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Abstract- The Ocean Observatories Initiative (OOI) will 

implement ocean sensor networks covering a diversity of oceanic 
environments, ranging from the coastal to the deep ocean. 
Construction will begin in Fall 2009, with deployment phased 

over five years. The integrating feature of the OOI is a 
comprehensive Cyberinfrastructure (CI), whose design is based 
on loosely-coupled distributed services, and whose elements are 

expected to reside throughout the physical components; from 
seafloor instruments to autonomous vehicles to deep sea 
moorings to shore facilities to computing and storage 

infrastructure. The OOI-CI provides novel capabilities for data 
acquisition, distribution, modeling, planning and interactive 
control of oceanographic experiments. The architecture 

comprises six subsystems: four elements address the 
oceanographic science- and education-driven operations of the 
OOI integrated observatory, and two elements provide core 

infrastructure services for the distributed, message-based, 
service-oriented integration and communication infrastructure, 
as well as the virtualization of computational and storage 

resources. All OOI functional capabilities and resources 
represent themselves as services to the observatory network, with 
precisely defined service access protocols based on message 

exchange. This paper presents an overview of the OOI services 
and focuses on the strategy for service-oriented integration and 
the publish-subscribe model for communication.  

I. INTRODUCTION 

The US National Science Foundation is initiating a 

transformation of ocean science with the Ocean Observatories 

Initiative (OOI) [1]. The OOI is designed to provide new, 

persistent, interactive capabilities for ocean science, and has a 

global physical observatory footprint. The OOI Integrated 

Observatory comprises Regional Scale Nodes (RSN) and 

Coastal/Global Scale Nodes (CGSN) providing cabled and 

buoy observatories with mobile instrument platforms, 

respectively. 

The OOI Cyberinfrastructure (CI) [7] constitutes the 

integrating element of the OOI Integrated Observatory. It links 

and binds the physical observatory, computation, storage and 

network infrastructure into a coherent system-of-systems. The 

core capabilities and the principal objectives of the OOI 

Integrated Observatory are collecting real-time data, analyzing 

data, modeling the ocean on multiple scales and enabling 

adaptive and interactive experimentation within the ocean. A 

traditional data-centric CI, in which a central data 

management system ingests data and serves them to users on a 

query basis, is not sufficient to accomplish the range of tasks 

ocean scientists will engage in when the OOI is implemented. 

Instead, a highly distributed set of capabilities are required 

that facilitate: 

 

• End-to-end data preservation and access, 

• End-to-end, human-to-machine and machine-to-machine 

control of how data are collected and analyzed, 

• Direct, closed loop interaction of models with the data 

acquisition process, 

• Virtual collaborations created on demand to drive data-

model coupling and share ocean observatory resources 

(e.g., instruments, networks, computing, storage and 

workflows), 

• End-to-end preservation of the ocean observatory process 

and its outcomes, and 

• Automation of the planning and prosecution of 

observational programs. 

 

The OOI CI provides the software services and user 

interfaces to support these applications [13]; in addition it 

provides the underlying integration infrastructure [14] 

consisting of message-based communication, governance and 

security frameworks, similar to the role of the operating 

system on a computer. The CI also provides the mechanisms 

to execute distributed processes anywhere in the network and 

connect then into a coherent system of systems. 

Section II describes the OOI Integrated Observatory 

Services and their Architecture from a high-level view. 

Section III describes the Common Operating Infrastructure 

(COI) subsystem as the central infrastructure component 

providing communication, governance and security to the 



Integrated Observatory. In particular, we highlight the 

importance of the COI Messaging Service as the integration 

framework for the system-of-systems. Section IV provides a 

brief summary. 

 

II. INTEGRATED OBSERVATORY SERVICES 

Fig. 1 shows a schematic overview of the main properties of 

the Integrated Observatory functional design as provided by 

the Cyberinfrastructure component. The primary goal is to 

support the activities and applications of: 

 

• Scientific Investigation, supporting researchers in the study 

of environmental processes though observations, 

simulation models and expressive analyses and 

visualizations, with results that directly feed back to 

improve future observations. 

• Education and Participation, supporting education 

application developers, educators and the general public 

for accessing and understanding OOI resources in ways 

suitable for specific target audiences. 

• Community Collaboration, enabling OOI users to share 

knowledge and resources, and to work together in project 

settings and ad hoc communities. 

 

Fig. 1. OOI activities, resources and infrastructure 

 

In support of these activities, a variety of Integrated 

Observatory resources of different type and purpose need to 

be administered, including: 

 

• Observation Plans, providing activity sequences, service 

agreements and resource allocations for observational 

campaigns, and similar templates for event-response 

behaviors; 

• Data Sets, representing observational and derived data and 

data products in the form of data archives and real-time 

continuous data streams; 

• Processes, representing data collection and processing 

workflows that arrange multiple steps involving multiple 

actors and resources; 

• Instruments and marine observatory infrastructure 

elements, such as telemetry systems, GPS and data loggers; 

• Models, including numerical ocean forecast models and 

their configurations, as well as other analysis and event 

detection processes; 

• Knowledge, representing all metadata, ancillary data, 

analysis results, association and correspondence links 

between resources, and knowledge captured in ontologies 

for semantic mediation purposes. 

 

The support for these activities and resources rests on a 

collection of infrastructure services that provide resource 

management, interaction, communication and process 

execution. The CI Capability Container (see Fig. 1 and Fig. 2) 

is the extensible, deployable base unit of CI capabilities. It 

hosts all CI application services in support of activities and 

resource, infrastructure components and local interfaces; and it 

makes them available throughout the Integrated Observatory 

network forming a distributed system-of-systems. 

The Integrated Observatory’s functional capabilities are 

structured into six services networks (i.e., subsystems): four 

elements that address the ocean and Earth science- and 

education-driven operations of the OOI integrated observatory, 

and two elements that provide core infrastructure services for 

the distributed, message-based, service-oriented integration 

and communication infrastructure and the virtualization of 

computational and storage resources. 

 The Sensing and Acquisition services network provides 

capabilities to interface with and manage distributed seafloor 

instrument resources, as well as provide quality control 

services. The Data Management services network provides 

capabilities to distribute and archive data, including cataloging, 

versioning, metadata management, and attribution and 

association services. The Analysis and Synthesis services 

network provides a wide range of services to users, including 

control and archival of models, data analysis and visualization, 

event detection services and collaboration capabilities to 

enable the creation of virtual laboratories and classrooms. The 

Planning and Prosecution services network provides the 

ability to plan, simulate and execute observation missions 

using taskable instruments; it is the CI component that turns 

the OOI into an interactive observatory.   

 The remaining two services networks are the Common 

Execution Infrastructure (CEI) and the Common Operating 

Infrastructure (COI). The CEI provides an elastic computing 

framework to initiate, manage and store processes that may 

range from initial operations on data at a shore station to the 

execution of a complex numerical model on the national 

computing infrastructure and on compute clouds. The COI 

provides core services to manage distributed shared resources 

in a policy-based framework, including a distributed service 

infrastructure for the secure, scalable and fault tolerant 



operation and federation of the operational domains of 

authority comprising the OOI. It includes capabilities to 

manage identity and policy, manage any resource’s life cycle, 

as well as catalog and repository services for observatory 

resources. It also manages interactions with resources on an 

end-to-end basis. An efficient messaging and service bus that 

incorporates security and governance, and provides 

guaranteed delivery, lies at its heart. Service-orientation and 

messaging realize loose coupling of components, resulting in 

the flexibility and scalability that are key in such a complex 

large-scale system-of-systems. All OOI functional capabilities 

and resources represent themselves as services to the 

observatory network, with precisely defined service access 

protocols based on message exchange.  

 

Fig. 2. Capability Container with external interfaces 

 

Fig. 2 depicts a capability container, indicated by the 

octagon shape, with interfaces to local resources and to the 

network environment. Local resources include physical 

resources such as instruments (sensors) and marine 

observatory infrastructure, storage resources such as disks and 

network drives, and computing resources such as grid nodes, 

cloud computing instances, and CPUs on mobile platforms 

such as AUVs (Autonomous Underwater Vehicles). 

Capability container can also be connected to user interfaces, 

external applications and to capability containers in different, 

independent facilities that have their own domains of authority 

and operation. 

No matter where deployed, the capability container provides 

all of the infrastructure and application support required for an 

installation site within the OOI Integrated Observatory 

network. The capability container hosts the six services 

networks and their resource interfaces as depicted in the figure. 

The footprint of a capability container can vary depending on 

the resource constraints of its hosting environment. The 

selection of functional capabilities present in a specific 

capability container depends on the respective needs and 

resource availability at this specific location in the network. 

For instance, on an intermittently-connected instrument 

platform, instrument access, data acquisition and data 

buffering capabilities provided by the Sensing and Acquisition 

services are required, while the Analysis and Synthesis 

capabilities are not. In contrast, at the core installation sites, 

data processing, numerical model integration and event 

response behaviors need to be present. 

 

III. COMMON OPERATING INFRASTRUCTURE 

The Common Operating Infrastructure (COI) [14] provides 

the integration fabric that enables subsystem services to be 

composed to manage complex interactions. The Messaging 

Service of COI provides dynamic routing and interception 

capabilities, a publish-subscribe [11] model for conversations, 

and reliable storage and delivery of messages to intended 

recipients across the network.  

Rich Service Architecture 

The COI architecture is based on the Rich Services pattern 

[4] a type of Service-Oriented Architecture (SOA) that 

provides decoupling between concerns and allows for 

hierarchical service composition. As depicted in Fig. 3, a Rich 

Service comprises several entities: (a) the Service/Data 

Connector, which serves as the sole mechanism for interaction 

between the Rich Service and its environment, (b) the 

Messenger and the Router/Interceptor, which together form 

the communication infrastructure, and (c) the constituent Rich 

Services connected to the Messenger and Router/Interceptor 

that encapsulate various application and infrastructure 

functionalities. 
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Fig. 3. Rich Services pattern  

 

To address service integration, this architecture is organized 

around a message-based communication infrastructure. The 



Messenger is responsible for message transmission between 

communication endpoints. By providing a means for 

asynchronous messaging, the Messenger supports the 

decoupling of Rich Services. The Router/Interceptor manages 

the interception of messages placed on the Messenger and 

their routing. This is useful for the injection of policies 

governing the integration of a set of services. The 

Service/Data Connector encapsulates and hides the internal 

structure of the connected Rich Service, and exports only the 

description and interfaces that the connected Rich Service 

needs to be visible externally. The communication 

infrastructure is only aware of the Service/Data Connector, 

and does not need to know any other information about the 

internal structure of the Rich Service. 

Fig. 4 shows the Rich Services pattern applied to the COI 

architecture; the other five services networks are encapsulated 

as Rich Services connected to the COI messaging 

infrastructure (i.e., the Exchange). This shows the central and 

integrative role of the COI for the entire Integrated 

Observatory system-of-systems. The top of the figure depicts 

the infrastructure services that the COI provides to all 

subsystems.  The COI ensures identity management, pervasive 

and consistent governance and policy enforcement, state 

management and resource management. It also enables 

subsystem services to be composed to handle complex 

interactions, and manages the overall service orchestration. 

The Router/Interceptor allows for flexible composition 

between the infrastructure and application services. In this 

way, there is a clear separation between the business logic and 

its external constraints. At all abstraction levels, infrastructure 

services plugged into the Exchange can modify the interaction 

patterns by re-routing, filtering, or modifying exchanged 

messages. This feature enables the validation and signing of 

messages, and the injection of policies governing the 

integration of a set of services. 

The Rich Services integration strategy enables constituent 

subsystems to evolve independently from the composite 

system. Subsystem functionality is exposed to the OOI 

network as services with defined access interfaces, and the 

only way of interacting within the OOI network is through 

messages. Service-orientation and messaging realize loose 

coupling of components, resulting in flexibility and scalability. 

The complexity of such a large-scale system becomes 

manageable through separate concentration on each concern. 

Each subsystem focuses on the services that it enables and 

assumes that all of the infrastructure services are in place. For 

example, when designing the Sensing and Acquisition 

subsystem, the architecture team emphasizes concerns related 

to instrument control and data acquisition. Instruments can 

belong to individuals or the marine operators, while all of the 

deployment platforms are under the marine operator’s 

authority domain. However, since governance is managed 

seamlessly by infrastructure services, and can be abstracted 

when designing the Sensing and Acquisition services, these 

issues are not of concern to the Sensing and Acquisition 

service developers. 
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Fig. 5. COI Resource Management services 

 

Each service of Fig. 4 is further decomposed according to 

the Rich Services pattern. For instance, Fig. 5 shows the 

internal decomposition for the Resource Management services. 

The Resource Repository service provides references to all 

resources known to the OOI CI. Through the Resource 

Integration service, resources can participate in interaction 

patterns implemented by OOI services (e.g., a storage resource 

may be used to record states of various services). The 

Resource Collaboration service provides the collaboration 

framework between different facilities and the sharing of 

 

Fig. 4. Common Operating Infrastructure services 

 



resources within the OOI federation. The Resource Lifecycle 

service provides the means to track and manage resources 

throughout their entire lifecycle from development to 

decommissioning.  

The Rich Services architecture provides resource location 

independence while user applications are shielded from the 

complexity of the system and the location of resources. The 

COI subsystem provides the Resource Management services 

that enable seamless use of resources across the entire 

Cyberinfrastructure. Via seamless integration of identity and 

governance services, the COI architecture supports the 

deployment, operation, and distributed management of 

thousands of independently-owned resources of various types 

(e.g., instruments, processes, numerical models and 

simulations) across a core infrastructure operated by 

independent stakeholders, where each stakeholder has 

different policies. 

The COI Messaging Service (Exchange) 

The Exchange (i.e., the COI Messaging Service or the 

Messenger and Router/Interceptor in the Rich Services 

architecture) is the central integrating element of the COI. It 

provides access to the communication mechanisms of 

Exchange Spaces and Exchange Points throughout the system-

of-systems, abstracting from the physical communication 

infrastructure across multiple domains of authority. Client 

applications may publish messages on Exchange Points within 

Exchange Spaces. An Exchange Space represents a 

“community of interest” that collects and controls all of the 

Exchange Points in its scope and enforces policy of use for a 

registered set of users and applications. An Exchange Point is 

represented through a set of named exchanges on one or 

multiple AMQP [2] message brokers. Thereby, the Exchange 

provides a comprehensive, uniform view of a federation of 

message brokers: from the point of view of a 

publish/subscribe client (i.e., producers and consumers of 

messages), the fact that the messaging system is built as a 

federation of independent message brokers and not as a single 

broker is hidden. 

The CI integration strategy determines how individual 

software components integrate into the system-of-systems 

through a message-broker integration infrastructure. The 

communication system of the OOI CI applies messaging as 

the central paradigm of inter-application information exchange, 

realizing the Messaging Service, the integrating element of all 

services. It is part of the Common Operating Infrastructure 

(COI), the subsystem that provides the full set of integration 

frameworks and services (see [14]). 

Message-oriented middleware (MOM) (see [6], [9]) is based 

on the concept of a message as the exclusive means of 

information exchange between the distributed components of 

a system. All information that is passed between two 

components or services is contained in messages exchanged 

asynchronously (i.e., non-blocking) over a communication 

infrastructure. The sender of a message does not wait for the 

message to be delivered or returned; it only waits for the 

MOM to acknowledge receipt of the message. Delivering 

messages to recipients utilizes the concept of queues. An 

application component in a message-oriented architecture only 

knows the incoming queues that it receives messages from as 

well as the outgoing queues it delivers messages to, plus the 

message formats that pertain to these queues. The MOM 

provides the capability for system integrators to connect these 

queues to known endpoints (i.e., addresses) in the network; 

consequently it manages routing, reliable storage and delivery 

of messages to intended recipients across the network. 

Standardization is on the way for the underlying message wire 

transport protocol: the Advanced Message Queuing Protocol 

(AMQP) [2] defines the interactions of a message broker with 

its clients, promising interoperability between message 

brokers of different provenance. 

The left part of Fig. 6 depicts the fundamentals of the CI 

Messaging Service. Message brokers are the central 

infrastructure elements, represented as Exchange Points to all 

clients, responsible for the routing and delivery of messages. 

Fig. 6. OOI CI Messaging Service architecture (left) and exemplar messaging scenario (right) 

 



Message Clients provide the interfaces to the application logic.  

The right part of Fig. 6 provides an exemplar application 

scenario within the OOI CI. Capability containers host the 

application logic that interconnects using the Messaging 

Service. This is exemplified through an Instrument Agent 

publishing a raw data stream on an Exchange Point (a queue) 

via messaging. Any number of consumers may choose to 

subscribe to such an exchange point. In the example, the data 

processing application as well as the data repository will 

receive the published messages. A data stream is a continuous 

series of related self-contained messages on a given exchange 

point. There is a second exchange point for another data 

product containing processed data that is consumed by an 

event detector process. The physical deployment of all 

applications is irrelevant. The Exchange realizes all 

connectivity.  

Fig. 7 depicts an exemplar scenario of how service clients 

can adapt to the Messaging Service; we have implemented this 

in current prototypes [15]. Services are identified by name 

within the Exchange network throughout the entire system-of-

systems. Services are part of distributed applications; the 

distributed service interaction protocol at every (service) 

endpoint is implemented by a specialized protocol adapter. 

Such protocol adapters are instantiated for each conversation 

instance (see below for further details) through protocol 

factories; the protocol adapters provide the binding element to 

the actual service application and its functionality. A typical 

mechanism of implementing protocol adapters is using Finite 

State Machines (FSM). FSMs represent each distinguishable 

protocol condition as a separate state, with defined transitions 

between states when messages are sent or received, leading to 

very predictable and robust distributed implementations. We 

have prototyped several interaction styles between service 

applications, including direct point-to-point interaction, topic 

based publish/subscribe fan-out queues and worker queues 

that facilitate reliable load-balanced applications. The 

Messaging Service hides the fact that service applications are 

connected to different message brokers that are operated in 

different domains of authority. 

Messaging Service

(Exchange Spaces with Exchange Points)

Protocol Factory

Finite State Machine

Protocol Adapter

s1

s2

in_event[guard]/

out_event

FSM

Messaging Service 

Adapter

Service Application

“service_B”

Protocol Adapter

Protocol Factory

Service Application

“service_A”

Messaging Service 

Adapter

Protocol Factory

Messaging Service 

Adapter

Protocol Adapter

Service Application

“service_C”

AMQP Message 

Broker #1

AMQP Message 

Broker #2  

Fig. 7. Messaging Service and service client adapters prototype 

Communities and Agents 

Our approach in distributed computing is based on the 

premise that independent entities interact in order to pursue 

shared goals. Entities can represent users, processes, resources 

and communities. 

Entities in the system are represented by their agents. Each 

entity (or their agent on their behalf) can form any number of 

relationships with other entities. Relationships are based on 

mutual (bilateral) agreements between two entities, the results 

of a successful negotiation. Each entity tracks the 

consequences (i.e., commitments [9], [16]) of such agreements 

(i.e., contracts) with other entities. Each observable atomic 

action of an entity, such as sending a message, that causes a 

side effect leads to a change and reevaluation of the aggregate 

set of commitments of the entity towards other entities. 

Entities communicate and collaborate within communities. 

A community is a specific type of entity in itself. 

Communities serve multiple purposes in our architecture, 

including providing a backstop for contracts, providing a locus 

for naming, and providing a venue to share resources in some 

uses including infrastructure. A community is represented by a 

specification that defines the rules for joining the community. 

Joining a community requires accepting the rules of the 

community, and the community will provide the registrant 

entity with a local name and address. 

Entities may request to enroll (i.e., participate) in 

communities or can be invited by other member entities into 

the community. Enrollment is a symmetric process of 

negotiation. Entities negotiate the conditions under which they 

participate in the community and vice versa. If agreement is 

reached, the resulting contract builds the basis for relations 

with other community members. 

Communities can form relationships with other 

communities, enabling the members of one community to 

interact with the members of another community, instituting 

the specifications of both communities. By contract, the 

community members are bound to the community 

specification with its rules, so there is no need for explicit 

compliance checking (i.e., policy enforcement) and members 

can interact directly. There might be an imposed requirement 

for members to leave behind audit trails for later evaluation, 

same as a tax rule not being directly enforced with every 

transaction, but which may be audited for compliance to the 

"state" community tax rules later for each member taxpayer. 

We call the set of rules that communities (or other entities) 

impose policy. Policy to access a resource entity for instance 

might be an aggregate of many rules, such as the resource 

owner's rules, the community's rules, and any underlying 

obligations as consequence of membership. 

Conversation Management 

Communication between two entities occurs as part of a 

conversation. A conversation presumes a contract is in place 

between the two entities intending to converse. This contract 
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Fig. 8. Collaboration and policy framework example 

must include the common knowledge of an interaction pattern 

that provides a template for the conversation, with the 

conversation being an instantiation of the pattern. The actual 

interaction as part of the conversation must comply with the 

template of the interaction pattern. Each interaction (sending 

and receipt of a message) potentially causes change in the set 

of commitments related to the conversation and, thus, 

indirectly to the commitments between the two entities. 

Interaction patterns are thereby distributed 

Assumption/Commitment specifications, in particular also for 

policy. Each entity can independently monitor the fulfillment 

of the interaction pattern and contract for the other entity and 

for itself (and initiate protective or compensating action 

otherwise). Each party would thus update its commitment 

store based on each message it sends or receives. Each entity 

can engage in as many different conversations with different 

(or the same) entities concurrently as it likes. At any given 

instant, the effective set of commitments from the point of 

view of the entity is defined; each interaction can be traced 

back to a conversation.  

We specify interaction patterns using Message Sequence 

Charts (MSCs, see [7], [9], [12]). We also define a language 

for commitments that are made and released for each 

interaction in an interaction pattern. We provide a logical 

framework to reason over the aggregate set of commitments 

over time and deduce any implications. Currently, we use a 

rules engine to implement such a mechanism. 

The COI provides collaboration, agreement support, and 

policy enforcement capabilities. Fig. 8 illustrates this pattern 

for the base case of a single service provider (instrument 

owner) and consumer (researcher). The pattern generalizes to 

arbitrary numbers of participants in a service orchestration. 

Conceptually, the example captures the establishment of a 

service agreement between two parties; for example, this 

could unfold between a regional cabled observatory (service 

provider) and a buoy-based global observatory (service 

consumer). Each one of the parties has established contractual 

commitments with their respective user communities, 

including membership agreements. Upon the establishment of 

mutual commitments, a contract between the two parties is in 

place. Further, each party operates under its own set of 

policies. The negotiation and contracting process, as well as 

the actual service usage, leads to an interaction pattern 

between the two parties that is constrained by the contractual 

commitments and policy declarations of both parties. 

Because each Capability Container is equipped with plug-

ins for orchestration, governance, policy enforcement, and 

monitoring/audit, the deployment mapping for the 

collaboration and policy framework is straightforward: the 

corresponding interaction interface is stored and accessed CI-

wide. Each party’s Capability Container orchestration 

component executes the projection of the interaction pattern 

on their respective roles to participate in the overall 

collaboration. The governance and policy constraints are 

extracted from the interaction interface and provided to the 

corresponding Capability Container plug-ins for monitoring 

and enforcement. 

The COI, through the use of the CI capability container, 

factors out the common aspects of communication, state 

management, execution, governance, and service presentation 

to provide a highly scalable, secure and extensible model for 

managing user-defined collections of information and taskable 

resources. This ability to integrate resources of different types 

implemented by different technologies is the central value 



 

Fig. 9. Resource, resource agents and resource proxies connected to the Messaging Service 

proposition of the architecture. It provides the basis for an 

integrated observatory network that will remain viable and 

pertinent over multiple decades. 

Protocols are defined through interaction patterns. The 

interaction pattern (or projection thereof) represents the 

interaction interfaces of entities (i.e., components). The 

projection of a protocol on one party can be represented as a 

Finite State Machine (FSM). We use FSMs as protocol 

machines that bind the communication endpoint on an 

asynchronous reliable message-based system to the 

application logic. Fig. 7 shows the use of FSMs as protocol 

adapters for service applications involved in a conversation as 

defined by an interaction pattern. 

Fig. 9 shows an exemplar scenario for the application of 

agents for the management of physical resources such as 

sensors, and of services in a distributed environment. Agents 

interact via the Messaging Service. Services themselves use 

the Messaging Service for inter-service conversations as 

explained above. In this case, the services’ agents provide the 

management and control for the service, such as 

starting/stopping the service and granting access. Finite State 

Machines as protocol adapters ensure that the agents and 

service protocols are always in a consistent distributed state, 

ensuring robustness of the entire system. Service protocol 

adapters provide access to the service; Managed Resource 

Agent protocol adapters provide access to the respective 

resource agents. Resource agents provide monitoring and 

control of resources, advertise and grant access to resource 

capabilities and manage the contractual relations and 

commitments of the resource to its environment on behalf of 

the resource. All these agent interactions occur in form of 

conversations based on defined interaction patterns. Proxy 

Resource Agents provide similar capabilities and interaction 

patterns but act as proxies or supervisors of Managed 

Resource Agents. Thereby, policy can be applied at various 

levels within the system through a chain of responsibility. 

Distributed IPC Facility 

We are currently investigating a special case of community 

called the Distributed Inter-Process Communication Facility 

(DIF) [5]. Entities, representing processes that require inter-

process communication (IPC), enroll in this community and 

are assigned a name valid throughout the community as well 

as an address that the community uses internally to direct 

communication. The resources of the community are local 

endpoints of the DIF, which provide resource allocation 

(open/close a connection to another named endpoint) and 

read/write capabilities. 

This DIF facility is intended to be the underlying distributed 

system primitive within the OOI system-of-systems. As is 

apparent, in conceptual terms, DIFs relate naturally to the 

notion of communities that we motivated in the foregoing. 

Other communities will be defined applying similar patterns 

for other purposes than communication, such as scalable, 

elastic computing environments, with entities including the 

requestors of a service and the responding nodes. 

The power of the DIF model is that it can be stacked in 

order to increase scope. One DIF can leverage a lower level 

DIF for communication purposes and present a DIF facility of 

larger scope to its member entities. Thereby, the design of 



how to architect the communities becomes the driving element 

in the architecture of a distributed system. Any topology and 

architecture is possible here, not just a "layered architecture". 

Present a high-level view of DIF.  

IV. SUMMARY 

The Ocean Observatories Initiative faces the enormous 

challenge of building a cohesive distributed system-of-systems 

that incorporates a large number of autonomous and 

heterogeneous systems, deals with instruments and 

computational resources of a wide range of capabilities, serves 

the needs of diverse stakeholders, and accommodates change 

over the timescale of decades. A carefully thought out 

architecture is key to addressing this challenge. We find that 

simplicity wins and a few core principles help us organize the 

OOI properly. These principles include (1) emphasizing loose 

coupling through message-based interactions; (2) recognizing 

the autonomy of the participants by modeling them as agents 

rather than as traditional objects or pure services; (3) 

identifying repeating structures (as evinced in our choice of 

Rich Services, Capability Containers, DIFs, and communities); 

and capturing and making explicit business-level interactions 

through first-class status for policy and governance. 

 

ACKNOWLEDGMENT 

The OOI Cyberinfrastructure program is funded through the 

JOI Subaward, JSA 7-11, which is in turn funded by the NSF 

contract OCE-0418967 with the Consortium for Ocean 

Leadership, Inc.  

REFERENCES 

[1] Ocean Observatories Initiative (OOI). Program website,  
http://www.oceanleadership.org/ocean_observing/ooi 

[2] Advanced Message Queuing Protocol (AMQP). AMQP Working Group 
Website http://www.amqp.org/ 

[3] Amazon.com, Amazon Web Services for the Amazon Elastic Compute 
Cloud (Amazon EC2). http://aws.amazon.com/ec2/.  

[4] M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger, 
and M. Menarini. Rich Services: The Integration Piece of the SOA 
Puzzle. In Proc. of the IEEE International Conference on Web Services 
(ICWS), Salt Lake City, Utah, USA. IEEE, Jul. 2007, pp. 176-183. 

[5] J. Day. Patterns in Network Architecture: A Return to Fundamentals. 
Prentice Hall, 2008. 

[6] G. Banavar, T. Chandra, R. Strom and D. Sturman. A case for message 
oriented middleware. Proc. of the 13th International Symposium on 
Distributed Computing, pp. 1–18, 1999. 

[7] M. Broy, I. H. Krüger, and M. Meisinger. A Formal Model of Services.  
ACM Transactions on Software Engineering and Methodology 
(TOSEM), vol. 16, no. 1, p. 5, Feb. 2007 

[8] A. Chave, M. Arrott, C. Farcas, E. Farcas, I. Krueger, M. Meisinger, J. 
Orcutt, F. Vernon, C. Peach, O. Schofield, and J. Kleinert. 
Cyberinfrastructure for the US Ocean Observatories Initiative: Enabling 
Interactive Observation in the Ocean. In Proc. IEEE OCEANS'09 
Bremen, Germany. IEEE Ocean Engineering Society, May 2009. 

[9] A.K. Chopra and M.P. Singh.  An Architecture for Multiagent Systems: 
An Approach Based on Commitments. Proceedings of the AAMAS 
Workshop on Programming Multiagent Systems (ProMAS). May 2009 

[10] B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M. 
Menarini, “A Rich Services Approach to CoCoME,” The Common 
Component Modeling Example: Comparing Software Component 
Models, A. Rausch, R. Reussner, R. Mirandola, and F. Plasil (Eds.), 
Lecture Notes in Computer Science, no. 5153, ch. 5, pp. 85-115, 
Berlin/Heidelberg: Springer-Verlag, Aug. 2008 

[11] P.T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many 
faces of publish/subscribe. Tech. Rep. DSC ID:2000104, EPFL, January 
2001. 

[12] I. H. Krueger, M. Meisinger, and M. Menarini. Interaction-based 
Runtime Verification for Systems of Systems Integration. Journal of 
Logic and Computation, Nov. 2008 

[13] OOI CI Integrated Observatory Applications Architecture Document, 
OOI controlled document 2130-00001, version 1-00, 10/28/2008, 
available at  http://www.oceanobservatories.org/spaces/display/FDR/ 
CI+Technical+File+Repository 

[14] OOI CI Integrated Observatory Infrastructure Architecture Document, 
OOI controlled document 2130-00002, version 1-00, 10/24/2008, 
available at  http://www.oceanobservatories.org/spaces/display/FDR/ 
CI+Technical+File+Repository 

[15] OOI CI Messaging Service Prototype. http://www.oceanobservatories. 
org/spaces/display/CIDev/Messaging+Service 

[16] M.P. Singh. Semantical Considerations on Dialectical and Practical 
Commitments. Proceedings of the 23rd Conference on Artificial 
Intelligence (AAAI). July 2008, pp. 176-181. 

 


