
Integrating Marine Observatories into a System-of-

Systems: Messaging in the US Ocean Observatories

Initiative

Matthew Arrott
1
, Alan D. Chave

2
, Claudiu Farcas

1
, Emilia Farcas

1
, Jack E. Kleinert

3
, Ingolf Krueger

1
,

Michael Meisinger
1
, John A. Orcutt

4
, Cheryl Peach

4
, Oscar Schofield

5
, Munindar P. Singh

6
 and Frank L. Vernon

4

1
Calit2, University of California at San Diego, La Jolla, CA 92093-0436, USA
2
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

3
Raytheon Intelligence and Information Systems, Aurora, CO 80011, USA

4
Scripps Institution of Oceanography, La Jolla, CA 92093, USA
5
COOL, Rutgers University, New Brunswick, NJ 08901, USA

6
Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206 USA

Abstract- The Ocean Observatories Initiative (OOI) will

implement ocean sensor networks covering a diversity of oceanic
environments, ranging from the coastal to the deep ocean.
Construction will begin in Fall 2009, with deployment phased

over five years. The integrating feature of the OOI is a
comprehensive Cyberinfrastructure (CI), whose design is based
on loosely-coupled distributed services, and whose elements are

expected to reside throughout the physical components; from
seafloor instruments to autonomous vehicles to deep sea
moorings to shore facilities to computing and storage

infrastructure. The OOI-CI provides novel capabilities for data
acquisition, distribution, modeling, planning and interactive
control of oceanographic experiments. The architecture

comprises six subsystems: four elements address the
oceanographic science- and education-driven operations of the
OOI integrated observatory, and two elements provide core

infrastructure services for the distributed, message-based,
service-oriented integration and communication infrastructure,
as well as the virtualization of computational and storage

resources. All OOI functional capabilities and resources
represent themselves as services to the observatory network, with
precisely defined service access protocols based on message

exchange. This paper presents an overview of the OOI services
and focuses on the strategy for service-oriented integration and
the publish-subscribe model for communication.

I. INTRODUCTION

The US National Science Foundation is initiating a

transformation of ocean science with the Ocean Observatories

Initiative (OOI) [1]. The OOI is designed to provide new,

persistent, interactive capabilities for ocean science, and has a

global physical observatory footprint. The OOI Integrated

Observatory comprises Regional Scale Nodes (RSN) and

Coastal/Global Scale Nodes (CGSN) providing cabled and

buoy observatories with mobile instrument platforms,

respectively.

The OOI Cyberinfrastructure (CI) [7] constitutes the

integrating element of the OOI Integrated Observatory. It links

and binds the physical observatory, computation, storage and

network infrastructure into a coherent system-of-systems. The

core capabilities and the principal objectives of the OOI

Integrated Observatory are collecting real-time data, analyzing

data, modeling the ocean on multiple scales and enabling

adaptive and interactive experimentation within the ocean. A

traditional data-centric CI, in which a central data

management system ingests data and serves them to users on a

query basis, is not sufficient to accomplish the range of tasks

ocean scientists will engage in when the OOI is implemented.

Instead, a highly distributed set of capabilities are required

that facilitate:

• End-to-end data preservation and access,

• End-to-end, human-to-machine and machine-to-machine

control of how data are collected and analyzed,

• Direct, closed loop interaction of models with the data

acquisition process,

• Virtual collaborations created on demand to drive data-

model coupling and share ocean observatory resources

(e.g., instruments, networks, computing, storage and

workflows),

• End-to-end preservation of the ocean observatory process

and its outcomes, and

• Automation of the planning and prosecution of

observational programs.

The OOI CI provides the software services and user

interfaces to support these applications [13]; in addition it

provides the underlying integration infrastructure [14]

consisting of message-based communication, governance and

security frameworks, similar to the role of the operating

system on a computer. The CI also provides the mechanisms

to execute distributed processes anywhere in the network and

connect then into a coherent system of systems.

Section II describes the OOI Integrated Observatory

Services and their Architecture from a high-level view.

Section III describes the Common Operating Infrastructure

(COI) subsystem as the central infrastructure component

providing communication, governance and security to the

Integrated Observatory. In particular, we highlight the

importance of the COI Messaging Service as the integration

framework for the system-of-systems. Section IV provides a

brief summary.

II. INTEGRATED OBSERVATORY SERVICES

Fig. 1 shows a schematic overview of the main properties of

the Integrated Observatory functional design as provided by

the Cyberinfrastructure component. The primary goal is to

support the activities and applications of:

• Scientific Investigation, supporting researchers in the study

of environmental processes though observations,

simulation models and expressive analyses and

visualizations, with results that directly feed back to

improve future observations.

• Education and Participation, supporting education

application developers, educators and the general public

for accessing and understanding OOI resources in ways

suitable for specific target audiences.

• Community Collaboration, enabling OOI users to share

knowledge and resources, and to work together in project

settings and ad hoc communities.

Fig. 1. OOI activities, resources and infrastructure

In support of these activities, a variety of Integrated

Observatory resources of different type and purpose need to

be administered, including:

• Observation Plans, providing activity sequences, service

agreements and resource allocations for observational

campaigns, and similar templates for event-response

behaviors;

• Data Sets, representing observational and derived data and

data products in the form of data archives and real-time

continuous data streams;

• Processes, representing data collection and processing

workflows that arrange multiple steps involving multiple

actors and resources;

• Instruments and marine observatory infrastructure

elements, such as telemetry systems, GPS and data loggers;

• Models, including numerical ocean forecast models and

their configurations, as well as other analysis and event

detection processes;

• Knowledge, representing all metadata, ancillary data,

analysis results, association and correspondence links

between resources, and knowledge captured in ontologies

for semantic mediation purposes.

The support for these activities and resources rests on a

collection of infrastructure services that provide resource

management, interaction, communication and process

execution. The CI Capability Container (see Fig. 1 and Fig. 2)

is the extensible, deployable base unit of CI capabilities. It

hosts all CI application services in support of activities and

resource, infrastructure components and local interfaces; and it

makes them available throughout the Integrated Observatory

network forming a distributed system-of-systems.

The Integrated Observatory’s functional capabilities are

structured into six services networks (i.e., subsystems): four

elements that address the ocean and Earth science- and

education-driven operations of the OOI integrated observatory,

and two elements that provide core infrastructure services for

the distributed, message-based, service-oriented integration

and communication infrastructure and the virtualization of

computational and storage resources.

 The Sensing and Acquisition services network provides

capabilities to interface with and manage distributed seafloor

instrument resources, as well as provide quality control

services. The Data Management services network provides

capabilities to distribute and archive data, including cataloging,

versioning, metadata management, and attribution and

association services. The Analysis and Synthesis services

network provides a wide range of services to users, including

control and archival of models, data analysis and visualization,

event detection services and collaboration capabilities to

enable the creation of virtual laboratories and classrooms. The

Planning and Prosecution services network provides the

ability to plan, simulate and execute observation missions

using taskable instruments; it is the CI component that turns

the OOI into an interactive observatory.

 The remaining two services networks are the Common

Execution Infrastructure (CEI) and the Common Operating

Infrastructure (COI). The CEI provides an elastic computing

framework to initiate, manage and store processes that may

range from initial operations on data at a shore station to the

execution of a complex numerical model on the national

computing infrastructure and on compute clouds. The COI

provides core services to manage distributed shared resources

in a policy-based framework, including a distributed service

infrastructure for the secure, scalable and fault tolerant

operation and federation of the operational domains of

authority comprising the OOI. It includes capabilities to

manage identity and policy, manage any resource’s life cycle,

as well as catalog and repository services for observatory

resources. It also manages interactions with resources on an

end-to-end basis. An efficient messaging and service bus that

incorporates security and governance, and provides

guaranteed delivery, lies at its heart. Service-orientation and

messaging realize loose coupling of components, resulting in

the flexibility and scalability that are key in such a complex

large-scale system-of-systems. All OOI functional capabilities

and resources represent themselves as services to the

observatory network, with precisely defined service access

protocols based on message exchange.

Fig. 2. Capability Container with external interfaces

Fig. 2 depicts a capability container, indicated by the

octagon shape, with interfaces to local resources and to the

network environment. Local resources include physical

resources such as instruments (sensors) and marine

observatory infrastructure, storage resources such as disks and

network drives, and computing resources such as grid nodes,

cloud computing instances, and CPUs on mobile platforms

such as AUVs (Autonomous Underwater Vehicles).

Capability container can also be connected to user interfaces,

external applications and to capability containers in different,

independent facilities that have their own domains of authority

and operation.

No matter where deployed, the capability container provides

all of the infrastructure and application support required for an

installation site within the OOI Integrated Observatory

network. The capability container hosts the six services

networks and their resource interfaces as depicted in the figure.

The footprint of a capability container can vary depending on

the resource constraints of its hosting environment. The

selection of functional capabilities present in a specific

capability container depends on the respective needs and

resource availability at this specific location in the network.

For instance, on an intermittently-connected instrument

platform, instrument access, data acquisition and data

buffering capabilities provided by the Sensing and Acquisition

services are required, while the Analysis and Synthesis

capabilities are not. In contrast, at the core installation sites,

data processing, numerical model integration and event

response behaviors need to be present.

III. COMMON OPERATING INFRASTRUCTURE

The Common Operating Infrastructure (COI) [14] provides

the integration fabric that enables subsystem services to be

composed to manage complex interactions. The Messaging

Service of COI provides dynamic routing and interception

capabilities, a publish-subscribe [11] model for conversations,

and reliable storage and delivery of messages to intended

recipients across the network.

Rich Service Architecture

The COI architecture is based on the Rich Services pattern

[4] a type of Service-Oriented Architecture (SOA) that

provides decoupling between concerns and allows for

hierarchical service composition. As depicted in Fig. 3, a Rich

Service comprises several entities: (a) the Service/Data

Connector, which serves as the sole mechanism for interaction

between the Rich Service and its environment, (b) the

Messenger and the Router/Interceptor, which together form

the communication infrastructure, and (c) the constituent Rich

Services connected to the Messenger and Router/Interceptor

that encapsulate various application and infrastructure

functionalities.

S
e
rv

ic
e

/D
a

ta

C
o

n
n

e
c
to

r

Fig. 3. Rich Services pattern

To address service integration, this architecture is organized

around a message-based communication infrastructure. The

Messenger is responsible for message transmission between

communication endpoints. By providing a means for

asynchronous messaging, the Messenger supports the

decoupling of Rich Services. The Router/Interceptor manages

the interception of messages placed on the Messenger and

their routing. This is useful for the injection of policies

governing the integration of a set of services. The

Service/Data Connector encapsulates and hides the internal

structure of the connected Rich Service, and exports only the

description and interfaces that the connected Rich Service

needs to be visible externally. The communication

infrastructure is only aware of the Service/Data Connector,

and does not need to know any other information about the

internal structure of the Rich Service.

Fig. 4 shows the Rich Services pattern applied to the COI

architecture; the other five services networks are encapsulated

as Rich Services connected to the COI messaging

infrastructure (i.e., the Exchange). This shows the central and

integrative role of the COI for the entire Integrated

Observatory system-of-systems. The top of the figure depicts

the infrastructure services that the COI provides to all

subsystems. The COI ensures identity management, pervasive

and consistent governance and policy enforcement, state

management and resource management. It also enables

subsystem services to be composed to handle complex

interactions, and manages the overall service orchestration.

The Router/Interceptor allows for flexible composition

between the infrastructure and application services. In this

way, there is a clear separation between the business logic and

its external constraints. At all abstraction levels, infrastructure

services plugged into the Exchange can modify the interaction

patterns by re-routing, filtering, or modifying exchanged

messages. This feature enables the validation and signing of

messages, and the injection of policies governing the

integration of a set of services.

The Rich Services integration strategy enables constituent

subsystems to evolve independently from the composite

system. Subsystem functionality is exposed to the OOI

network as services with defined access interfaces, and the

only way of interacting within the OOI network is through

messages. Service-orientation and messaging realize loose

coupling of components, resulting in flexibility and scalability.

The complexity of such a large-scale system becomes

manageable through separate concentration on each concern.

Each subsystem focuses on the services that it enables and

assumes that all of the infrastructure services are in place. For

example, when designing the Sensing and Acquisition

subsystem, the architecture team emphasizes concerns related

to instrument control and data acquisition. Instruments can

belong to individuals or the marine operators, while all of the

deployment platforms are under the marine operator’s

authority domain. However, since governance is managed

seamlessly by infrastructure services, and can be abstracted

when designing the Sensing and Acquisition services, these

issues are not of concern to the Sensing and Acquisition

service developers.

Resource Management

Identity

Management

Resource

Collaboration

Resource

Integration

Resource

Lifecycle

Exchange

Governance

Framework

Resource

Repository

Fig. 5. COI Resource Management services

Each service of Fig. 4 is further decomposed according to

the Rich Services pattern. For instance, Fig. 5 shows the

internal decomposition for the Resource Management services.

The Resource Repository service provides references to all

resources known to the OOI CI. Through the Resource

Integration service, resources can participate in interaction

patterns implemented by OOI services (e.g., a storage resource

may be used to record states of various services). The

Resource Collaboration service provides the collaboration

framework between different facilities and the sharing of

Fig. 4. Common Operating Infrastructure services

resources within the OOI federation. The Resource Lifecycle

service provides the means to track and manage resources

throughout their entire lifecycle from development to

decommissioning.

The Rich Services architecture provides resource location

independence while user applications are shielded from the

complexity of the system and the location of resources. The

COI subsystem provides the Resource Management services

that enable seamless use of resources across the entire

Cyberinfrastructure. Via seamless integration of identity and

governance services, the COI architecture supports the

deployment, operation, and distributed management of

thousands of independently-owned resources of various types

(e.g., instruments, processes, numerical models and

simulations) across a core infrastructure operated by

independent stakeholders, where each stakeholder has

different policies.

The COI Messaging Service (Exchange)

The Exchange (i.e., the COI Messaging Service or the

Messenger and Router/Interceptor in the Rich Services

architecture) is the central integrating element of the COI. It

provides access to the communication mechanisms of

Exchange Spaces and Exchange Points throughout the system-

of-systems, abstracting from the physical communication

infrastructure across multiple domains of authority. Client

applications may publish messages on Exchange Points within

Exchange Spaces. An Exchange Space represents a

“community of interest” that collects and controls all of the

Exchange Points in its scope and enforces policy of use for a

registered set of users and applications. An Exchange Point is

represented through a set of named exchanges on one or

multiple AMQP [2] message brokers. Thereby, the Exchange

provides a comprehensive, uniform view of a federation of

message brokers: from the point of view of a

publish/subscribe client (i.e., producers and consumers of

messages), the fact that the messaging system is built as a

federation of independent message brokers and not as a single

broker is hidden.

The CI integration strategy determines how individual

software components integrate into the system-of-systems

through a message-broker integration infrastructure. The

communication system of the OOI CI applies messaging as

the central paradigm of inter-application information exchange,

realizing the Messaging Service, the integrating element of all

services. It is part of the Common Operating Infrastructure

(COI), the subsystem that provides the full set of integration

frameworks and services (see [14]).

Message-oriented middleware (MOM) (see [6], [9]) is based

on the concept of a message as the exclusive means of

information exchange between the distributed components of

a system. All information that is passed between two

components or services is contained in messages exchanged

asynchronously (i.e., non-blocking) over a communication

infrastructure. The sender of a message does not wait for the

message to be delivered or returned; it only waits for the

MOM to acknowledge receipt of the message. Delivering

messages to recipients utilizes the concept of queues. An

application component in a message-oriented architecture only

knows the incoming queues that it receives messages from as

well as the outgoing queues it delivers messages to, plus the

message formats that pertain to these queues. The MOM

provides the capability for system integrators to connect these

queues to known endpoints (i.e., addresses) in the network;

consequently it manages routing, reliable storage and delivery

of messages to intended recipients across the network.

Standardization is on the way for the underlying message wire

transport protocol: the Advanced Message Queuing Protocol

(AMQP) [2] defines the interactions of a message broker with

its clients, promising interoperability between message

brokers of different provenance.

The left part of Fig. 6 depicts the fundamentals of the CI

Messaging Service. Message brokers are the central

infrastructure elements, represented as Exchange Points to all

clients, responsible for the routing and delivery of messages.

Fig. 6. OOI CI Messaging Service architecture (left) and exemplar messaging scenario (right)

Message Clients provide the interfaces to the application logic.

The right part of Fig. 6 provides an exemplar application

scenario within the OOI CI. Capability containers host the

application logic that interconnects using the Messaging

Service. This is exemplified through an Instrument Agent

publishing a raw data stream on an Exchange Point (a queue)

via messaging. Any number of consumers may choose to

subscribe to such an exchange point. In the example, the data

processing application as well as the data repository will

receive the published messages. A data stream is a continuous

series of related self-contained messages on a given exchange

point. There is a second exchange point for another data

product containing processed data that is consumed by an

event detector process. The physical deployment of all

applications is irrelevant. The Exchange realizes all

connectivity.

Fig. 7 depicts an exemplar scenario of how service clients

can adapt to the Messaging Service; we have implemented this

in current prototypes [15]. Services are identified by name

within the Exchange network throughout the entire system-of-

systems. Services are part of distributed applications; the

distributed service interaction protocol at every (service)

endpoint is implemented by a specialized protocol adapter.

Such protocol adapters are instantiated for each conversation

instance (see below for further details) through protocol

factories; the protocol adapters provide the binding element to

the actual service application and its functionality. A typical

mechanism of implementing protocol adapters is using Finite

State Machines (FSM). FSMs represent each distinguishable

protocol condition as a separate state, with defined transitions

between states when messages are sent or received, leading to

very predictable and robust distributed implementations. We

have prototyped several interaction styles between service

applications, including direct point-to-point interaction, topic

based publish/subscribe fan-out queues and worker queues

that facilitate reliable load-balanced applications. The

Messaging Service hides the fact that service applications are

connected to different message brokers that are operated in

different domains of authority.

Messaging Service

(Exchange Spaces with Exchange Points)

Protocol Factory

Finite State Machine

Protocol Adapter

s1

s2

in_event[guard]/

out_event

FSM

Messaging Service

Adapter

Service Application

“service_B”

Protocol Adapter

Protocol Factory

Service Application

“service_A”

Messaging Service

Adapter

Protocol Factory

Messaging Service

Adapter

Protocol Adapter

Service Application

“service_C”

AMQP Message

Broker #1

AMQP Message

Broker #2

Fig. 7. Messaging Service and service client adapters prototype

Communities and Agents

Our approach in distributed computing is based on the

premise that independent entities interact in order to pursue

shared goals. Entities can represent users, processes, resources

and communities.

Entities in the system are represented by their agents. Each

entity (or their agent on their behalf) can form any number of

relationships with other entities. Relationships are based on

mutual (bilateral) agreements between two entities, the results

of a successful negotiation. Each entity tracks the

consequences (i.e., commitments [9], [16]) of such agreements

(i.e., contracts) with other entities. Each observable atomic

action of an entity, such as sending a message, that causes a

side effect leads to a change and reevaluation of the aggregate

set of commitments of the entity towards other entities.

Entities communicate and collaborate within communities.

A community is a specific type of entity in itself.

Communities serve multiple purposes in our architecture,

including providing a backstop for contracts, providing a locus

for naming, and providing a venue to share resources in some

uses including infrastructure. A community is represented by a

specification that defines the rules for joining the community.

Joining a community requires accepting the rules of the

community, and the community will provide the registrant

entity with a local name and address.

Entities may request to enroll (i.e., participate) in

communities or can be invited by other member entities into

the community. Enrollment is a symmetric process of

negotiation. Entities negotiate the conditions under which they

participate in the community and vice versa. If agreement is

reached, the resulting contract builds the basis for relations

with other community members.

Communities can form relationships with other

communities, enabling the members of one community to

interact with the members of another community, instituting

the specifications of both communities. By contract, the

community members are bound to the community

specification with its rules, so there is no need for explicit

compliance checking (i.e., policy enforcement) and members

can interact directly. There might be an imposed requirement

for members to leave behind audit trails for later evaluation,

same as a tax rule not being directly enforced with every

transaction, but which may be audited for compliance to the

"state" community tax rules later for each member taxpayer.

We call the set of rules that communities (or other entities)

impose policy. Policy to access a resource entity for instance

might be an aggregate of many rules, such as the resource

owner's rules, the community's rules, and any underlying

obligations as consequence of membership.

Conversation Management

Communication between two entities occurs as part of a

conversation. A conversation presumes a contract is in place

between the two entities intending to converse. This contract

Collaboration

Agreement

Membership

Agreement

Commitment

<< Interaction Interface >>

Instrument Control

 Authentication

<< Service Interceptor >>

Instrument Role

Documention

Policy

Enforcement

<
<

 S
e
rv

ic
e
 B

in
d
in

g
 >

>

In
s
tru

m
e
n

t R
o
le

Instrument State

Instrument Logic

<< Resource Constraints >>

Owner's Policy

<< Block of Capability >>

Instrument Implementation

Controller Role

Controller State

Controller Logic

Controller Implementation

C
o
n

tr
o

lle
r

R
o
le

<< Collaboration Contract >>

Researcher's Commitment

<< Membership Contract >>

Observatory's Commitment

<< Resource Authority >>

Instrument Owner

Researcher's Policy

Instrument Owner's

Commitment

Observatory's Commitment
Researcher

Policy

Policy

Researcher's Authority Domain

<< Environmental Constraints >>

Infrastructure Policy

<< Operational Authority >>

Observatory

<< Message >>

<< Capability Container >>

Instrument Owner's Authority Domain

Commitment

Accounting

Authentication

Documention

Policy

Enforcement

Commitment

Accounting

<
<

 S
e
rv

ic
e
 In

te
rfa

c
e

 >
>

In
s
tru

m
e

n
t R

o
le C

o
n
tr

o
lle

r
R

o
le

Fig. 8. Collaboration and policy framework example

must include the common knowledge of an interaction pattern

that provides a template for the conversation, with the

conversation being an instantiation of the pattern. The actual

interaction as part of the conversation must comply with the

template of the interaction pattern. Each interaction (sending

and receipt of a message) potentially causes change in the set

of commitments related to the conversation and, thus,

indirectly to the commitments between the two entities.

Interaction patterns are thereby distributed

Assumption/Commitment specifications, in particular also for

policy. Each entity can independently monitor the fulfillment

of the interaction pattern and contract for the other entity and

for itself (and initiate protective or compensating action

otherwise). Each party would thus update its commitment

store based on each message it sends or receives. Each entity

can engage in as many different conversations with different

(or the same) entities concurrently as it likes. At any given

instant, the effective set of commitments from the point of

view of the entity is defined; each interaction can be traced

back to a conversation.

We specify interaction patterns using Message Sequence

Charts (MSCs, see [7], [9], [12]). We also define a language

for commitments that are made and released for each

interaction in an interaction pattern. We provide a logical

framework to reason over the aggregate set of commitments

over time and deduce any implications. Currently, we use a

rules engine to implement such a mechanism.

The COI provides collaboration, agreement support, and

policy enforcement capabilities. Fig. 8 illustrates this pattern

for the base case of a single service provider (instrument

owner) and consumer (researcher). The pattern generalizes to

arbitrary numbers of participants in a service orchestration.

Conceptually, the example captures the establishment of a

service agreement between two parties; for example, this

could unfold between a regional cabled observatory (service

provider) and a buoy-based global observatory (service

consumer). Each one of the parties has established contractual

commitments with their respective user communities,

including membership agreements. Upon the establishment of

mutual commitments, a contract between the two parties is in

place. Further, each party operates under its own set of

policies. The negotiation and contracting process, as well as

the actual service usage, leads to an interaction pattern

between the two parties that is constrained by the contractual

commitments and policy declarations of both parties.

Because each Capability Container is equipped with plug-

ins for orchestration, governance, policy enforcement, and

monitoring/audit, the deployment mapping for the

collaboration and policy framework is straightforward: the

corresponding interaction interface is stored and accessed CI-

wide. Each party’s Capability Container orchestration

component executes the projection of the interaction pattern

on their respective roles to participate in the overall

collaboration. The governance and policy constraints are

extracted from the interaction interface and provided to the

corresponding Capability Container plug-ins for monitoring

and enforcement.

The COI, through the use of the CI capability container,

factors out the common aspects of communication, state

management, execution, governance, and service presentation

to provide a highly scalable, secure and extensible model for

managing user-defined collections of information and taskable

resources. This ability to integrate resources of different types

implemented by different technologies is the central value

Fig. 9. Resource, resource agents and resource proxies connected to the Messaging Service

proposition of the architecture. It provides the basis for an

integrated observatory network that will remain viable and

pertinent over multiple decades.

Protocols are defined through interaction patterns. The

interaction pattern (or projection thereof) represents the

interaction interfaces of entities (i.e., components). The

projection of a protocol on one party can be represented as a

Finite State Machine (FSM). We use FSMs as protocol

machines that bind the communication endpoint on an

asynchronous reliable message-based system to the

application logic. Fig. 7 shows the use of FSMs as protocol

adapters for service applications involved in a conversation as

defined by an interaction pattern.

Fig. 9 shows an exemplar scenario for the application of

agents for the management of physical resources such as

sensors, and of services in a distributed environment. Agents

interact via the Messaging Service. Services themselves use

the Messaging Service for inter-service conversations as

explained above. In this case, the services’ agents provide the

management and control for the service, such as

starting/stopping the service and granting access. Finite State

Machines as protocol adapters ensure that the agents and

service protocols are always in a consistent distributed state,

ensuring robustness of the entire system. Service protocol

adapters provide access to the service; Managed Resource

Agent protocol adapters provide access to the respective

resource agents. Resource agents provide monitoring and

control of resources, advertise and grant access to resource

capabilities and manage the contractual relations and

commitments of the resource to its environment on behalf of

the resource. All these agent interactions occur in form of

conversations based on defined interaction patterns. Proxy

Resource Agents provide similar capabilities and interaction

patterns but act as proxies or supervisors of Managed

Resource Agents. Thereby, policy can be applied at various

levels within the system through a chain of responsibility.

Distributed IPC Facility

We are currently investigating a special case of community

called the Distributed Inter-Process Communication Facility

(DIF) [5]. Entities, representing processes that require inter-

process communication (IPC), enroll in this community and

are assigned a name valid throughout the community as well

as an address that the community uses internally to direct

communication. The resources of the community are local

endpoints of the DIF, which provide resource allocation

(open/close a connection to another named endpoint) and

read/write capabilities.

This DIF facility is intended to be the underlying distributed

system primitive within the OOI system-of-systems. As is

apparent, in conceptual terms, DIFs relate naturally to the

notion of communities that we motivated in the foregoing.

Other communities will be defined applying similar patterns

for other purposes than communication, such as scalable,

elastic computing environments, with entities including the

requestors of a service and the responding nodes.

The power of the DIF model is that it can be stacked in

order to increase scope. One DIF can leverage a lower level

DIF for communication purposes and present a DIF facility of

larger scope to its member entities. Thereby, the design of

how to architect the communities becomes the driving element

in the architecture of a distributed system. Any topology and

architecture is possible here, not just a "layered architecture".

Present a high-level view of DIF.

IV. SUMMARY

The Ocean Observatories Initiative faces the enormous

challenge of building a cohesive distributed system-of-systems

that incorporates a large number of autonomous and

heterogeneous systems, deals with instruments and

computational resources of a wide range of capabilities, serves

the needs of diverse stakeholders, and accommodates change

over the timescale of decades. A carefully thought out

architecture is key to addressing this challenge. We find that

simplicity wins and a few core principles help us organize the

OOI properly. These principles include (1) emphasizing loose

coupling through message-based interactions; (2) recognizing

the autonomy of the participants by modeling them as agents

rather than as traditional objects or pure services; (3)

identifying repeating structures (as evinced in our choice of

Rich Services, Capability Containers, DIFs, and communities);

and capturing and making explicit business-level interactions

through first-class status for policy and governance.

ACKNOWLEDGMENT

The OOI Cyberinfrastructure program is funded through the

JOI Subaward, JSA 7-11, which is in turn funded by the NSF

contract OCE-0418967 with the Consortium for Ocean

Leadership, Inc.

REFERENCES

[1] Ocean Observatories Initiative (OOI). Program website,
http://www.oceanleadership.org/ocean_observing/ooi

[2] Advanced Message Queuing Protocol (AMQP). AMQP Working Group
Website http://www.amqp.org/

[3] Amazon.com, Amazon Web Services for the Amazon Elastic Compute
Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

[4] M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger,
and M. Menarini. Rich Services: The Integration Piece of the SOA
Puzzle. In Proc. of the IEEE International Conference on Web Services
(ICWS), Salt Lake City, Utah, USA. IEEE, Jul. 2007, pp. 176-183.

[5] J. Day. Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall, 2008.

[6] G. Banavar, T. Chandra, R. Strom and D. Sturman. A case for message
oriented middleware. Proc. of the 13th International Symposium on
Distributed Computing, pp. 1–18, 1999.

[7] M. Broy, I. H. Krüger, and M. Meisinger. A Formal Model of Services.
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 16, no. 1, p. 5, Feb. 2007

[8] A. Chave, M. Arrott, C. Farcas, E. Farcas, I. Krueger, M. Meisinger, J.
Orcutt, F. Vernon, C. Peach, O. Schofield, and J. Kleinert.
Cyberinfrastructure for the US Ocean Observatories Initiative: Enabling
Interactive Observation in the Ocean. In Proc. IEEE OCEANS'09
Bremen, Germany. IEEE Ocean Engineering Society, May 2009.

[9] A.K. Chopra and M.P. Singh. An Architecture for Multiagent Systems:
An Approach Based on Commitments. Proceedings of the AAMAS
Workshop on Programming Multiagent Systems (ProMAS). May 2009

[10] B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M.
Menarini, “A Rich Services Approach to CoCoME,” The Common
Component Modeling Example: Comparing Software Component
Models, A. Rausch, R. Reussner, R. Mirandola, and F. Plasil (Eds.),
Lecture Notes in Computer Science, no. 5153, ch. 5, pp. 85-115,
Berlin/Heidelberg: Springer-Verlag, Aug. 2008

[11] P.T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. Tech. Rep. DSC ID:2000104, EPFL, January
2001.

[12] I. H. Krueger, M. Meisinger, and M. Menarini. Interaction-based
Runtime Verification for Systems of Systems Integration. Journal of
Logic and Computation, Nov. 2008

[13] OOI CI Integrated Observatory Applications Architecture Document,
OOI controlled document 2130-00001, version 1-00, 10/28/2008,
available at http://www.oceanobservatories.org/spaces/display/FDR/
CI+Technical+File+Repository

[14] OOI CI Integrated Observatory Infrastructure Architecture Document,
OOI controlled document 2130-00002, version 1-00, 10/24/2008,
available at http://www.oceanobservatories.org/spaces/display/FDR/
CI+Technical+File+Repository

[15] OOI CI Messaging Service Prototype. http://www.oceanobservatories.
org/spaces/display/CIDev/Messaging+Service

[16] M.P. Singh. Semantical Considerations on Dialectical and Practical
Commitments. Proceedings of the 23rd Conference on Artificial
Intelligence (AAAI). July 2008, pp. 176-181.

