
Enhancing Tropos with Commitments

A Business Metamodel and Methodology

Pankaj R. Telang and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

prtelang@ncsu.edu, singh@ncsu.edu

Abstract. This paper motivates a novel metamodel and methodology
for specifying cross-organizational business interactions that is based on
Tropos. Current approaches for business modeling are either high-level
and semiformal or formal but low-level. Thus they fail to support flexible
but rigorous modeling and enactment of business processes. This paper
begins from the well-known Tropos approach and enhances it with com-
mitments. It proposes a natural metamodel based on commitments and
a methodology for specifying a business model. This paper includes an
insurance industry case study that several researchers have previously
used.

1 Introduction

Modern organizations form complex business relationships with their partners
to create and provide value to their customers. Due to competitive pressures,
modern organizations are continually forced to improve their operations. Such
improvements increasingly involve outsourcing noncore business tasks, and other
redistributions and realignments of business functions. A business model serves
as a starting point for realizing the IT systems required to support the operations
of these organizations.

Current approaches are inadequate for capturing business models in a manner
that is both flexible and formal. On the one hand, management scientists have
proposed a number of high-level business metamodels. However, these models
are semiformal, and are useful primarily for valuation and profitability analysis.
On the other hand, computer scientists have proposed low-level business meta-
models, which consider abstractions centered on data and control flow. These
approaches fail to capture the business meaning of the interactions.

This paper motivates a novel business metamodel and methodology based on
Tropos [2], an established agent-oriented engineering methodology, as enhanced
with commitments. Tropos provides a well-defined requirements engineering ap-
proach for modeling agents, and their mutual dependencies. However, it lacks ap-
propriate treatment of agent commitments. Commitments [6] are a well-studied
concept for modeling business interactions. Commitments help capture the busi-
ness meaning of interactions in a manner that supports judgments of compliance

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 417–435, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

418 P.R. Telang and M.P. Singh

while enabling flexible enactment. Our proposed metamodel benefits from the
goal, task, and dependency modeling offered by Tropos, and the semantics and
flexibility offered by commitments. We exercise our approach on an insurance
industry scenario, a well-known case study from the literature.

Contributions. The main contribution of this paper is a novel agent-oriented
business metamodel and methodology. A real-life insurance claim processing
scenario validates our proposal.

Organization. Section 2 presents our business metamodel and methodology.
Section 3 applies the methodology to create a business model for an insurance
claim processing scenario. Section 4 introduces the notion of agent conformance
and presents an approach for verifying it. Section 5 compares our approach with
related work.

2 Metamodel and Methodology

In our treatment, a business model captures the business organizations involved
in conducting a specified element of business and the commitments between
them. An organization executes business tasks either to achieve its own goals,
or to satisfy its commitments toward another organization. We now define the
concepts used by our metamodel using which such models may be expressed.
With the exception of commitment, these concepts are based on Tropos.

Agent: A computational representation of a business organization. An agent
abstraction captures the autonomy and heterogeneity of a real-world busi-
ness. An agent has goals and capabilities to execute tasks. It enters into
business relationships with other agents to acquire capabilities, that is, to
get other agents to execute tasks on its behalf.

Role: An abstraction over agents via their related sets of commitments and
tasks. An agent can adopt one or more roles in a business model.

Goal: A state or condition of the world that an agent would like to bring about
or have brought about. In simple terms, a goal is an end. AND-OR decom-
position helps decompose a root goal into subgoals.

Task: An abstract way of executing a business activity, that is, the means by
which a goal can be achieved. Similar to a goal, a root task can be decom-
posed into subtasks.

Dependency: A relationship between two roles where one role depends upon
the other for achieving a goal or executing a task. The former role is called the
depender, the latter is called the dependee, and the object of the dependency
is called the dependum.

Commitment: A commitment C(r1, r2, p, q) denotes that the role r1 is re-
sponsible to the role r2 for bringing about the the condition q if p holds.
In this commitment, r1 is the debtor, r2 is the creditor, p is the antecedent,
and q is the consequent. A commitment may be created. When its condition
is brought about, it is discharged. The creditor may assign a commitment

Enhancing Tropos with Commitments 419

to another agent. Conversely, a debtor may delegate a commitment to an-
other agent. A debtor may also cancel a commitment and a creditor may
release the debtor from the commitment. The above operations describe how
a commitment can be manipulated.

A traditional obligation specifies a condition that an agent ought to bring
about. Unlike commitments, an obligation cannot be assigned, delegated,
canceled, or released.

Table 1 outlines the steps in our proposed methodology. The subsections below
describe each step in detail.

Table 1. Methodology steps

Step Description Input Output

S1 Identify agents and roles Scenario description, process
flows, domain knowledge

Agents and roles

S2 Determine goals and goal
dependencies

Roles, scenario description,
process flows, domain knowl-
edge

Goals and goal
dependencies

S3 Identify tasks and task de-
pendencies

Roles, goal dependencies,
scenario description, process
flows, domain knowledge

Tasks and task
dependencies

S4 Identify commitments Task dependencies, scenario
description, process flows, do-
main knowledge

Commitments

2.1 Step S1: Agent and Role Identification

Agents represent the business organizations participating in the scenario of in-
terest. A scenario description typically specifies the agents using terms like com-
pany, partner, and organization. If there is a single agent of its kind, then the
scenario description usually specifies a unique name for it. In case we have mul-
tiple agents of the same kind, a scenario description may specify a role name.
For each uniquely named agent, the business functions it provides yields the
associated role.

A traditional process flow, if available, can help us identify the roles. For
example, a role in a choreography corresponds to a role in our business model.
Similarly, partner link in an orchestration, corresponds to a role in our model.

2.2 Step S2: Determine Goals and Dependencies

This step iteratively determines the goal dependencies between the roles. First,
it identifies the main roles and their high-level goal dependencies. Second, using
means-end and AND-OR decomposition analysis, it refines the high-level root

420 P.R. Telang and M.P. Singh

goals into subgoals. Third, this step introduces roles that adopt these subgoals.
It then iteratively refines the subgoals until no new dependencies arise.

The scenario description may explicitly or implicitly specify business depen-
dencies between participating organizations. These dependencies yield the goal
dependencies between the roles. In cases where the dependencies are not clear
from the scenario, additional business insight may be needed.

Thus, Step S2 identifies goals adopted by different roles, that is, the goals of
each dependee role.

2.3 Step S3: Determine Tasks and Dependencies

For each role, this step refines the goal dependencies from Step S2 into task
dependencies. A set of tasks achieves a goal. The means-end analysis identifies
the set of tasks required for achieving a goal. A task is refined into subtasks
using AND-OR decomposition. The refined tasks identify dependencies that are
not evident at the higher level task. The decomposition iterates until no new
task dependencies emerge.

As we analyze additional roles, we may discover new task dependencies, re-
quiring the addition of any missing tasks and goals to the (potentially already
analyzed) roles.

2.4 Step S4: Identify Commitments

This step identifies commitments between roles in terms of tasks. It analyzes each
task dependency from Step S3 to identify if a commitment exists corresponding
to that dependency. For a task dependency, if the dependee is obliged to the
depender for executing the dependum task, then a commitment exists, where
the depender is the creditor, the dependee is the debtor, and the dependum
task is the consequent. The antecedent of the commitment is determined by
identifying the tasks that the debtor requires as prerequisites for executing the
consequent task. If the dependee is not obliged to the depender for executing a
task, then no commitment exists. This implies that the dependee executes the
task to achieve its internal goal.

Although the scenario description and process flow may contain information
that yields commitments, additional human insight is typically required to cor-
rectly identify the commitments.

3 Methodology Applied to a Real-World Case

This section describes a real-world insurance claim processing use case. It further
describes an application of our methodology and the resulting model for that
use case. Figure 1 clarifies the notation used in the figures that follow.

Enhancing Tropos with Commitments 421

Role

Goal

Task

Depender

Dependee

Dependum

AND decomposition

Means-end analysis

AND decomposition

Depender

Dependee

Dependum

Reason

Dependee

Depender

Dependum

Fig. 1. Notations

3.1 Insurance Claim Processing Scenario

AGFIL [3] is an insurance company in Ireland. It underwrites insurance policies
and covers losses incurred by policy holders. AGFIL provides an emergency
service to its policy holders. Figure 2 shows the parties involved in providing
emergency service, their individual processes, and the control and data flows
among these processes.

To provide emergency service, AGFIL must provide claim reception and vehi-
cle repair to the policy holders. Additionally, it needs to assess claims to protect
itself against fraud. AGFIL uses its partners, Europ Assist, Lee Consulting Ser-
vices (CS), and various repairers, for executing these tasks. Europ Assist provides
a 24-hour help-line to customers for reporting a claim, and provides them the
name of an approved repairer facility. Lee CS performs the necessary assessment
and additionally presents invoices to AGFIL on behalf of the repairers. Several
approved repairers provide repair services. AGFIL remains in charge of making
the final decision on claim approvals, and making the payment.

3.2 Step S1

The insurance claim processing scenario from Section 1 specifies AGFIL, EA,
and Lee CS as uniquely named agents. The process flow also shows these agents.
These agents serve the business functions of insurer, call center, and assessor,
respectively. Therefore, we can induce the corresponding roles from them. The
description additionally specifies the repairer, claim adjustor, and policy holder
roles that are enacted by multiple agents.

422 P.R. Telang and M.P. Singh

Notify
Lee
C.S.

Obtain
claim
form

Check
claim
form Amend

estimate
Reconcile

info
Finalize
claim

Gather
info

Validate
info

Assign
garage

Notify
AGFIL

Receive
car

Estimate
repair
cost

Inspect
car

Repair
car Invoice

Obtain
details

Contact
garage

Assign
adjustor

Agree
repair

Check
invoice

Estimate
< 500

E
u
r
o
p

A
s
s
i
s
t

AGFIL

Lee C. S.

Repairer

Fig. 2. Insurance claim processing [3]

3.3 Step S2

In the AGFIL scenario, the main roles are insurer and policy holder. A policy
holder depends upon the insurer for receiving emergency service and, in ex-
change, the insurer depends upon the policy holder for the insurance premium
payment. Fig. 3 shows these dependencies using the Tropos notation.

Insurer Policy
Holder

emergency
service

insurance
premium
payment

Fig. 3. Insurer and policy holder goal dependencies

Using AND decomposition, in Fig. 4, the insurer’s goal of emergency service
yields subgoals of claim reception, claim assessment, vehicle repair, and claim
finalization. Among these, the policy holder depends on the insurer for vehicle
repair and claim reception. The insurer requires additional subgoals to provide
emergency service but these additional goals do not involve a dependency from
the policy holder. As the goal structure is refined and later, in Step S3, when
the task structure is identified, a dependency between one of these subgoals and
the policy holder may be discovered.

Enhancing Tropos with Commitments 423

Insurer

emergency
service

claim reception

claim
assessment

vehicle repair

claim
finalization

Policy
Holder

insurance
premium
payment

Fig. 4. Emergency service goal decomposition

In Fig. 5, the insurer delegates claim reception to the call center. The policy
holder now depends upon the call center for claim reception. In exchange for
claim reception, the insurer pays service charges to the call center. Fig. 5 omits
the claim assessment and finalization subgoals as they are not dependent upon
other roles.

In Fig. 6, the insurer delegates claim assessment to the assessor. The assessor
role and a dependency from the insurer to the assessor is added to the model. In
exchange, the assessor depends upon the insurer for the payment of assessment fees.

Fig. 7 shows all roles and goal dependencies. The assessor delegates vehicle
inspection, which is a subgoal of claim assessment, to an adjustor. The adjustor,

Policy
Holder

insurance
premium
payment

vehicle repairInsurer

claim receptionCall
center

claim reception
service payment

Fig. 5. Insurer delegates claim reception

424 P.R. Telang and M.P. Singh

Policy
Holder

insurance
premium
payment

vehicle repairInsurer

claim receptionCall
center

claim reception
service payment

Assessor

claim
assessment

assessment
fees payment

Fig. 6. Insurer delegates claim assessment

Policy
Holder

insurance
premium
payment

vehicle repair

Insurer

claim receptionCall
center

claim reception
service payment

Assessor

claim
assessment

assessment
fees payment

vehicle
inspection

Adjustorinspection fees
payment

Repairer

vehicle repair
charge payment

Fig. 7. AGFIL goal dependency model

Enhancing Tropos with Commitments 425

in exchange, depends upon the assessor for inspection fees payment. The insurer
delegates vehicle repair to a repairer. In exchange, the repairer depends upon
the insurer for vehicle repair payment.

3.4 Step S3

Fig. 8 shows the tasks and the task dependencies we identify by analyzing the
call center role. From S2, the call center has the goal of claim reception. By
performing means-end analysis on this goal, we obtain tasks of gathering claim
information, assigning garage, sending claim, and validating claim.

When the policy holder reports an accident, the call center gathers claim
information and assigns a garage. This means that the policy holder depends
upon the call center for gathering claim information and assigning a garage.
Additionally, the repairer depends on the call center to assign a garage.

Using AND-OR decomposition of the validate claim information task, we
obtain two subtasks: request policy information and validate. The call center
depends upon the insurer for providing policy information, and it performs val-
idation without any dependency.

From Step S2, the call center depends on the insurer for payment of the claim
reception charge. This yields a dependency from the call center to the insurer
for the task of paying claim reception charge. The call center executes a task
of receiving this payment and it derives a new call center goal of service charge
collection.

claim reception

assign
garage

validate
claim
infosend

claim to
insurer

gather
claim
info

Policy
Holder

Insurer

request
policy
info

validate

service charge
collection

receive
payment

pay
claim

reception
charge

provide
policy
info

Call
Center

Fig. 8. Call center task dependencies

426 P.R. Telang and M.P. Singh

Assessor

claim
assessment

obtain
repair

estimate

agree to
repair

receive
claim

Adjustor

check
invoice

Repairer
estimate

repair
cost

Insurer

send
claim to
assessor

inspection fees
payment

pay
inspection

fees

assessment
fees collection

receive
assess

fees

pay
assess

fees

request
vehicle

inspection

inspect
vehicle

Fig. 9. Assessor task dependencies

The call center sends a validated claim to the insurer for further processing.
This yields a dependency from the insurer to the call center for sending the
claim.

Fig. 9 shows the tasks and the task dependencies derived for the assessor role.
The assessor has goals of claim assessment and inspection fees payment. A new
goal of assessment fees collection is derived similarly to the goal of receiving
service payment of the call center.

Repairer

vehicle repair

repair
vehicle

esimate
repair
cost

send
invoice

Policy
Holder Assessor

repair charge
collection

Insurer

receive
repair
charge

pay
repair
charge

check
invoice

Fig. 10. Repairer task dependencies

Enhancing Tropos with Commitments 427

Adjustor

vehicle
inspection

inspect
vehicle

present
vehicle Repairer

inspection fees
collection

receive
inspection

fees

pay
inspection

fees
Assessor

Fig. 11. Adjustor task dependencies

Insurer

claim
finalization

receive
claim

send
claim to
assess

amend
estimate

reconcile

finalize

send
claim to
insurer

Call
Center

agree to
repairAssessor

provide
policy
info

maintain policy
store

Fig. 12. Insurer task dependencies: Business function goals

The goal of assessment fees collection requires a receive assessment fees task,
which depends upon the insurer’s pay assessment fees task. The tasks needed
to cover claim assessment goal are receive claim, check invoice, agree to repair,
obtain repair estimate, and inspect vehicle. The receive claim task depends upon
the insurer’s task of sending claim. The insurer depends upon the check invoice
and agree to repair tasks performed by the assessor. The repairer depends upon

428 P.R. Telang and M.P. Singh

Insurer

insurance
premium
collection

claim reception
service payment

vehicle repair
charge payment

assessment
fees payment

receive
insurance
premium

pay claim
reception
charge

pay
vehicle
repair
charge

pay
assess

fees

Call
Center

Policy
Holder

pay
insurance
premium

Repairer

Assessor

Fig. 13. Insurer task dependencies: Payment related goals

the assessor for checking the invoice and agreeing to repair. For obtaining the
repair estimate, the assessor depends upon the repairer to estimate the repair
cost. The assessor depends upon the adjustor to inspect a vehicle. The goal of
inspection fees payment requires a task of paying inspection fees to the adjustor.

Similarly, we analyze repairer, adjustor, insurer, and policy holder roles to
obtain the task dependencies shown in Figs. 10, 11, 12, 13, and 14 respectively.

Policy
Holder

receive
emergency

service

report
accident receive

garage
info

send
vehicle

Call
Center

assign
garage Repairer

insurance
premium
payment

pay
insurance
premium

Insurer
gather
claim
info

repair
vehicle

Fig. 14. Policy holder task dependencies

Enhancing Tropos with Commitments 429

Call
Center

assign
garage
C2

send
claim to
insurer
C4

gather
claim info
C1

Assessor

agree to
repair
C5

check
invoice
C6

pay
inspection

fees
C10

Repairer

repair
vehicle
C9

esimate
repair cost

C7

Adjustor

inspect
vehicle
C8

Insurer

pay claim
reception
charge
C11

pay vehicle
repair charge

C13

pay
assess

fees
C14

Policy
Holder

pay
insurance
premium
C12 send claim

to assess

provide
policy info

C3

present
vehicle

Fig. 15. All task dependencies

Fig. 15 consolidates the task dependencies among all roles. This figure shows
only the dependum tasks and hides the tasks that are reasons for the individual
dependencies. For example, Fig. 15 shows the pay repair charge task but does
not show the receive repair charge task.

3.5 Step S4

This step identifies the commitments for each task dependency from Step S3.
Fig. 15 annotates each task dependency with the corresponding commitment.
Table 2 summarizes these commitments.

The commitment C1 means that the call center commits to the policy holder
for gathering claim information if the policy holder reports an accident. In C2,
the call center commits to assigning a garage if the policy holder reports an
accident and if the claim request is valid. In C3, the insurer commits to providing

430 P.R. Telang and M.P. Singh

Table 2. Commitments for AGFIL scenario

Id Task Commitment

1 gather claim
info

C(Call center, Policy holder, reportAccident, gatherInfo)

2 assign garage C(Call center, Policy holder, reportAccident ∧ validClaim,
assignGarage)

3 provide policy
info

C(Insurer, Call center, reqPolicyInfo, providePolicyInfo)

4 send claim to
insurer

C(Call center, Insurer, reportAccident ∧ validClaim ∧ pay-
ClaimRecCharge, sendClaimToInsurer)

5 agree to repair C(Assessor, Insurer, sendClaimToAssess ∧ payAssessFees,
agreeToRepair)

6 check invoice C(Assessor, Repairer, sendInvoice, checkInvoice)

7 estimate
repair cost

C(Repairer, Assessor, reqEstimate, estimateRepairCost)

8 inspect vehicle C(Adjustor, Assessor, reqInspection∧ payInsFees, inspectVe-
hicle)

9 repair vehicle C(Repairer, Policy holder, validClaim, repairVehicle)

10 pay inspection
fees

C(Assessor, Adjustor, inspectVehicle, payInsFees)

11 pay claim re-
ception charge

C(Insurer, Call center, C1 ∧ C2 ∧ C4, payClaimRecCharge)

12 pay insurance
premium

C(Policy holder, Insurer, C9, payInsurancePremium)

13 pay vehicle re-
pair charge

C(Insurer, Repairer, repairVehicle, payRepairCharge)

14 pay assess-
ment fees

C(Insurer, Assessor, agreeToRepair, payAssessFees)

policy information if the call center requests it. The commitment C4 means that
the call center commits to sending a claim to the insurer if it receives a valid
claim and the insurer pays claim reception charge. In C5, the assessor commits
to the insurer to negotiate and bring about the agreement to repair provided the
insurer requests claim assessment and pays the assessment fees. Commitment
C6 means that the assessor commits to the repairer for checking the invoice and
for forwarding it to the insurer, provided the repairer sends the invoice. In C7,
the repairer commits to the assessor for estimating the repair cost if requested.
In C8, the adjustor commits to the assessor for inspecting the vehicle if the
assessor requests inspection, and pays for it. The commitment C9 means that
the repairer commits to the policy holder for repairing the vehicle provided the
claim is valid. In C10, the assessor commits to paying the adjustor for inspection
if the vehicle is inspected. The commitment C11 means that the insurer commits
to the call center for paying if the call center creates commitments C1, C2, and

Enhancing Tropos with Commitments 431

C4. That is, if the call center commits to gathering claim information, assigning
a garage, and sending the claim to insurer. In C12, the policy holder commits
to paying the insurance premium to the insurer if commitment C9 is created for
repairing the vehicle. In C13, the insurer commits to the repairer for payment if
the vehicle is repaired. The commitment C14 means that the insurer commits to
the assessor for payment if the assessor brings about the agreement to repair.

There is no commitment associated with some of the task dependencies. For
example, the assessor depends upon the insurer for sending a claim for assess-
ment. In this case, the insurer does not commit to sending the claim to the
assessor.

4 Verifying Agent Interactions

Since agents are autonomous (based on the fact that they represent autonomous
business organizations), they may not conform to a given model. So it is im-
portant to verify agent interactions with respect to a model. A business model
captures commitments between agents. The commitments provide a basis for
verifying agent interactions for conformance with the specified business model.

We consider a UML sequence diagram as a low-level model for agent inter-
actions as they are realized. The roles appear as objects in this diagram and
they exchange messages. Roles may exchange multiple messages for executing
one task. For example, consider the task of reporting an accident. The policy
holder sends a message to the insurer for this task. If the information in that
message is incomplete, the insurer may send a message to the policy holder re-
questing additional information. This would repeat until the insurer receives all
information, at which point the task of reporting accident would complete.

An agent conforms to a business model if it satisfies each commitment of which
it is the debtor and whose antecedent holds. To verify conformance, we iterate over
active commitments from the business model. For each commitment, we evaluate
its antecedent and consequent using the tasks and the domain facts asserted in
the interaction model. Each commitment whose consequent evaluates to true is
satisfied. Each commitment whose antecedent evaluates to true, but consequent
to false, is a detached commitment that is violated. Hence, the debtor of a violated
commitment is the agent that fails conformancewith respect to the businessmodel.

The agent interactions can be verified either at design time or at run time.
At design time, a low-level interaction model design can be verified against a
business model. There can be many interaction models that satisfy a given busi-
ness model. At run time, the emergent agent behavior, captured in the form of a
low-level interaction model, can be verified against a business model. When such
verification is performed, some interactions may still be pending, and therefore,
some commitments may be eventually satisfied. Therefore, to detect violations
we must model the various tasks as being time bounded, that is, as including
timeouts. A commitment whose antecedent evaluates to true but consequent to
false (taking timeouts into consideration) is violated. Figure 16 shows a series
of conforming and nonconforming interactions for AGFIL scenario. A message
labeled Ti corresponds to the task i in Table 2.

432 P.R. Telang and M.P. Singh

Policy Holder Call Center Insurer

T12: pay insurance premium

report accident

T11: pay claim rec charge

Assessor Adjustor

req vehicle ins

T8: inspect vehicle

Insurer Assessor

send claim to assessor

T5: agree to repair

T14: pay assess fees

Policy Holder Repairer

request repair

T9: repair vehicle

T13: pay repair charge

Insurer

(a) (b)

(c) (d)

Fig. 16. Conforming and nonconforming agent interactions

• Fig. 16(a) shows an interaction between the insurer and the assessor. The
insurer sends a claim for assessment to the assessor. The assessor negotiates
the repair charge with the repairer, and brings about an agreement with
the repairer for vehicle repair. This satisfies commitment C5, and detaches
commitment C14. The insurer pays the assessment fees to the assessor, and
satisfies C14. Since, the insurer and the assessor satisfy their commitments,
they conform to the business model.

• Fig. 16(b) shows another example of conforming interaction between a policy
holder, a repairer, and the insurer. The policy holder provides claim infor-
mation, and requests the repairer for vehicle repair. The repairer finds the
claim to be valid, and repairs the vehicle. The repairer satisfies commitment
C9 and detaches commitment C13. By paying the repair charge, the insurer
satisfies commitment C13.

• Fig. 16(c) shows an example of nonconforming interaction between a policy
holder, the call center, and the insurer. The policy holder obtains insurance
by paying the requisite premium to the insurer. The insurer pays the call
center for providing claim reception service. Then the policy holder reports
an accident and detaches commitments C1, C2, and C4, assuming the claim
to be valid. But the call center does not gather the claim information, assign
a garage, or send the claim to the insurer. Therefore, the call center violates
commitments C1, C2, and C4, and does not conform to the model.

• Fig. 16(d) shows another example of a nonconforming interaction. The asses-
sor requests a vehicle inspection from the adjustor. The adjustor inspects the
vehicle, and detaches commitment C10. However, the assessor violates com-
mitment C10 by not paying the inspection fees to the adjustor, and therefore
fails to conform with the model.

Enhancing Tropos with Commitments 433

5 Discussion

This paper proposes an agent-oriented business metamodel based on Tropos. The
model uses the mental and social concepts of Tropos. It also uses the goal, plan,
and dependency modeling techniques from Tropos. The goal and plan modeling
are based on the means-end and AND-OR analyses.

Our approach offers two major benefits. One, the high-level metamodel cap-
tures the business relationships directly. Thus it shows how the business model
may be modified in the face of changing business needs. For example, the insurer
may decide to outsource claim handling (as in the above case) or may decide
to insource it. A business analyst can readily determine if the resulting business
model is sound. Likewise, each participant can evaluate a potential change to the
business model in terms of whether it would affect the commitments of which
it is the debtor or the creditor. Two, the high-level metamodel yields a natural
basis for reasoning about correctness. We can use the business relationships as a
basis for determining whether a particular enactment is conforming and whether
a particular way to generate an enactment is sound.

Tropos is a general purpose agent-oriented software engineering methodol-
ogy. It can be applied to a wide range of software applications, and it covers
all phases of software development. In contrast, our proposed methodology is
tailored specifically for business modeling.

A key difference between our model and Tropos is the concept of commitment.
In Tropos, a dependency means that a depender actor depends on a dependee
actor for executing a plan or achieving a goal. The concept of dependency does
not model what is required of the depender, and the dependee unconditionally
adopts the dependency. The debtor, creditor, and consequent of a commitment
are similar to the Tropos dependee, depender, and dependum, respectively. How-
ever, unlike a dependency, a commitment includes an antecedent that brings it
into full force. This enables modeling reciprocal relationships between economic
entities, which is lacking in the concept of dependency.

Andersson et al. [1] present what they call a “reference” ontology for business
models based on concepts from three approaches, namely, REA, BMO, and e3-
value. Table 3 compares their ontology concepts to the concepts from our model.
Their concepts of actor and actor type are similar to our agent and role, respec-
tively. A domain ontology captures resource, resource type, feature, and right in
our approach. Our task abstraction is similar to the concept of event without ad-
ditional classification into types. Andersson et al.’s notion of commitment is close
to our concept of commitment. Their concepts of exchange, transaction, contract,
agreement, and reciprocity are reflected as two or more commitments in our ap-
proach. Unlike our metamodel, Andersson et al.do not model actor goals.

Gordijn and Wieringa [5] propose e3-value business model. Unlike our meta-
model, e3-value is a semiformal model based on economic concepts, and is mainly
intended for profitability analysis. A value interface in e3-value aggregates re-
lated in and out value ports of an actor to represent economic reciprocity. This
concept is close to our concept of commitment, but it lacks similar semantics and
flexibility. For example, unlike a value interface, a commitment can be delegated.

434 P.R. Telang and M.P. Singh

Table 3. Proposed business metamodel related to Andersson et al.’s ontology

Reference ontology concept Business metamodel concept

Actor Agent

Actor type Role

A pair of transfers A pair of commitments

Resource, resource type, feature,
right

Defined in domain ontology

Event Task

Commitment Commitment

Exchange A pair of commitments

Transaction Set of commitments

Contract Set of commitments

Agreement Commitment

Reciprocity A pair of commitments

Claim Detached commitment

Due to this, an e3-value model may capture value exchange among two actors,
but during execution, the exchange and interaction may take place between two
different actors, and without a clear notion of delegation, it is not obvious how
the latter is selected.

Opera is a framework for modeling multi-agent societies [7], though from
the perspective of a single designer or economic entity. In contrast, we model
interactions among multiple entities. Opera’s concepts of landmark and contract
are close to our concepts of task and commitment, respectively. However, Opera
uses traditional obligations, which lack the flexibility of commitments. Unlike
obligations, a commitment can be manipulated as Sec. 2 describes.

Amoeba [4] is a process modeling methodology based on commitment proto-
cols. This methodology creates a process model in terms of fine-grained messages
and commitments. In contrast, our model is at a higher level of abstraction and
includes business goals and tasks in addition to commitments.

References

1. Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., Johannesson, P.,
Gordijn, J., Grégoire, B., Schmitt, M., Dubois, E., Abels, S., Hahn, A., Wangler,
B., Weigand, H.: Towards a reference ontology for business models. In: Embley,
D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer,
Heidelberg (2006)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

3. Browne, S., Kellett, M.: Insurance (motor damage claims) scenario. Document Iden-
tifier D1.a, CrossFlow Consortium (1999)

Enhancing Tropos with Commitments 435

4. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling and
evolution of cross-organizational business processes. ACM Transactions on Software
Engineering and Methodology, TOSEM (to appear, 2009)

5. Gordijn, J., Wieringa, R.: A value-oriented approach to E-business process de-
sign. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 390–403.
Springer, Heidelberg (2003)

6. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unifi-
cation of normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

7. Weigand, H., Dignum, V., Meyer, J.-J.C., Dignum, F.: Specification by refinement
and agreement: Designing agent interaction using landmarks and contracts. In:
Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS, vol. 2577, pp.
257–269. Springer, Heidelberg (2003)

	Enhancing Tropos with Commitments
	Introduction
	Metamodel and Methodology
	Step S1: Agent and Role Identification
	Step S2: Determine Goals and Dependencies
	Step S3: Determine Tasks and Dependencies
	Step S4: Identify Commitments

	Methodology Applied to a Real-World Case
	Insurance Claim Processing Scenario
	Step S1
	Step S2
	Step S3
	Step S4

	Verifying Agent Interactions
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

