)dθi (14)

=

∫ 1

0

θiP (θi|D)dθi (15)

= E(θi|D) (16)

=
mi + αi

mi + αi + li + βi

(17)

Bayesian inference provides an intuitive way to update the trust (a beta distribution) placed in a
service. For example, let a consumer’s current trust value of service xi be θi = (αi, βi) = (5, 5).

Suppose the consumer observes two new good outcomes and one bad outcome. The consumer
can update the trust value by simply adding the new observations to the previous value. That
is, θ̂i = (α̂i, β̂i) = (7, 6). Then the consumer can predict that the probability of obtaining a

satisfactory quality value from the next interaction is 7
13

.

Additionally, to incorporate the dynamism of service behavior, a discount factor γ reduces the

impact of the old information when we calculate the posterior distribution. In other words, instead
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of Equation 17 we have:

P (xi|D) =
mi + γαi

mi + γαi + li + γβi

. (18)

The notion of a discount factor is common in trust and reputation systems. The estimate reflects
the overall behavior if it is high; otherwise, the estimate depends more on the recent behavior.
Hang et al. [2008] study the effect of the discount factor on updating trust estimates. Section 4.2
shows how our approach keeps track of dynamic service behavior in a service composition.

B. EXTENDED EXAMPLE FOR BAYESIAN APPROACH

T

H

ef

C

Fig. 11. Service composition example.

We can implement a sequential approach to construct and learn the service composition model

from observations. Taking the scenario of Figure 11 as an example, Table III shows the incomplete
observations from a consumer in terms of its response time. In the first observation, the consumer
interacts with the hotel service H and obtains a satisfactory response time. The consumer is also
aware of the constituent Four Seasons Hotel service f and its good response time. In the second

observation, the consumer interacts with the car rental service C but with a bad response time.
Here the consumer is not aware of any constituent services. In the third observation, the consumer
directly interacts with the travel service T with a positive experience. Here the consumer also
realizes the presence of the two constituent services H and C. T reports service H as offering

good outcomes and service C as offering bad outcomes. Service C further reports its bad response
time as having been caused by its constituent Enterprise service e.

Table III. An example observation derived from a consumer’s experience.

t xt
f

xt
e xt

H
xt

C
xt

T

1 1 1

2 (0.67) (0.61) 0

3 (0.67) 0 1 0 1

Table IV shows the parameters estimated using Bayesian inference. The parameters are repre-
sented as pairs of hyperparameters αi, βi of the corresponding beta distribution. The numbers in

the parentheses in Table III are the inferred counts to complete the missing data in the E step.

For example, n(x2
f

= 1) = E(θ1
f
) =

α1

f

α1

f
+β1

f

= 0.67. Then we can infer n(x2
H

= 1) as follows.
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n(x2
H = 1) = n(x2

H = 1|x2
f = 1) + n(x2

H = 1|x2
f = 0)

= P (x2
H = 1|x2

f = 1)P (x2
f = 1) + P (x2

H = 1|x2
f = 0)P (x2

f = 0)

= 0.5 × 0.33 + 0.67 × 0.67 = 0.61

Subsequently, we use the completed data to update the parameter estimation. For example, the

new estimation θ2
H

(including θ2
H|f=0

and θ2
H|f=1

) is given by

(α2
H|f=1, β2

H|f=1)

= (α1
H|f=1 + n(x2

H = 1, x2
f = 1), β1

H|f=1 + n(x2
H = 0, x2

f = 1))

= (2 + P (x2
H = 1|x2

f = 1) × x2
f , 1 + P (x2

H = 0|x2
f = 1) × x2

f )

= (2.44, 1.22)

(α2
H|f=0, β2

H|f=0)

= (α1
H|f=0 + n(x2

H = 1, x2
f = 0), β1

H|f=0 + n(x2
H = 0, x2

f = 0))

= (1 + P (x2
H = 1|x2

f = 0) × (1 − x2
f ), 1 + P (x2

H = 0|x2
f = 0) × (1 − x2

f ))

= (1.17, 1.17)

Table IV. Parameter estimation over time based on the observations of Table III.

t θt
f

θt
e θt

H|f=0
θt
H|f=1

θt
C|e=0

θt
C|e=1

0 (1,1) (1,1) (1,1)
1 (2,1) (1,1) (2,1) (1,1)
2 (2.67,1.33) (1,1) (1.17,1.17) (2.44,1.22) (1,2) (1,2)
3 (3.33,1.67) (1,2) (1.5,1.17) (3.11,1.22) (1,3) (1,2)

Note that some parameters may not exist until a particular observation because the consumer
may not be aware of the corresponding random variables. For example, service C is not reported
until the second observation. Further the conditional dependencies may change because some

constituent services may be observed later. For example, θ1
C|e=0

actually means θ1
C

in the first

observation because service e is not reported. However, θ2
C

changes to θ2
C|e=0

and θ2
C|e=1

is ini-

tialized because service e and the dependency on service C are discovered in the third observation.
In these cases, the Bayesian network is updated at the same time to reflect the new discovery.

C. ADDITIONAL EXPERIMENTAL RESULTS

Here we present some additional experimental results. The explanations for these graphs follow
those given in the main paper.
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Fig. 12. Beta-mixture approach: estimated beta mixture and actual distribution of trust in
quality for a sum composition. The composite distribution is learned accurately. However, the
beta-mixture approach fails to learn the constituent components well, because the composite
histogram tends to follow a unimodal distribution (i.e., only one peak).
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Fig. 13. Beta-mixture approach: estimated beta mixture and actual distribution of trust in quality
for a product composition. Similar to Figure 12, the histogram is accurately fit by the composite

distribution, but the accuracy of the constituent distributions is hard to learn because of the
unimodal observations.
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Fig. 14. Beta-mixture approach: estimated beta mixture and actual distribution of trust in
quality for a min composition. The histogram is dominated by one constituent component (i.e.,

one provides good service), which is accurately learned by the beta-mixture approach. Also,
beta-mixture accurately estimates the responsibility (dominance) of each component. However,
the component other than the dominating one is not accurately learned because of the lack of
evidence.
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Fig. 15. Beta-mixture approach: estimated beta mixture and actual distribution of trust in quality

for a max composition. Similar to Figure 14, the composite distribution, and the dominating
constituent component is predicted well, but the lack of evidence affects the accuracy of the minor
component. However, beta-mixture learns the responsibility (dominance) well.
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