
Simulation Modelling Practice and Theory 85 (2018) 33–46

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Toward effective adoption of secure software development

practices

Shams Al-Amin

a , ∗, Nirav Ajmeri b , Hongying Du

b , Emily Z. Berglund

a ,
Munindar P. Singh

b

a Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695, United States
b Department of Computer Science, North Carolina State University, Raleigh, NC 27695, United States

a r t i c l e i n f o

Article history:

Received 14 June 2017

Revised 16 February 2018

Accepted 17 March 2018

Keywords:

Multiagent system

Security practices

Adoption

Decision theory

Sanction

a b s t r a c t

Security tools, including static and dynamic analysis tools, can guide software developers

to identify and fix potential vulnerabilities in their code. However, the use of security tools

is not common among developers. The goal of this research is to develop a framework for

modeling the adoption of security practices in software development and to explore sanc-

tioning mechanisms that may promote greater adoption of these practices among devel-

opers. We propose a multiagent simulation framework that incorporates developers and

manager roles, where developers maximize task completion and compliance with security

policies, and the manager enforces sanctions based on functionality and security of the

project. The adoption of security practices emerges through the interaction of manager and

developer agents in time-critical projects. Using the framework, we evaluate the adoption

of security practices for developers with different preferences and strategies under individ-

ual and group sanctions. We use a real case study for demonstrating the model and ini-

tialize the occurrence of bugs using a 13 year database of bug reports for the Eclipse Java

Development Tools. Results indicate that adoption of security practices are significantly

dictated by the preferences of the developers. We also observed that repetitive sanctions

may cause lower retention of developers and an overall decrease in security practices. The

model provides comparison of security adoption in developers with different preferences

and provides guidance for managers to identify appropriate sanctioning mechanism for in-

creasing the adoption of security tools in software development.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Secure software development tools, or security tools, are programs that analyze software to help developers find and fix

vulnerabilities [1,2] . Such tools may analyze software code, find vulnerabilities [3,4] , warn developers of probable violations

of coding standards [5] , or find programming errors through static (FindBugs) [6] or dynamic analysis (Valgrind plugin) [7] .

To illustrate the functionality and advantages of a static security analysis tool, consider FindBugs as an example. FindBugs

can be run as a plug-in for the Eclipse and NetBeans integrated development environments, using Ant or Maven, from the

command line or as a separate tool on its own [1,8,9] . FindBugs can group each bug pattern into a category of correctness,

bad practice, performance, or internationalization, and prioritize bugs as high, medium, or low. Findbugs also offers few
∗ Corresponding author.

E-mail address: salamin@ncsu.edu (S. Al-Amin).

https://doi.org/10.1016/j.simpat.2018.03.006

1569-190X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.simpat.2018.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/simpat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2018.03.006&domain=pdf
mailto:salamin@ncsu.edu
https://doi.org/10.1016/j.simpat.2018.03.006

34 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

fixes. However, despite the advantages of these tools, the use of security tools is not common among developers [2] . In a

survey [10] , 60% developers responded that in their organization developers run FindBugs in an ad-hoc way, 80% responded

that there is no policy on how soon each FindBugs issue must be human-reviewed, and 83% responded that FindBugs warn-

ings are not inserted into a separate bug-tracking database in their organization.

Adoption of security practices Previous research that looked into the adoption of security practices are based on quan-

titative data collected through surveys. Witschey et al. [2] collected quantitative data on the relative importance of factors

through an online survey of software developers. They identified 39 factors that affect adoption. These are social system

factors such as security concern and awareness, policies and standards, structures, education and training, and culture; in-

novative factors such as relative advantage, observability, complexity, and trialability; communication channel factors such as

trust and exposure; and potential adopter factors. They built a combined logistic regression model using the 39 factors and

found 6 factors are statistically significant. The six significant factors are observability, advantages, policies, inquisitiveness,

education and exposure. Kina et al. [5] analyzed the decision criteria of software developers based on prospect theory and

concluded that developers would avoid selecting tools if the probability of the effect of the tools is unknown. Araújo et al.

[11] investigated the effectiveness of existing bug prediction approaches with procedural systems and compared their effec-

tiveness using standard metrics, with adaptations when needed. Ayewah et al. [10] pointed out that the users’ willingness

to review warnings and fix issues also depends on the characteristics and organization of the project, the time investment

they are willing to put into each review, and their tolerance for false positives.

Although surveys can help explore the factors influencing adoption, it is logistically challenging to observe how each

developer works in real time. Simulation can be used to explore and predict adoption patterns in different scenarios. Sim-

ulations based on technology acceptance model [12,13] , diffusion of innovation model [14,15] , and application of social net-

work theories [16,17] and decision theories [18–20] have been successfully used in modeling adoption and can be useful

in understanding adoption of security practices in software development. Dignum and Dignum [21] proposed to use ideas

from social practice theory to support reasoning about action and planning of intelligent agents in a social context. From

a decision theory perspective, the factors that influence adoption of security practices can be viewed as a developer’s indi-

vidual preferences and the perceived utility of using security practices. While a developer prefers using security tools only

if it leads to a rationally rewarding outcome for his or her individual utility, a manager who oversees the adoption and

the overall quality of the outcome may offer rewards or punishments, because the security of the end product depends on

the security practices. We propose a rational decision making framework to explain the adoption of security practices by

developers. The model simulates developers’ preferences and decision making based on their perceptions of the advantages

of security tools. The model also includes a manager who has full observability of the adoption practices and implements a

sanction mechanism that enforces a policy to use security practices to meet a specified standard.

Norms and Sanction We recognize the term, norms, to describe “directed normative relationships between participants

in the context of an organization” [22,23] . Norms are powerful means for regulating interactions among autonomous agents

[24–26] . Social interactions form norms which are influential in dictating what behaviors are expected in a community and

of the system [27,28] . Failure to comply with normative expectations is met with a sanction, which is a consequence for

norm violation applied to a principal or group of principals, by a sanctioning agent. A sanction may be positive or negative

and is manifested in reprimand or reward, respectively [29] . In the context of the developers’ adoption environment, a norm

violation would be met with a negative sanction. When an individual is singled out and censured for defecting against a

norm, we recognize this as an individual sanction. Alternatively, when a sanction is applied to a group of individuals for

actions of a subset of that group, we recognize it as a group sanction, also known as collective sanction [30] .

Example 1. Consider Alex, Barb, Charlie, and Dave, who are software developers working as a team to deliver a product. Erin

is their manager. Erin divides the project into multiple tasks and assigns those to the developers. Erin wants to make sure

the product is delivered on time and meets the functionality and security requirements. Erin and her team use FindBugs to

identify security bugs. Alex and Barb are experienced developers who use security tools. Charlie and Dave are new to the

team and not aware of security practices.

Consider a scenario, where Charlie and Dave learn to use FindBugs. Everyone follows the standard security practices and

delivers the product on time. Once the product is launched, its functionality and security are found as satisfactory. Erin

rewards her team and encourages everyone to continue following security practices.

Now consider a second scenario where the project is time-critical, and Charlie skips executing FindBugs to deliver the

product just with required functionality. This can lead to multiple alternatives: (1) Once the product is launched, it is flagged

for security concerns. Erin identifies that Charlie did not follow the standard security practices on the concerned artifacts

and scolds him. Charlie realizes the importance of using security tools. (2) Based on the evaluation, Erin scolds her team

to use security tools in future. (3) Alex finds out that Charlie is not following the security practices and prompts him to

use security tools. The illustrative example can be used to distinguish among individual, group and peer sanctions. Erin

sanctioning Charlie is an example of individual sanction where the manager monitors and sanctions individuals who do not

follow a norm. Erin scolding everyone can be considered as a group sanction where the sanctions are imposed on a whole

group regardless of who in the group violated or satisfied a norm. Alex prompting Charlie is an example of peer sanction

where a peer sanctions another peer in the group.

Multiagent Systems Norms are used to regulate agent behavior and facilitate collaboration in open MASs [31,32] .

Savarimuthu and Cranefield [33] surveyed simulation models of norms in multiagent systems and proposed five phases of

S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46 35

Fig. 1. Conceptual model of security practices adoption framework.

the norm life-cycle based on a socio-computational viewpoint. These are norm creation, identification, spreading, enforce-

ment and emergence. Savarimuthu et al. [34,35] further proposed a framework for social norm emergence in virtual agent

societies. They argued that norms can be established through a bottom-up process based on a distributed, peer to peer

punishment mechanism and demonstrated that the mechanism works on top of dynamically created networks. Dam and

Winikoff [36] compared prominent agent-oriented methodologies based on an attribute-based framework which address

four major areas of concepts, modeling language, process and pragmatics. Dam and Ghose [37] presented a framework that

supports designers in evolving software models in a collaborative modeling setting built upon the well-known Belief Desire

Intention agent architecture. Meyer et al. [38] provided a general framework for multiagent context-sensitive merging and

also investigated the link between such merging operations and the aggregation operations studied in social choice theory.

Ghose and Savarimuthu [39] outlined a methodology for identifying the optimization norms that underpin other norms and

then defined a notion of compliance for optimization norms, as well as a notion of consistency and inconsistency resolution.

Multiagent modeling has also been widely used in software development [40–44] . However, few studies [22] explored the

adoption of security practices in software development. Our research fills this gap.

Contributions The research addresses the following research question: Which sanctioning mechanism promotes greater

adoption of security practices? We provide a model that simulates the adoption of security tools among developers. The

model can be applied to identify appropriate sanctioning mechanism for increasing the use of security tools among a group

of developers with heterogeneous skills. Model output demonstrates the emergence of the adoption and use of security tools

by simulating the system dynamics as the interactions among developers and a manager in the completion of project tasks.

Organization Section 2 describes the security practices adoption model. Section 3 details the simulation, and

Section 4 presents the experiments and their results. Section 4.5 discusses the limitations of the framework and threats

to validity and Section 5 concludes with important future directions.

2. Security practices adoption framework

The framework simulates the dynamic interactions between developers and a manager in a time-critical project. Fig. 1

shows the interactive modules of our framework.

Definition 1. The security practices adoption framework O = < L, A, P, M, E > contains five entities: L is the lab, or an orga-

nization, where agents reside in. A is a set of developer agents who perform tasks pertaining to a time-critical project. Each

task corresponds to an artifact of a product P. M is a manager agent who monitors the coding and security practices of the

agents and sanctions agents based on the functionality and security of the product. E is everything outside of the lab.

The following sections describe the attributes and actions of the manager and developer agents.

2.1. Manager

Manager agent is in charge of assigning tasks and sanctions.

2.1.1. Assign tasks

Modern software development is mostly based on an incremental and iterative approach in which software is developed

iteratively, or through repeated cycles, and in small sections at a time [45] . We assume each part of a software corresponds

to a task. A task in our model can be in one of the three states: NotCoded, Coded, Tested , as shown in Fig. 2 . NotCoded

indicates the task has not yet been adequately coded, Coded represents an agent performed Code action on the task but not

tested for bugs, and Tested indicates that an agent performed Security action, i.e., running security tools on the task and no

bugs were found. A task has the following attributes:

Minimum skill required to code . Each task has an associated minimum skill required to code. If a developer’s coding skill is

higher than that required skill, it can perform Code action on that task. A developer can perform the action LearnCode

to increase its skill of coding.

36 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

Fig. 2. Task states.

Minimum skill required to run security tools . Each task has an associated minimum skill required to perform Security action.

If a developer’s security skill is higher than that required skill, it can perform Security action on that task. A developer

can perform LearnSecurity action to increase its skill of using security tools.

Time required to code . Each task has an associated time required to code. The time is inversely proportional to the coding

skill of a developer.

Time required to run security tools . Each task has an associated time required to run security tools. The time is inversely

proportional to the security skill of a developer.

To reduce the dimensionality of the complex problem, tasks are assumed to be atomic. Each task corresponds to an

artifact. An artifact, Art j , corresponding to task T j , has two attributes—functionality (indicates how functional the artifact is)

and security (indicates how secure the artifact is). In our model, functionality of an artifact is computed as a function of the

coding skill of the corresponding developer agent. Security of the artifact is a function of the skill of using security tools of

the developer agent, whether or not Code and Security action is performed, and whether bugs are found in the artifact.

2.1.2. Assign sanctions

Sanctions can be individual or group sanctions. In individual sanctioning, developers are subjected to sanctions individ-

ually, if they fail to deliver artifacts with the standard set by manager. In a group sanction, the manager only monitors

the overall product and sanctions every developer if the product does not meet the standard. Sanctions are applied in the

following cases:

For functionality . The manager monitors functionality of the artifacts periodically and imposes sanctions to (1) individual

developer agents who produce artifacts with less functionality than the threshold standards set by the manager (in-

dividual sanction) or (2) all developers if the overall product functionality is less than the project threshold standard

(group sanction).

For security . Similar to functionality, the manager monitors security of the artifacts periodically and imposes individual

or group sanctions.

For both . The manager monitors functionality and security both of the artifacts periodically, and imposes individual or

group sanctions for not meeting any one of the standards.

2.2. Developer agents

Each developer agent has four attributes:

Tasks . Tasks are works assigned to a developer agent by the manager agent. The duration of time available to a developer

agent to complete the assigned tasks is the deadline. Here, “complete” means both “Code” action and “Security” action

are performed on a task. The deadline also marks the end of a project. There are multiple projects in each simulation.

Coding and Security skills . Each developer has a skill of coding and using security tools. The time taken to code or run

security tools decreases with an increase in the corresponding skill, and developers can increase their skills by per-

forming LearnCode or LearnSecurity actions.

Developer health . It represents a developer agent’s health which varies according to the completion of the tasks assigned

to the agent. An agent’s health is subject to change in the model for the following reason: if an agent is unable to

meet the functionality and security standards within the deadline, health is reduced proportionally. A threshold of

the health is set, below which an agent is considered “dead” and needs to leave the lab. If an agent leaves, it is no

longer be able to perform any action and will never return to the simulation [22] .

Preference . It is the probability that an agent will choose to do an action [22] . For example, if an agent’s preference is

40% for coding, 20% for using security tools, 20% for learning coding and 20% for learning security tools, it has a

40% chance of considering the Code action and 20% chance of considering the Security, LearnCode , and LearnSecurity

actions. The sum of the preferences is unity.

Definition 2. A developer agent can choose to perform one of the following actions at each time step. Actions =

{ Code, Security, LearnCode, LearnSecurity, DoNothing }. Actions are described in detail below.

S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46 37

Code . A task changes from NotCoded to Coded state when the assigned developer agent performs Code action on the task.

Security . When a developer agent performs Security action on a task, the task state changes from Coded to Tested if no

bugs are found. If there are bugs, the state changes from Coded to NotCoded .

LearnCode . The action LearnCode increases the skill of coding of an agent. It results in a decrease in the time to perform

Code action on a task and increases the functionality of the corresponding artifact.

LearnSecurity . The action LearnSecurity increases an agent’s skill of using security tools. It results in a decrease in time to

perform Security action on a task and increases the security of the corresponding artifact.

DoNothing . A rational agent may DoNothing if there is any reward for doing nothing or all the tasks in a project are Coded

and Tested .

3. Simulation experiments

The following sections describe characteristics of the simulation experiments.

3.1. Assumptions and simulation settings

The following section discusses several assumptions regarding our experiment. We understand these variables are not

arbitrary and we do not trivialize the significance of these variables. Further research and data collection should be con-

ducted to replace the assumed variables with refined values. However, as the nature of our simulation is exploratory, we

have intuitively assigned values to these variables to demonstrate the dynamics of the framework. These assumptions and

other related parameters are as follows:

• The manager has full observability of the system. A developer agent has observability only about tasks assigned to it and

its own attributes.

• Developers perform tasks in the order they are assigned. A developer considers coding a task only if its prior task is

already Coded .

• The skill of coding and the skill of running security tasks of a developer are independent. Each skill varies in the range

of 0 to 100.

• The expected reward of running security tools on a coded task is higher than the expected reward of coding a task.

• The manager only assigns negative sanctions based on functionality and security compliance.

3.2. Runtime actions

The total tasks are distributed equally among the active developers. At each time step, the following actions occur:

1. Each developer identifies the available actions to perform at that time step.

• Action Code is available if there is any task in the NotCoded state and the corresponding developer’s skill of coding is

equal to or higher than the required skill for the task.

• Action Security is available if there is any task in Coded state and the corresponding developer’s skill of running

security tool is equal or higher than the required security skill for the task.

• Action LearnCode is available if the corresponding developer’s coding skill is less than 100.

• Action LearnSecurity is available if the corresponding developer’s skill of running security tool is less than 100.

2. Each developer compares the expected reward of each action as follows:

Expected reward of Code action R Code . It is the product of units of task that can be completed with current coding skill

within time remaining (N code _ task), and the reward for coding a unit task (R code _ task).

R Code = N code _ task ∗ R code _ task

Expected reward of Security action R Security . It is the product of units of task that can be tested with the current security

skill within the time remaining (N test _ task), and the reward for testing a unit task (R test _ task).

R Security = N test _ task ∗ R test _ task

Expected reward of LearnCode action R LearnCode . It is the product of the units of task that can be coded if the current time

step is spent on learning coding (N code _ task _ i f _ learn), i.e., units of tasks that can be coded with an increased skill within

(time remaining–1) time steps, and the reward for coding unit task.

R LearnCode = N code _ task _ i f _ learn ∗ R code _ task

Expected reward of LearnSecurity action R LearnSecurity . It is the product of the units of task that can be tested if the current

time step is spent on learning security tools (N test _ task _ i f _ learn), i.e., units of tasks that can be tested with an increased

skill within (time remaining -1) time steps, and the reward for testing a unit task.
R Lear nSecur ity = N test _ task _ i f _ learn ∗ R test _ task

38 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

Algorithm 1 Developer’s decision and task completion.

1: Function � (developers, tasks, f decision , f changestate)

2: decisions ← f decision (developers, tasks);

3: for all developers in decisions do

4: if decision is to Learn then

5: skills ← f upskil l s (skills, δskill);

6: else if decision is to Code then

7: tasks ← f changestate (tasks);

8: else if decision is to Security then

9: tasks ← f changestate (tasks, bugs);

3. Each developer identifies its action. The action with the highest product of preference and expected reward is identified

by the developer (function f decision in Algorithm 1). The state of each developer is updated (function f changestate) as follows:

• If Code action is performed, a developer remains busy for time steps equal to the time required for coding that task.

After that, the state of the task changes from NotCoded to Coded . Once a task state changes from NotCoded to Coded ,

the functionality of the corresponding artifact is generated as a random number in the range of [skill of coding, 100]

and the security of the artifact in the range of [skill of security, 100].

• If Security action is performed, a developer remains busy for time steps equal to the time required for testing that

task. After that, the state of the task changes from Coded to Tested if no bug is found and to NotCoded state if any

bug is found. The probability of finding a bug is a random number in the range [0, (100-security skill)%]. Once a task

state changes from Coded to Tested , the security of the corresponding artifact is increased by a percentage of the skill

of security of the corresponding developer.

• If Learn Code or Learn Security action is performed, the corresponding skill of the developer increases.

4. When the time reaches deadline, a project ends and the manager performs sanctions based on compliance of function-

ality and security requirements (Algorithm 2). When a developer is sanctioned for functionality, its preference for Code

Algorithm 2 Manager’s sanction.

1: Function ϑ (developers, Artifacts, threshold, type sanction , f sanction)

2: violations ← f sanction (artifacts, threshold,
Stype);

3: for all artifacts in violations do

4: if developer is sanctioned then

5: preferences ← f uppre f (preferences, type sanction);

action and LearnCode action increases, and when a developer is sanctioned for security, its preference for Security action

and LearnSecurity action increases. A new project begins at the end of a project.

3.3. Scenarios and metrics

First, we compare the performances of three different types of developers. The first type of developer agent always

selects Code if coding is an option. They perform LearnCode action only if learning is required. Once all the tasks are coded,

they perform Security action and LearnSecurity action (only if more learning is required to reach the threshold skill). The

second type of developer agent codes a task and runs security tests of the code immediately when the coding of a task

is complete. They learn coding or running security tools as required. These developer agents start coding the next task

when the previous task is coded and tested. The third type of developer agent always learns first. These agents learn coding

to reach the maximum coding skill and then learn security to reach the maximum security skills. Once their skills are at

maximum levels, they code and run security tests. We compare the sanction, sanction efficacy and overall group health

for these three types of developer agents. Because they have predefined strategies, these developer agents do not learn or

change actions in response to sanctions.

Next we consider a group of developers who learn and update their preferences in response to sanctions. We compared

three additional group of developers. The first group of developers have no preference, i.e., the preferences for Code, Security,

LearnCode and LearnSecurity actions are equal (equal to 25). The second group of developers have higher preference for

coding, that is, the preferences for Code action (85) is higher than the actions Security, LearnCode and LearnSecurity (each set

at 05). The third group of developers have higher preference for running security tools, that is, the preferences for Security

action (85) is higher than the actions Code, LearnCode and LearnSecurity (05). The following four metrics are measured over

the course of the simulation:

Tasks tested % . It is the percentage of tasks in a project in which a developer performs Security action and no bugs are

found. In other words, tasks tested (%) is the ratio of tasks in Tested state and total tasks, measured at the deadline.

S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46 39

Table 1

Experiment parameters.

Parameter Value

No of simulations 50

No of projects 10

No. of developers 100

Tasks per project 500

Project duration 60

Preference for coding for coding preferred developers 85

Preference for other action for coding preferred developers 05

Preference for testing for testing preferred developers 85

Preference for other action for testing preferred developers 05

Preference for all actions for no preference developers 25

Maximum skill 100

Variables with normal distribution μ (σ)

Time required to code a task 6 (1)

Time required to test a task 5 (1)

Skill of developers (initialization) 50 (5)

Skill required for a task (initialization) 50 (5)

Health of developers (initialization) 95 (5)

Time spent on security tasks % . It is the total time steps spent by all developers on Security and LearnSecurity actions as a

percentage of the total time steps of the project.

Sanctions % . It is the number of times developers are sanctioned by the manager as a percentage of maximum number

of sanctions possible, in the simulation.

Sanction efficacy . It is computed as the ratio of the number of developers that are sanctioned once and the total number

of developers in the simulation. Sanction efficacy implies that the sanctioning changed the preference of the developer

so that it was never sanctioned again.

3.4. Simulation of bug reports

To make the simulation more realistic, we incorporated real data. Specifically, we generate a time history of bugs using

the bug report data for a developing software product— Eclipse Java Development Tools [46] . The report contains bug ids,

reported time, summaries, and commits. Because Eclipse releases new versions around the end of June every year, we

consider a time frame of one year between two releases, which corresponds to a project in our simulation. We calculated

the number of bugs reported each month and normalized it:

nor malized _ data =

number _ of _ bugs

maximum _ number _ of _ its _ release
∗ 100 .

The normalization is to relieve the side effect of fewer bugs in later versions. We have 149 records of normalized data from

October 2001 to February 2014, which are used to generate the data we used in the simulation. We used the following

formula to generate simulation data from the normalized data:

simulation _ data = normalized _ d ata ∗ rand om (80 , 120)

100

.

For simulation _ data > 100 , we consider it as 100. We generated 50 batches of simulation data according to the normalized

data to be used in 50 simulations. Each simulation contains 10 project cycles, where each cycle in equivalent to one year of

records. Each project cycle is assumed to run for 60 time steps. The experiment parameters are described in Table 1 .

4. Evaluation

This section presents the results of our simulation experiments.

4.1. Security adoption emergence in developers’ responses

The security adoption is not dominated by the skills of developers; rather it emerges through the complex and dynamic

interactions among the skills of developers, their preferences, task properties, and task assignments. Security actions and

tasks tested vary across scenarios. Developers with preferences and developers with fixed strategy are similar in actions

and tasks tested for the no sanction scenarios. Because of the differences in adaptive responses, their responses vary under

sanctions as demonstrated in Figs. 3–6 . Results demonstrated through these figures are further described in the following

sections.

40 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

Fig. 3. (a) Tasks tested, (b) tasks coded and (c) security activities for no sanction scenario of fixed strategy developers (Strat-

egy 1 is Code ⇔ LearnCode → Security ⇔ LearnSecurity, Strategy 2 is Security ⇔ LearnSecurity → Code ⇔ LearnCode, Strategy 3 is Learn-

Code → LearnSecurity → Code → Security).

4.2. Fixed vs adaptive developers

We compare the performances of developers with different fixed strategies and preferences. Fig. 3 (a) and (b) show the

mean percentage of tasks tested and coded, respectively, by a developer in a project, and Fig. 3 (c) shows the corresponding

security activities measured as percentage of Security and LearnSecurity actions performed in each time step. The mean is

calculated for 50 simulations. With the fixed strategies, developers who perform Security or LearnSecurity actions first (strat-

egy 2) and then perform Code and LearnCode actions have the highest mean of percentage of tasks tested (19%). This group

of developers also has the highest mean of percentage (50%) of security activities among the three strategies compared. The

group of developers who perform Code or LearnCode first, and then perform Security or LearnSecurity actions (strategy 1)

has the highest mean percentage (93%) of tasks coded but also the lowest percentage (1.4%) of tasks tested. This group also

spends the least amount of time on security activities (4%), as shown in Fig. 3 .

Among the adaptive developers, or developers that update their preferences when sanctioned (Fig. 5), developers with

no preferences or preference for testing have a higher mean of percentage of tasks tested (10.9% and 11.1%) and security

activities (28%), compared to developers with preference for coding (1.4% tasks tested and 4.4% security activities). As shown

in Fig. 3 (b), the 10 and 90 percentile values are very close to the mean, which indicates that most of the simulations

S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46 41

Fig. 4. (a) Sanctions, and (b) Health for no sanction scenario of fixed strategy developers (Strategy 1 is Code ⇔ LearnCode → Security ⇔ LearnSecurity, Strat-

egy 2 is Security ⇔ LearnSecurity → Code ⇔ LearnCode, Strategy 3 is LearnCode → LearnSecurity → Code → Security).

Table 2

Changes in tasks tested (%) and security activities (%) with change in preference over 50 simulations

(Tasks coded in no preference, τ 1 = 9.8–12.2 and security activities in no preference, μ1 = 27.5–28.1).

Preference Tasks tested (τ 2) τ 1 > τ 2 τ 1 < τ 2 τ 1 � = τ 2 at 95% CI

For coding 1.0–1.8 100% 0% 100%

For testing 9.8–12.7 34% 66% 2%

Preference Security activities (μ2) μ1 > μ2 μ1 < μ2 μ1 � = μ2 at 95% CI

For coding 4.3–4.5 100% 0% 100%

For testing 27.7–28.4 4% 96% 0

produced percentage of tasks tested close to the mean. The same is true for most of the simulations for adaptive developers.

The highest variations are observed in the case of group sanctions for security and both scenarios.

4.3. Preferences

Among the three developer groups with different preferences, developers with preference for testing have the highest

security practices (27.7–28.4%) and tasks tested (9.8 to 12.7%). Developers with preference for coding have the lowest se-

curity practices and tasks tested. Table 2 compares the tasks tested and security activities across developers with different

preferences. As shown, developers with preference for coding tested less than the developers with no preference in 100% of

the simulations. Developers with preference for testing tested more than the developers with no preference in 66% of the

simulations. Similar observations can be made in security activities where developers with no preference had higher security

activities than developers with preference for coding in 100% of simulations and lower than the developers with preference

for testing in 96% of simulations. A two-tailed student’s t -test assuming unequal variance shows 100% of the simulations

have statistical significance for rejecting the null hypothesis that the means of tasks tested and security activities are equal

to that of developers of coding, whereas only 2% of the simulations can show the same for developers with preference for

testing in case of tasks tested.

4.4. Sanctions

Fig. 4 demonstrates the sanctions and corresponding health under fixed strategies. As shown in Fig. 4 (a), developers with

fixed strategy 1, i.e., developers who code or learn code first, are sanctioned least. This group of developers also has the

highest percentage of tasks coded. As a task is coded, functionality and security values are assigned to the corresponding

42 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

Fig. 5. (a) Tasks tested, (b) tasks coded and (c) security activities for sanction scenarios of developers with no preference, preference for coding and

preference for testing.

artifacts. When the developer performs Security action on the same task, the security value is further increased. However,

since the developers in strategy 1 coded significantly higher percentage of tasks than the other two strategies, they ended

up less sanctioned. The number of tasks coded (and the corresponding security value of the artifact) dominated in this case

over the increase of security by performing Security action. This group of developers have the highest health as shown in

Fig. 4 (c). The developers were sanctioned most for group sanction for security.

Fig. 6 shows the sanctions and health of adaptive developers. Similar to fixed strategies, in this case, the sanctions are

also guided by number of tasks coded. The results highlight the role of the time-constraints for developers in adoption

of security practices. As developers with no preference or preference for security tested more (10%) tasks but ended with

higher sanctions since they coded less (35%). As shown in Fig. 6 (a), across all preferences, developers are sanctioned highest

under the group sanction for security and the group sanction for functionality and security. The mean of developers’ health

is also the lowest for these sanctions. Other sanction scenarios are comparable. Though it is counter-intuitive, the highest

sanction does not yield the highest task tested, shown in Table 3 . The repetitive individual sanction reduces the health

of a group of developers, eventually leading to lower retention of developers and thereby lowering the mean percentage

of tasks tested. The sanctioning for functionality increased the number of tasks tested for developers with all preferences.

The sanctioning for security also increased the tasks tested but lower retention of developers through repetitive sanctions

lowered the overall mean.

S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46 43

Fig. 6. (a) Sanctions, and (b) Health for sanction scenarios of adaptive developers with no preference, preference for coding and preference for testing.

Table 3

Changes in tasks tested (%) with sanctions over 50 simulations (Tasks tested in no sanction (τ 1) for no preference

ranges between 9.8–12.2, for preference for coding between 1.0–1.8 , and for preference for testing between 9.8–12.7).

Preference Sanction Tasks tested (τ 2) τ 1 > τ 2 τ 1 < τ 2 τ 1 � = τ 2 at 95% CI

No preference Individual (functionality) 9.38–12.3 44% 56% 0%

Group (functionality) 9.4–12.0 46% 54% 4%

Individual (security) 8.0–10.9 100% 0% 34%

Group (security) 8.5–12.0 52% 48% 12%

Individual (both) 8.8–11.2 96% 2% 32%

Group (both) 6.1–12.8 62% 38% 30%

Preference for coding Individual (functionality) 0.9–1.7 70% 24% 0%

Group (functionality) 1–1.8 34% 62% 0%

Individual (security) 0.5–1.1 100% 0% 62%

Group (security) 0.1–0.4 100% 0% 100%

Individual (both) 0.5–1.0 100% 0% 74%

Group (both) 6.1–12.8 100% 0% 100%

Preference for testing Individual (functionality) 9.7–12.8 46% 54% 2%

Group (functionality) 9.9–12.4 46% 54% 0%

Individual (security) 8.5–11.1 94% 6% 34%

Group (security) 6.2–12.2 58% 42% 32%

Individual (both) 8.7–11.7 100% 0% 24%

Group (both) 6.1–12.7 70% 30% 28%

Sanction efficacy decreases with the increase in sanctions. For the scenarios presented here, sanction efficacy is zero for

most sanction cases. Individual sanctioning for functionality (12.2%) and security (1.5%) have the only efficacy among the

adaptive developers who have preferences for coding.

4.5. Threats to validity

Threats mitigated We identified and mitigated the following three threats.

1. Difference in skills. In reality, developers have different skills thus simulating with same or equal skills introduces a

threat of skill homogeneity. To mitigate the threat of skill homogeneity, we seed the simulation with developers with

different skills.

2. Difference in developer strategies. Developers working on real projects do not work in the same way to complete the

assigned tasks. Thus simulating with only one strategy introduces the threat of homogeneity in developer’s strategy. To

44 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

mitigate this threat, we compare developers with various fixed and adaptive strategies under different sanction mecha-

nisms.

3. Reliability of the data. Since we simulate the task assignment and probability of bugs, a threat is whether the data or the

value of the variables seeded in the simulation is reliable. To mitigate this threat of reliability of the data, we seed the

simulation based on real data of Eclipse Java Development Tools bug reports spanned across a period of 13 years [46] .

The research conducted here relies on a number of assumptions. First, we assumed that all the developers in the orga-

nization use only one security analysis tool. Thereby, by learning they can improve their skill of using that particular tool.

The improvement in skills for different developers in the organization due to learning was also assumed to be the same.

In reality, different developers may prefer using different security analysis tools and the improvements in skills might be

different after spending the same amount of time in learning. Second, we assumed that a developer can only perform one

action at a time step. In reality, developers may accomplish multiple tasks simultaneously, for example, they can run a se-

curity tool, and simultaneously read a tutorial till the security tool completes its execution. Third, we assumed monotonic

functions for changes in health, preferences, and skills of developers in response to sanctions. The changes may vary in time

and in person to better represent reality. Fourth, we assumed only negative sanctions in this study. Positive sanctions may

influence preferences and health of a developer, as well. In general, evaluating software quality is a complex process [47–

49] that may have time delay and may impact the vulnerability of the code. To reduce dimensionality of the analysis, we

assumed that the manager receives evaluation of functionality and security performances of the product immediately after

product release and can thereby assign sanctions toward improving those for the next project.

The kinds of knowledge that agent systems rely on require specialized machinery, both for knowledge mining and by

way of instrumentation for data collection [50] . We propose a framework for modeling MAS for sanction-based adoption of

security practices here. Collecting real-life data to better inform the modeling may include developer surveys and analysis

of time sheets that explain distribution of time spent by developers in coding, running security tools, learning and other

work. Surveys can also be designed to assess developers’ preferences, and interviews can be conducted with managers to

characterize sanction mechanisms that are used to mitigate the quality and timeliness of project deliverables.

5. Discussion

Our framework aims to simulate the adoption of security practices among developers toward assessing sanctioning mech-

anisms. We have presented a novel approach using concepts of decision theory to model the adoption of security practices.

We have further demonstrated the application of the framework by using real world data for bug reports from for Eclipse

Java Development Tools [46] . The study compares the security practices under different sanctioning mechanism at different

levels by comparing tasks that are tested using security tools, time spent on security practices, and overall changes under

sanctions. It also assists in comparing functionality and security compliance in different projects for different sanctions by

analyzing the recurrence of norm violations after sanctioning and monitoring developers’ health under different sanction-

ing mechanism. Our exploration of system level performance through variable sanction type has yielded some interesting

conjectures. For example, we observed that security practices of developers are significantly dictated by preferences of de-

velopers. We also observed that repetitive sanctioning may yield lower retention of developers and reduce overall security

practices.

Previous studies highlight the role of social factors in adoption of security practices. A survey-based study observed that

inquisitiveness may play a strong role in adoption of security practices [2] . The same study also observed that the perceived

importance of security may not influence adoption as much as other factors [2] . Another survey-based study [10] observed

that users working on web applications have different priorities from those working on desktop applications and that the

adoption may vary over time while it is under development to near release. In our framework, we have associated the

adoptions of security practices to preference of developers. The preference may vary across developers and over time as

the perceived utility of security practices change. Using real-world data we have demonstrated with statistical significance

that if developers have preference for coding than that for learning or running security tests, they may end performing less

security actions and testing less tasks for bugs.

Organizational factors may also play an important role in the adoption of security practices [51] . Each organization may

have policies and standard pertaining to the security practices. Previous studies observed that users’ willingness to review

warnings and fix issues depends on project characteristics and organization [10] . We demonstrate the role of organizational

interference in promoting security practices through the inclusion of a manager agent and the sanction mechanisms. The de-

velopers in the framework may have different skill levels and the performance of the artifacts depends on the corresponding

developer. When the performance of the overall product is evaluated, the developers may be subjected to (group) sanction.

The sanction may change the preference and the health of the developer which impacts the selection of actions in the fol-

lowing project and the coding and security performance of the groups. We observed the sanction mechanism, standards

and frequencies of the manager agent have impacts on developers’ preference, actions and overall security performance of

the product. There are many discussions in literature that look into the role of sanctions in shaping moral judgments and

compliance norms [30,52] . Our study observes that repetitive sanctions may eventually reduce adoption of security practices

in cases where the health falls below certain threshold.

S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46 45

The framework can be applied to identify the best management intervention techniques to improve security practices.

Many organizations keep a formal record of developer activities in the form of a timesheet which can be utilized to track

developer activities throughout a project cycle. The skill and preference of developers can be assessed based on performance

and previous choices of actions in similar projects. Survey and interviews of management professionals may also be useful in

identifying the impacts of sanctions. One interesting extension of this study could be to look into decentralized optimizations

of security practices to maximize the security performance of the end product. Incorporation of multidisciplinary concepts

from decision theories and measuring resilience and liveliness of the system in connection to the sanctions, among others,

will help researchers to get a holistic view of the system to guide effective sanctions toward security practices.

Acknowledgments

We thank Jon Doyle for help and guidance in developing the model. We thank Laurie Williams, William Enck, Özgür

Kafalı, David Wright, Christopher Theisen, Sarah Elder, Lena Leonchuk, Lindsey McGowen, the Science of Security lablet for

the feedback, and the anonymous reviewers for helpful comments. We thank the US Department of Defense for support

through the Science of Security Lablet grant to North Carolina State University.

References

[1] B. Johnson , Y. Song , E. Murphy-Hill , R. Bowdidge , Why don’t software developers use static analysis tools to find bugs? in: Proceedings of the 35th

International Conference on Software Engineering, IEEE Press, San Francisco, 2013, pp. 672–681 .
[2] J. Witschey , O. Zielinska , A. Welk , E. Murphy-Hill , C. Mayhorn , T. Zimmermann , Quantifying developers’ adoption of security tools, in: Proceedings of

the 10th Joint Meeting on Foundations of Software Engineering (FSE), ACM, Bergamo, Italy, 2015, pp. 260–271 .
[3] Klocwork: Source code analysis tool, 2017, Online; accessed 30-May-2017.

[4] A. Bessey , K. Block , B. Chelf , A. Chou , B. Fulton , S. Hallem , C. Henri-Gros , A. Kamsky , S. McPeak , D. Engler , A few billion lines of code later: using static

analysis to find bugs in the real world, Commun. ACM 53 (2) (2010) 66–75 .
[5] K. Kina , M. Tsunoda , H. Hata , H. Tamada , H. Igaki , Analyzing the decision criteria of software developers based on prospect theory, in: Proceedings of

the 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), 1, 2016, pp. 644–648 . Osaka, Japan
[6] D. Hovemeyer , W. Pugh , Finding bugs is easy, ACM Sigplan Notices 39 (12) (2004) 92–106 .

[7] N. Nethercote , J. Seward , Valgrind: A framework for heavyweight dynamic binary instrumentation, in: ACM Sigplan notices, 42, ACM, 2007, pp. 89–100 .
[8] NetBeans IDE, 2017, Online; accessed 30-May-2017.

[9] Eclipse, 2017, Online; accessed 30-May-2017.

[10] N. Ayewah , D. Hovemeyer , J.D. Morgenthaler , J. Penix , W. Pugh , Using static analysis to find bugs, IEEE Softw. 25 (5) (2008) .
[11] C.W. Araújo , I. Nunes , D. Nunes , On the effectiveness of bug predictors with procedural systems: a quantitative study, in: International Conference on

Fundamental Approaches to Software Engineering, Springer, 2017, pp. 78–95 .
[12] V. Venkatesh , F.D. Davis , A theoretical extension of the technology acceptance model: four longitudinal field studies, Manag. Sci. 46 (2) (20 0 0) 186–204 .

[13] P. Legris , J. Ingham , P. Collerette , Why do people use information technology? a critical review of the technology acceptance model, Inf. Manag. 40 (3)
(2003) 191–204 .

[14] R.W. Zmud , Diffusion of modern software practices: influence of centralization and formalization, Manag. Sci. 28 (12) (1982) 1421–1431 .
[15] E.M. Rogers , Diffusion of Innovations, Simon and Schuster, 2010 .

[16] G. Madey , V. Freeh , R. Tynan , The open source software development phenomenon: an analysis based on social network theory, AMCIS 2002 Proc.

(2002) 247 .
[17] P.J. Carrington , J. Scott , S. Wasserman , Models and Methods in Social Network Analysis, 28, Cambridge university press, 2005 .

[18] R.W. Selby , A .A . Porter , Learning from examples: generation and evaluation of decision trees for software resource analysis, IEEE Trans. Softw. Eng. 14
(12) (1988) 1743–1757 .

[19] G. Büyüközkan , D. Ruan , Evaluation of software development projects using a fuzzy multi-criteria decision approach, Math. Comput. Simul. 77 (5)
(2008) 464–475 .

[20] J.O. Berger , Statistical Decision Theory and Bayesian Analysis, Springer Science & Business Media, 2013 .

[21] V. Dignum , F. Dignum , Contextualized planning using social practices, in: International Workshop on Coordination, Organizations, Institutions, and
Norms in Agent Systems, Springer, 2014, pp. 36–52 .

[22] H. Du , B. Narron , N. Ajmeri , E. Berglund , J. Doyle , M.P. Singh , Understanding sanction under variable observability in a secure, collaborative environ-
ment, in: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security (HotSoS), ACM, Urbana-Champaign, 2015, pp. 12:1–12:10 .

[23] M.P. Singh , Norms as a basis for governing sociotechnical systems, ACM Trans. Intell. Syst. Technol. 5 (1) (2013) 21:1–21:23 .
[24] M. Mashayekhi , H. Du , G.F. List , M.P. Singh , Silk: a simulation study of regulating open normative multiagent systems, in: Proceedings of the 25th

International Joint Conference on Artificial Intelligence (IJCAI), AAAO Press, New York, 2016, pp. 373–379 .

[25] J. Morales , M. López-Sánchez , J.A. Rodríguez-Aguilar , M. Wooldridge , W.W. Vasconcelos , Minimality and simplicity in the on-line automated synthesis
of normative systems, in: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), IFAAMAS, Paris,

2014, pp. 109–116 .
[26] J. Morales , M. López-Sánchez , J.A. Rodríguez-Aguilar , M. Wooldridge , W.W. Vasconcelos , Synthesising liberal normative systems, in: Proceedings of the

14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), IFAAMAS, Istanbul, 2015, pp. 433–441 .
[27] D. Avery , H.K. Dam , B.T.R. Savarimuthu , A. Ghose , Externalization of software behavior by the mining of norms, in: Proceedings of the 13th Interna-

tional Conference on Mining Software Repositories, ACM, 2016, pp. 223–234 .

[28] T. Keller , B.T.R. Savarimuthu , Facilitating enhanced decision support using a social norms approach, J. Electron. Comm. Org. 15 (2) (2017) 1–15 .
[29] P. Noriega , A.K. Chopra , N. Fornara , H.L. Cardoso , M.P. Singh , Regulated MAS: Social Perspective, in: G. Andrighetto, G. Governatori, P. Noriega,

L.W.N. van der Torre (Eds.), Normative Multi-Agent Systems, Dagstuhl Follow-Ups, 4, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2013, pp. 93–133 .

[30] D.D. Heckathorn , Collective sanctions and compliance norms: a formal theory of group-mediated social control, Am. Sociol. Rev. 55 (3) (1990) 366–384 .
[31] L.G. Nardin , T. Balke-Visser , N. Ajmeri , A.K. Kalia , J.S. Sichman , M.P. Singh , Classifying sanctions and designing a conceptual sanctioning process model

for socio-technical systems, Knowl. Eng. Rev. 31 (2016) 142–166 .

[32] M. Xenitidou , B. Edmonds , The Complexity of Social Norms, Springer, 2014 .
[33] B.T.R. Savarimuthu , S. Cranefield , Norm creation, spreading and emergence: a survey of simulation models of norms in multi-agent systems, Multiagent

Grid Syst. 7 (1) (2011) 21–54 .
[34] B.T.R. Savarimuthu , S. Cranefield , M.K. Purvis , M.A. Purvis , Norm emergence in agent societies formed by dynamically changing networks, Web Intell.

Agent Syst. 7 (3) (2009) 223–232 .
[35] B. Savarimuthu , M. Purvis , M. Purvis , S. Cranefield , Social norm emergence in virtual agent societies, Declarative Agent Lang. Technol. VI (2009) 18–28 .

http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0001
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0001
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0001
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0001
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0001
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0002
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0003
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0004
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0005
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0005
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0005
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0006
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0006
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0006
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0007
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0007
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0007
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0007
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0007
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0007
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0008
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0008
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0008
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0008
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0009
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0009
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0009
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0010
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0010
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0010
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0010
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0011
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0011
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0012
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0012
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0013
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0013
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0013
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0013
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0014
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0014
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0014
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0014
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0015
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0015
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0015
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0016
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0016
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0016
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0017
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0017
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0018
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0018
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0018
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0019
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0020
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0020
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0021
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0021
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0021
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0021
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0021
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0022
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0022
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0022
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0022
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0022
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0022
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0023
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0023
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0023
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0023
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0023
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0023
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0024
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0024
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0024
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0024
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0024
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0025
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0025
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0025
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0026
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0026
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0026
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0026
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0026
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0026
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0027
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0027
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0028
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0029
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0029
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0029
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0030
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0030
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0030
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0031
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0031
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0031
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0031
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0031
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0032
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0032
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0032
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0032
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0032

46 S. Al-Amin et al. / Simulation Modelling Practice and Theory 85 (2018) 33–46

[36] K.H. Dam , M. Winikoff, Comparing agent-oriented methodologies, in: Agent-Oriented Information Systems, Springer Berlin Heidelberg, 2004,
pp. 78–93 .

[37] H.K. Dam , A. Ghose , An agent-based framework for distributed collaborative model evolution, in: Proceedings of the 12th International Workshop on
Principles of Software Evolution and the 7th annual ERCIM Workshop on Software Evolution, ACM, 2011, pp. 121–130 .

[38] T. Meyer , A. Ghose , S. Chopra , Multi-agent context-based merging, in: Proceedings of Common Sense, 2001 .
[39] A. Ghose , T.B.R. Savarimuthu , Norms as objectives: Revisiting compliance management in multi-agent systems, in: International Workshop on Coordi-

nation, Organizations, Institutions, and Norms in Agent Systems, Springer Berlin Heidelberg, 2012, pp. 105–122 .

[40] J. Liu , Z. Wei , Agent-based computation of decomposition games with application in software requirements decomposition, in: Multi-agent and Com-
plex Systems, Springer, 2017, pp. 165–179 .

[41] J. Rajamäki , Cyber Security, Trust-building, and Trust-management: as Tools for Multi-agency Cooperation within the Functions Vital to Society, in:
Cyber-Physical Security, Springer, 2017, pp. 233–249 .

[42] H. Yang, F. Chen, S. Aliyu, Modern software cybernetics: New trends, 2017,
[43] J.B. de Vasconcelos , C. Kimble , P. Carreteiro , Á. Rocha , The application of knowledge management to software evolution, Int. J. Inf. Manag. 37 (1) (2017)

1499–1506 .
[44] G. D’Angelo , S. Ferretti , Lunes: Agent-based simulation of p2p systems, in: High Performance Computing and Simulation (HPCS), 2011 International

Conference on, IEEE, 2011, pp. 593–599 .

[45] M. Choetkiertikul , H.K. Dam , T. Tran , A. Ghose , J. Grundy , Predicting delivery capability in iterative software development, IEEE Trans. Softw. Eng.
(2017) .

[46] A .N. Lam, A .T. Nguyen, H.A . Nguyen, T.N. Nguyen, Combining deep learning with information retrieval to localize buggy files for bug reports (n), in:
Automated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on, 2015, pp. 476–481, doi: 10.1109/ASE.2015.73 .

[47] H.-W. Jung , S.-G. Kim , C.-S. Chung , Measuring software product quality: a survey of iso/iec 9126, IEEE Softw. 21 (5) (2004) 88–92 .
[48] E. Van Veenendaal, R. Hendriks, R. Van Vonderen, Measuring software product quality(2002).

[49] B.W. Boehm , J.R. Brown , M. Lipow , Quantitative evaluation of software quality, in: Proceedings of the 2nd international conference on Software engi-

neering, IEEE Computer Society Press, 1976, pp. 592–605 .
[50] A. Ghose , Agents in the era of big data: What the “end of theory” might mean for agent systems., in: PRIMA, 2013, pp. 1–4 .

[51] S. Xiao , J. Witschey , E. Murphy-Hill , Social influences on secure development tool adoption: why security tools spread, in: Proceedings of the 17th
ACM conference on Computer supported cooperative work & social computing, ACM, 2014, pp. 1095–1106 .

[52] D.E. Warren , K. Smith-Crowe , Deciding what’s right: the role of external sanctions and embarrassment in shaping moral judgments in the workplace,
Res. Organ. Behav. 28 (2008) 81–105 .

http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0033
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0033
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0033
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0034
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0034
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0034
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0035
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0035
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0035
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0035
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0036
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0036
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0036
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0037
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0037
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0037
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0038
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0038
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0039
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0039
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0039
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0039
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0039
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0040
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0040
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0040
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0041
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0041
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0041
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0041
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0041
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0041
https://doi.org/10.1109/ASE.2015.73
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0043
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0043
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0043
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0043
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0044
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0044
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0044
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0044
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0045
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0045
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0046
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0046
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0046
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0046
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0047
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0047
http://refhub.elsevier.com/S1569-190X(18)30040-6/sbref0047

	Toward effective adoption of secure software development practices
	1 Introduction
	2 Security practices adoption framework
	2.1 Manager
	2.1.1 Assign tasks
	2.1.2 Assign sanctions

	2.2 Developer agents

	3 Simulation experiments
	3.1 Assumptions and simulation settings
	3.2 Runtime actions
	3.3 Scenarios and metrics
	3.4 Simulation of bug reports

	4 Evaluation
	4.1 Security adoption emergence in developers’ responses
	4.2 Fixed vs adaptive developers
	4.3 Preferences
	4.4 Sanctions
	4.5 Threats to validity

	5 Discussion
	 Acknowledgments
	 References

