
Noname manuscript No.

(will be inserted by the editor)

Generalized Framework for Personalized Recommendations

in Agent Networks

Chung-Wei Hang · Munindar P. Singh

Received: date / Accepted: date

Abstract An agent network can be modeled as a directed weighted graph whose
vertices represent agents and edges represent a trust relationship between the
agents. This paper proposes a new recommendation approach, dubbed LocPat,
which can recommend trustworthy agents to a requester in an agent network. We
relate the recommendation problem to the graph similarity problem, and define
the similarity measurement as a mutually reinforcing relation. We understand an
agent as querying an agent network to which it belongs to generate personalized
recommendations. We formulate a query into an agent network as a structure graph

applied in a personalized manner that reflects the pattern of relationships centered
on the requesting agent. We use this pattern as a basis for recommending an agent
or object (a vertex in the graph). By calculating the vertex similarity between the
agent network and a structure graph, we can produce a recommendation based on
similarity scores that reflect both the link structure and the trust values on the
edges. Our resulting approach is generic in that it can capture existing network-
based approaches merely through the introduction of appropriate structure graphs.
We evaluate different structure graphs with respect to two main kinds of settings,
namely, social networks and ratings networks. Our experimental results show that
our approach provides personalized and flexible recommendations effectively and
efficiently based on local information.

Keywords Agent mining, Personalized recommendation, Social networks, ratings
networks, Trust

A preliminary version of this manuscript, “Trust-Based Recommendation Based on Graph
Similarity,” was presented at the AAMAS 2010 Workshop on Trust in Agent Societies and
appears in the unpublished workshop notes. Sections 1, 2, and 3 of this manuscript are based
on that paper. This manuscript incorporates substantial revisions and extensions to the formal
models and techniques. The evaluation and results are new.

Chung-Wei Hang · Munindar P. Singh
North Carolina State University
Tel.: +1-919-515-5677
Fax: +1-919-515-7896
E-mail: {chang,singh}@ncsu.edu



2 Chung-Wei Hang, Munindar P. Singh

1 Introduction

An agent network is a directed weighted graph whose vertices represent agents,
edges represent trust relations, and weights represent trust values from the source
agent to the target agent. The resulting network in such a case is a social network.
We generalize the above further to settings where some of the vertices are agents
and others are objects such as products or services. In such a setting, an agent
would trust an agent or an object but an object does not trust anything. (Note
that a service that is sufficiently sophisticated to trust others is better treated as
an agent rather than an object.) The resulting network in such a case is a ratings
network.

We treat trust in the above (generalized) agent networks in a generic way here
to indicate any positive relationship conducive to trust in the real world. For exam-
ple, friendship, kinship, and business transactions among agents are appropriate
for our approach; similarly, an agent liking a product or service is also appropriate
for our approach.

An edge from vertex u to vertex v with trust value t means u trusts v to
the extent of t. A similar concept is commonly seen in the real world. Examples
include Facebook1 where vertices are people and edges mean friendship; citation
networks where vertices are papers (or their authors) and edges mean citations;
web graphs where vertices are webpages and edges are hyperlinks; FilmTrust [19]
where vertices are people and edges are movie taste ratings; and, Epinions [10]
and Advogato [21,34], where the edges are trust relations.

There are two main challenges in agent networks: (a) trust propagation and (b)
personalized recommendation. Trust propagation is about predicting the trustwor-
thiness of nonadjacent agents by combining trust values through distinct indirect
paths. To be more specific, trust propagation defines how trust values are ag-
gregated and propagated through an agent network. It can help agents estimate a
stranger’s trustworthiness without assuming previous experience with the stranger.
The other problem in agent networks is personalized recommendation. Given an
agent network and a requester agent v (a vertex), how may we recommend a trust-
worthy agent for v to interact with, personalized to v? Both the problem of trust
propagation [9,12,21,28,29,32–34] and personalized recommendation [6,10,14,31]
have drawn much attention from the research community.

A possible solution to personalized recommendation is to apply trust propa-
gation to estimate the trustworthiness of all agents that are not adjacent to the
requester v, and to recommend the agents that obtain high trust estimates. How-
ever, in order to do so, we need to calculate the propagated trust value for each
recommendation candidate. Thus, the above solution is not scalable because the
complexity of the trust propagation grows quickly as the number of agents in-
creases. Besides, trust propagation fails when there exist no indirect paths to the
recommendation candidates, for example, in bipartite datasets (Section 4).

Another possible solution is to recommend agents who share a number of com-
mon neighbors. For example, Facebook recommends friends based on the number
of mutual friends between people. More general solutions apply graph mining tech-
niques on the whole agent network to predict trust reputation values of nodes and
edges [10,14]. However, these approaches may suffer in a distributed setting. For

1 http://www.facebook.com/



Generalized Framework for Personalized Recommendations in Agent Networks 3

example, due to the scale of the environment or the privacy constraints, the agent
network may be implicitly distributed over heterogeneous agents. Processing such
information in a centralized manner is infeasible.

Agent mining provides a tempting idea to address above issues by integrating
agents and data mining [5]. Agent mining seeks to either use agents to mine large
data (agent-driven data mining), or to make agents more efficient based on the
knowledge extracted via data mining (data mining for agents) [7,17,26]. In this
paper, we propose an agent mining approach for agent-centered trust-based rec-
ommendation, where agents apply graph mining techniques on their local agent
networks to explore potential trustworthy interaction partners in a distributed,
personalized manner.

Our approach, dubbed LocPat, aims to provide personalized recommenda-
tions, i.e., to recommend trustworthy relationships by considering the link struc-
ture (e.g., the number of common neighbors). Instead of considering each potential
neighbor separately, LocPat processes the agent network around the requester
(i.e., the agent that requests a recommendation), thereby providing recommenda-
tions more efficiently. LocPat is based on graph similarity [3]. We show that by
calculating vertex similarity between the agent network and a specified structure

graph, the personalized recommendation problem can be translated into a graph
similarity problem, and the similarity scores can be viewed as a measurement of
how many good connections (i.e., with high trust values) the agents shares with
the requester. Besides, instead of predicting how the agent network evolves from
a network-level perspective, LocPat adopts a personalized or vertex -level perspec-
tive, providing personalized recommendations from the perspective of a requester.
The benefits of LocPat include (1) flexibility, (2) decentralized design, and (3)
efficiency. First, LocPat provides customized recommendations, meaning that we
can customize it with respect to any of a variety of heuristics. Second, LocPat

only requires a local subgraph of the whole network. Third, LocPat is based on
graph similarity, which has been shown to be computationally efficient [3].

Note that we can customize personalized recommendation by using different
structure graphs. In this paper, we study six basic structure graphs and eight vari-
ants of LocPat that facilitate making recommendations based on natural patterns
such as friend-of-a-friend (three variants), coupling, cocitation, and introduction.
However, LocPat is not limited to these structure graphs. It can be extended
to produce recommendations based on other criteria that can be expressed via
weighted directed graphs.

To summarize, our personalized recommendation takes an agent network and
a requester (who requests a recommendation in the agent network) as inputs,
and outputs a list of trustworthy agents for the requester to interact with as rec-
ommendation associated with estimated trust values. This paper makes four key
contributions to agent mining. First, LocPat provides personalized recommenda-
tions for a particular agent. Second, LocPat produces a recommendation based
not only on the network topology, but also on the trust values associated with the
edges. Third, LocPat is efficient. Besides, it considers only a small subgraph of the
agent network (selected in a personalized manner), and processes potential candi-
dates all at once. Fourth, LocPat enables customizing recommendations based on
a variety of criteria.

The rest of this paper is organized as follows. Section 2 surveys the state of
the art in related research areas. Section 3 presents the LocPat approach by first



4 Chung-Wei Hang, Munindar P. Singh

introducing the graph similarity measurement used in LocPat, and then demon-
strating how the personalized recommendation problem can be solved via graph
similarity. Section 4 evaluates our approach over four real, preexisting datasets.
Section 5 concludes with a discussion of the ramifications of our approach and
identifies some important future directions.

2 Related Work

We categorize the relevant literature into four areas: graph similarity, link prediction,
trust propagation, and recommender systems.

Graph Similarity

Most common vertex similarity measurements seek to estimate the structural equiv-

alence between two nodes within a graph—two nodes are similar if they share many
common neighbors [23]. Structural equivalence can be measured by, for example,
the Jaccard index, or Çosine similarity. Leicht et al. [20] generalize the idea of ver-
tex similarity that two nodes are similar if they occupy similar structural positions
without sharing common neighbors. Vertex similarity can be further extended to
measuring the structural similarity between vertices in different graphs. LocPat is
built on such a vertex similarity measurement that measures structural similarity
between a node in one graph and a node in another graph [3]. This measurement
considers not only the structural positions of nodes in two graphs but also the
weights on the edges. If we take a structural pattern as the first graph and an
agent network as the second graph, by looking at the vertex similarity scores, we
can construct an algorithm to locate two nodes in the agent network that are
connected via the most structural patterns.

There are other domain-specific graph similarity has been applied in various
settings. For example, Melnik et al. [24] present a graph similarity approach, called
similarity flooding, for database schema matching. Their approach takes two graphs
representing schemas as inputs, measures the vertex similarity between the inputs,
and outputs a mapping between the schemas as a subgraph consisting of similar
vertices. This work differs from ours in many ways except that both apply vertex
similarity between two graphs. First, Melnik et al.’s input graphs have no weights,
whereas LocPat takes edge weights into consideration. Second, their approach
takes two graphs as input, and calculates the similarity between them. LocPat

takes only one graph as input. Given that graph, LocPat calculates the similarity
between the graph and a separate structure graph, which reflects the features we
care about in the desired recommendation. Third, Melnik et al.’s approach requires
adjustment by humans, which LocPat does not.

Jeh and Widom [13] propose a domain-independent similarity measurement,
SimRank. SimRank measures the similarity between objects. It follows the intuition
that “two objects are similar if they are related to similar objects.” Jeh and Widom
first convert the graph into a vertex-pair graph, where each vertex represents a
vertex-pair in the original graph. The vertex-pair (a, b) is connected to the vertex-
pair (c, d) if a connects to c and b connects to d in the original graph. Then Jeh and
Widom calculate and propagate similarity score in the converted graph iteratively



Generalized Framework for Personalized Recommendations in Agent Networks 5

until convergence. Again, they only consider graphs with no edge weights, whereas
edge weights (i.e., trust values) play an important role in our approach.

Link Prediction

Link prediction for large networks studies how, given the current snapshot of a
network, to predict the edges that may be added in the future or those that are
already present in principle but happen to be unknown in the model. Liben-Nowell
and Kleinberg [22] survey various link prediction methods from graph theory and
social-network analysis. These methods measure the similarity between vertices
with respect to the network topology, assign a weight to each pair of vertices, and
generate a list sorted in decreasing order in terms of weights. Liben-Nowell and
Kleinberg evaluate these link prediction methods in five collaboration networks,
where the edges connect authors who have coauthored papers. They indicate that
the link prediction approaches can provide a network evolution model learned from
the observed data. This learned network evolution model can help predict how the
network is expected to evolve based on the network features. Unfortunately, Liben-
Nowell and Kleinberg’s approach considers only undirected graphs without edge
weights.

Kunegis and Lommatzsch [18] propose a general link prediction approach that
applies machine learning techniques to reduce the learning parameters for link
prediction, and then uses a curve-fitting method to estimate the parameters. Their
approach can be applied to undirected, weighted, or bipartite graphs. Kunegis
and Lommatzsch evaluate the approach on web graphs, trust networks, social
networks, citation networks, and collaboration networks. Note that, in general, the
link prediction methods provide network-level prediction, whereas LocPat focuses
on vertex -level recommendation. In other words, link prediction recommends links
for the whole network, but LocPat recommends trustworthy others for a particular
vertex.

Trust Propagation

Trust models have been widely studied in computer science [1]. Trust propagation
provides an alternative solution to personalized recommendation from a vertex-
level perspective. Recommendations can be made by first estimating the trust-
worthiness of all nonadjacent agents, and then listing the agents that obtain high
trust estimates. Hang et al. [12] model trust as a binary event. Their approach
may be considered a traditional friend-of-a-friend propagation. They define three
operators for concatenating trust along a path, aggregating trust from distinct
paths from the same witness, and selecting the most trustworthy path among all
witnesses, respectively. Advogato’s own approach, as specified by Levien [21], is
to adopt a network flow algorithm where the flow capacity of edges is determined
by their depth along the path. Appleseed, due to Ziegler and Lausen [34], applies
spreading activation, where trust energy is spread across the agent network. The
energy is divided when the agent has more than one successor.

Tavakolifard [31] studies trust management based on similarity. The similarity
here is referred to how similar two agents are in an agent network. Tavakolifard
argues traditional friend-of-a-friend propagation is insufficient to predict accurate
trust values. Her approach also considers the similarity between agents with respect



6 Chung-Wei Hang, Munindar P. Singh

to being either trustees or trusters. Tavakolifard’s intuition, which we agree with,
is that two agents are similar either if they trust the same agents or if they are
trusted by the same agents. Further, we agree that traditional friend-of-a-friend
propagation is merely one aspect behind general personalized recommendation.
LocPat is a general approach which can be customized by using any graphical
patterns, including patterns for friend-of-a-friend and similarity between agents.

Guha et al. [10] proposes trust propagation that considers structures including
transitive trust (friend-of-a-friend), trust coupling, cocitation, and transpose trust.
Their approach is more general than traditional trust propagation that only incor-
porates friend-of-a-friend. Their approach is more naturally applicable in settings
where we cannot rely on forward edges alone, for example, in bipartite networks.
However, their approach is limited to four predefined patterns, namely, direct prop-
agation (friend-of-a-friend), co-citation, transpose trust, and trust coupling. The
predictions made by Guha et al.’s approach rely on a heuristic they call majority

rounding, which is vaguely defined, and may not be applicable in a larger number of
situations (i.e., when no majority exists). LocPat also provides recommendation
with trust value predictions. LocPat enables an agent to use any structure graphs
it chooses to customize recommendations. We show the structure graphs that cap-
ture Guha et al.’s direct propagation, trust coupling, and cocitation patterns in
Section 4.

EigenTrust [14] calculates reputation of all peers in peer-to-peer networks.
EigenTrust propagates trust values through friend-of-a-friend relations. For each
peer, it aggregates trust values from all the other peers into a global reputation val-
ues. LocPat predicts a trust value of a peer from a personalized perspective. That
is, LocPat predicts trust values on nonexisting edges, whereas EigenTrust pre-
dicts reputation values on all nodes. Another difference is that LocPat considers
not only friend-of-a-friend pattern but also any patterns defined by the structure
graphs.

All these trust propagation methods (except EigenTrust) provide recommen-
dations for a particular pair of agents. Besides, these methods lack flexibility by
predefining the recommendation patterns. By contrast, LocPat does not require
agents to know a particular target to estimate its trustworthiness. Also, LocPat

provides a flexible, general framework that enables agents to customize recommen-
dation with proper recommendation patterns.

Recommender Systems

Now we discuss some related work of recommender systems. In general, recom-
mender systems suggest items to users. There are two main categories of rec-
ommender systems: content-based and collaborative filtering systems [30]. Content-
based approaches produce recommendations based on the similarity between items.
Collaborative filtering approaches recommend the items chosen by the users with
similar tastes. Of these, our problem setting is closer to collaborative filtering be-
cause (1) we do not examine the contents of the objects involved and (2) some of
the collaborative filtering approaches construct an agent network wherein vertices
are users and each edge represents how much similarity the source user expects
between his or her tasks and the tastes of the target user. For example, FilmTrust
[19] is a social network where edges represent the similarity of movie taste.



Generalized Framework for Personalized Recommendations in Agent Networks 7

Ben-Shimon et al. [2] propose a recommendation approach that is quite similar
to [12]. They construct a personal social network containing friend-of-a-friend (up
to six levels) of a user who needs recommendation. Ben-Shimon et al. then find
the sum of all the ratings of a particular item, discounted by the distance from
the rater to the user. They recommend the item if the sum is high. In contrast,
no items are involved in our approach. Thus, rather than computing the sum of
all ratings, LocPat considers the link structure and the trust values on the edges.
Fouss et al. [6] present a recommender system based on a similarity measurement
between the vertices of a directed weighted graph. They compute similarity based
on a Markov-chain random walk model, which assigns a transition probability to
each edge. The distance required for a random walker to travel from one vertex
to another defines the similarity between these two vertices. Although both Fouss
et al.’s approach and LocPat measure vertex similarity, these two approaches are
quite different. LocPat measures similarity between a node in the agent network
and a node in the structure graph, whereas Fouss et al. measure similarity between
two nodes within the given network. And, LocPat uses the similarity measurement
defined by a mutually reinforcing relation rather than the Markov-chain random
walk model.

3 Our Approach: LocPat

Now we introduce our approach, LocPat. LocPat is an agent mining approach
that provides personalized and customized recommendations based on local trust
relations in an agent network. LocPat recommends potential trustworthy links
by measuring the vertex similarity between nodes in the local agent network and
nodes in a structure graph. The structure graph customizes the recommendations
by defining how trustworthy links are located. LocPat also provides trust value
predictions of each recommendation based on a local rounding method. In Sec-
tion 3.1, we briefly review the graph similarity measurement applied in LocPat

and show an application of graph similarity based on a structure graph. In Sec-
tion 3.2, we begin by defining an agent network. Next, in Section 3.3, we formalize
LocPat by customizing the graph similarity measurement by devising a structure
graph that satisfies our claim for suggesting recommendations in an agent network.
Then we show examples of how trust values are considered, and how they affect
the recommendations produced. Section 3.4 explains how the similarity scores ob-
tained from LocPat are translated into trust value predictions.

3.1 Background: Vertex Similarity between Graphs

Blondel et al. [3] propose a vertex similarity measurement between graphs. Given
two directed graph GA with nA vertices, and GB with nB vertices, a similarity
matrix S is an nB × nA matrix where sij is the similarity score between vertex i

in GB and vertex j in GA. S can be calculated by a convergent iterative process,
where each Si is a matrix of the same dimensions as S:

Sk+1 =
BSkAT + BT SkA

‖BSkAT + BT SkA‖F

, (1)



8 Chung-Wei Hang, Munindar P. Singh

where A and B are the adjacency matrices of GA and GB , respectively; S0 has
all entries equal to 1; and ‖.‖F is the Frobenius norm of a matrix (i.e., the square
root of the sum of the squares of all matrix entries) [8]. The denominator normal-
izes each entry in Sk+1 to [0, 1]. The limit of this convergent process is S. The
convergence to error tolerance ǫ can be determined by

‖Sk+1 − Sk‖F < ǫ. (2)

For example, Figure 1 shows the similarity matrix between two graphs: GA

and GB . GA contains two vertices: A1 has out-degree of one, and A2 has in-degree
of one. After measuring the vertex similarity with GB , one can observe that B1,
which has the largest out-degree, is the most similar vertex to A1. B4, which
has the largest in-degree, has the highest similarity score to A2. Notice that the
greater the out-degree a vertex has the higher is its similarity to A1. An analogous
observation applies to the in-degree and A2. Hence, we conclude that by comparing
the similarity score to GA, we can find the vertex that connects to the most others,
and to which most others connect.

A1 A2

Graph GA

B1

B2

B3

B4

Graph GB

A1 A2

B1 0.5774 0
B2 0.2887 0.2887
B3 0.2887 0.2887
B4 0 0.5774

Fig. 1 Example of two graphs, GA and GB , and their similarity matrix. The most similar
vertex to A1 is B1 (largest out-degree); the most similar vertex to A2 is B4 (largest in-degree).

The idea behind the similarity measurement is the mutually reinforcing relation,
which is widely applied in web search [4,16], and reputation management in peer-
to-peer systems [14]. To illustrate the mutually reinforcing relation, we take GA

and GB in Figure 1 as an example. For each vertex Bi in GB , we associate two
similarity scores, say si1 (for A1) and si2 (for A2), each of which corresponds to
the similarity between one vertex in GA and Bi. Both scores are initialized to
one. Then the scores are updated iteratively according to the mutually reinforcing
relation:

{

si1 =
∑

j:(i,j)∈EB
sj2

si2 =
∑

j:(j,i)∈EB
sj1,

(3)

where EB is the set of edges of GB . This mutually reinforcing relation says a vertex
is similar to A1 if it connects to many vertices that are similar to A2, whereas a
vertex is similar to A2 if many vertices similar to A1 connect to it. The update
process is iterated. The scores si1 and si2 mutually reinforce each other. Blondel
et al. show that this update process converges to a state that corresponds to the
similarity scores between A1 and A2, and Bi.

Now let us extend the similarity scores to all vertices in GB . Suppose s1 and
s2 are the similarity scores to A1 and A2, respectively, for all Bi in GB . We can
rewrite Equation 3 as a recursive relation:

Sk+1 =

[

s1

s2

]

k+1

=

[

0 B

BT 0

][

s1

s2

]

k

= Sk, (4)



Generalized Framework for Personalized Recommendations in Agent Networks 9

where B is the adjacency matrix of GB and k = 0, 1, . . . is the number of iterations.
Blondel et al. further extend GA to an arbitrary graph and generalize Equation 4
to Equation 1, where A is the adjacency matrix of GA.

Notice that we can view GA as a query because it serves as the basis for selecting
appropriate vertices from GB . For this reason, GA is termed the structure graph. By
using different structure graphs, we can apply vertex similarity to solve different
problems and applications. Blondel et al. show that the web search algorithm,
HITS [16], which searches for web pages based on a query, is an application of
vertex similarity. HITS ranks web pages based on an authority score and a hit

score. A web page is a good authority if there are many hits that link to it. In
contrast, a good hit is a web page that points to many good authorities. The
HITS algorithm is a special case of the above that computes the vertex similarity
between the graph induced from the web and the graph GA of Figure 1.

3.2 Personalized Recommendation

An agent network is a graph whose vertices represent entities (agents or objects)
and edges represent trust relations between agents and entities. This is a general-
ization of the model of Yu and Singh [33]. A trust relation from agent u to entity
v indicates how much trust u places in v. Thus, an edge in an agent network is
associated with a trust value as its weight. Depending on the trust models, a trust
value can be a single scalar, a Beta distribution, or follow another representation.
The trust relations can be obtained from direct interaction or from a referral via
trust propagation [12]. For example, a social network such as Facebook is an agent
network where all edges are modeled as having the same trust values. For simplic-
ity, here we treat a trust value as a single scalar. Other trust representations can
be translated into a scalar, for example, a probability.

Definition 1 An agent network is a directed weighted graph G(V, E), where V is
a finite set of agents {v1, . . . , vn}, and E is a set of trust relations {e1, . . . , em}. A
weighted adjacency matrix A of an agent network G(V, E) of n agents is an n× n

matrix where the entry aij is the trust value vi places in vj , where vi, vj ∈ V .

Each of the edges em in G is associated with a trust value. Instead of using
a traditional adjacency matrix, whose entries are 0 or 1, we define a weighted

adjacency matrix, in which the entries are real numbers. In this manner, a weighted
adjacency matrix generalizes over an adjacency matrix for multigraphs (permitted
to have multiple edges between the same vertices), whose entries are nonnegative
integers. The entries in the weighted adjacency matrix represent the trust values
associated with the corresponding edges.

We now formalize our personalized recommendation approach. Given an agent
network G(V, E), to find recommendations for agent v, we construct a neighborhood

network for v as G ′(V ′, E′) where v ∈ V ′, V ′ ⊆ V , and E′ ⊆ E are all the trust
relations involving the vertices in V ′. The reason we take a (typically, proper)
subgraph of G including the neighborhood of v is that were we to consider the
whole G, the result would not necessarily be a recommendation for the agent v but
represent an amorphous notion of a global recommendation. Instead, the agents
with high similarity scores would simply be those similar to w in GS . That is,



10 Chung-Wei Hang, Munindar P. Singh

these agents are connected to by many other agents that are connected to by
many others. We revisit the choice of V ′ below.

We define a structure graph GS with a query vertex w. The structure graph
GS defines the pattern that matters in the recommendation. The query vertex w

defines the vertex we want to recommend in the structure graph. For example,
as mentioned in Section 3.1, the HITS algorithm [16] uses the GA of Figure 1 as
the structure graph, which is interpreted as hubs (A1) connecting to authorities
(A2). To recommend hubs, G1 is used as the structure graph and A1 is the query
vertex. To recommend authorities, G1 and A2 are used as the structure graph and
the query vertex, respectively. Then we calculate the similarity matrix between
the structure graph GS and the weighted adjacency matrix A′ of G ′. The vertices
that are not neighbors of v and have high similarity scores to w are recommended.

The choice of GS (with w) depends on the context. Once GS is chosen, V ′ can
be constructed accordingly. We show some examples in Sections 3.3 and 4. We can
summarize the main steps of the LocPat approach as follows:

1. Let an agent be v in an agent network G(V, E) (v ∈ V ).
2. Define the structure graph GS and a query vertex w in GS .
3. Construct G ′(V ′, E′), where V ′ ⊆ V contains v; E′ ⊆ E contains all trust

relations between (u′, v′) ∈ V ′. The choice of V ′ is determined by the context.
4. Calculate the similarity matrix S between GS and the adjacency matrix A′ of

G ′ using Equation 1.
5. Recommend the vertices that are not neighbors of v but obtain high similarity

scores to vertex w in GS .

3.3 A Simple Example on a Social Network

Consider the recommendation problem in agent networks: Given a snapshot of an
agent network, how can we recommend (i.e., predict) a trustworthy agent to an
agent v? Based on the obvious intuition, we claim a good recommendation for v

is an agent to whom many of v’s neighbors connect. Let us start with a simple
case where all edges have the same trust values 1 (i.e., no weights). For example,
Figure 2 (left) shows an agent network G, which contains the neighbors of the
neighbors of agent B1. Among all the agents except B1’s neighbors B2 and B3, B4

is the most natural candidate, because two neighbors of B1 connect to it. Consider
the structure graph GS in Figure 3, which illustrates our claim of producing good
recommendations: a friend (A3) of A1’s friend (A2) is potentially A1’s friend (i.e.,
a good recommendation for v is an agent to whom many of v’s neighbors connect).
Figure 2 (right) shows the similarity matrix between GS and G. The similarity
score between A3 and vertices indicates how the link structure of the vertices is
similar to the link structure of A3.

Now we consider the general case where each of the edges in G is associated with
a trust value. Figure 4 shows an example of an agent network G ′, and the similarity
matrix between the structure graph GS in Figure 3 and G ′. G ′ shares the same
topology as G in Figure 2, except G ′ has trust values as its edge weights (rather
than 1). Unlike the outcome in Figure 2, although B5 has fewer connections with
B1’s neighbors than B4, B5 has the highest similarity score because the trust value
of its only connection is much stronger than the trust values of B4’s connections.
Note that B3 (not considered as a recommendation because it is already a neighbor



Generalized Framework for Personalized Recommendations in Agent Networks 11

B1

B2

B3

B4

B5

B6

A1 A2 A3

B1 0.43 0.09 0
B2 0.31 0.36 0.05
B3 0.08 0.48 0.23
B4 0 0.13 0.43
B5 0 0.03 0.29
B6 0.02 0.10 0

Fig. 2 Example of an agent network with no edge weights specified (assume each edge weight
is 1), and its similarity matrix with the structure graph GS in Figure 3. Among friends of B1’s
friends (i.e., B4 and B5), B4 is the best recommendation with the highest similarity score with
A3.

A1 A2 A3

Requester v Query w

Fig. 3 Structure graph GS . Double circled A1 indicates the requesting vertex v and bold A3

indicates the query vertex w.

of B1) also has a high similarity score because B2 (B1’s neighbor) connects to it
with a high trust value.

B1

B2

B3

B4

B5

B6

1.0

4.5

2.8

8.6

5.5

4.9

9.0

A1 A2 A3

B1 0.40 0.13 0
B2 0.40 0.34 0.07
B3 0.01 0.48 0.35
B4 0 0.03 0.13
B5 0 0 0.36
B6 0 0.19 0

Fig. 4 Example of an agent network where edge weights represent trust values, and its similar-
ity matrix with the structure graph GS in Figure 3. Unlike the result in Figure 2, although both
of B1’s friends connect B4, B5 is the best recommendation because of its strong connection
with B3.

3.4 Personalized Scaling and Rounding

THe graph similarity measurement produces relative scores. We compare these
scores to distinguish good recommendations from bad ones. However, these scores
cannot be used as predictions because they are not in the same scale as the trust
values in the agent network. For example, in FilmTrust [19], trust values are inte-
gers from 1 to 10, whereas the similarity scores are normalized numbers from 0 to



12 Chung-Wei Hang, Munindar P. Singh

trust values

%

10%0% 20% 30%40%

1 2 3 4 5

recommendation candidates sorted by similarity scores

2 3 4 5

d
is

t
r
ib

u
t
io

n

Fig. 5 Similarity scores are rounded to trust values based on the requester’s trust value
distribution.

1. Without properly scaling to provide trust value prediction, the applicability of
this approach would be limited.

To solve this problem, we provide a rounding approach to locally map the sim-
ilarity scores to trust values. Following the decentralized and personalized nature
of our approach, here, by locally we mean rounding from a requester’s perspec-
tive. Given a requester v, a structure graph, and its corresponding neighborhood
network, our approach suggests a list of candidates with similarity scores. Our
assumption is that the distribution of the trust values that v places in the can-
didates would naturally follow the distribution of v’s trust values placed in its
known neighbors. One benefit of doing so is the rounded trust values reflect the
requester’s preference. For example, a picky critic would hardly ever provide a
high rating, whereas an easy-going reviewer may always give the highest possible
rating. Another benefit is this approach only requires local information.

Figure 5 illustrates our rounding approach. As an example, consider the trust
values the requester places in its neighbors. Suppose there are five integral trust
values 1, 2, 3, 4, and 5 with the distribution of 0%, 10%, 20%, 40%, and 30%,
respectively. We take the recommendation candidates located by LocPat and sort
them from low to high based on the similarity scores. Then we assign trust values
based on the distribution. That is, the first 10% candidates are assigned to trust
value 2. The following 20% are assigned to trust value 3, and so on. Specifically,
we make the computed trust values follow the same distribution as the original
edge data. Note that the rounding process is a classification problem. We can plug
in other supervised classification methods into our approach if necessary.



Generalized Framework for Personalized Recommendations in Agent Networks 13

Table 1 Summary of the datasets used in our experiments.

Category Social network Ratings Networks

Name FilmTrust2 Advogato3 MovieLens4 Jester5

Graph Directed Directed, Bipartite
Type People 7→ People People 7→ Items
Goal Recommend people Recommend items
Vertices 528 2, 703 943 2, 493
Edges 1, 233 26, 653 1, 682 61, 743
Weights [1, 10] {1, 2, 3} [1, 5] [−10, 10]

4 Experimental Evaluation

As Table 1 summarizes, we evaluate LocPat via experiments with two kinds of
datasets: social networks and ratings networks. Note that we treat edge weights as
trust values in a linear manner, i.e., higher ratings indicate greater trust. Other,
more sophisticated translation approaches can be also used. For example, Hang et
al. [12] introduced the Weber-Fechner transformation for trust propagation, and
it would be interesting to consider it here.

Social Network Datasets

We consider two social network datasets. FilmTrust [19] is a social network where
edges represent trust relations in terms of movie taste similarity. Advogato [21] is
an agent network where the vertices are people and the edges are trust relations.
In these datasets, the goal is to recommend potential friends from strangers, as
described in Section 3.3.

Ratings Network Datasets

In ratings network datasets, there are two sets of vertices, representing people
and items, respectively. A ratings network dataset forms a bipartite graph. More
precisely, there are only edges from people to items. An edge from a person to an
item indicates that the person likes or dislikes the item. Our goal is to recommend
items for a particular vertex v (a person).

We consider two ratings network datasets. MovieLens [25] is a movie recom-
mendation dataset where the vertices are users and movies, and the edges from
users to movies indicate how a user likes a movie. Jester [27] is a joke recommen-
dation dataset where the vertices are people and jokes, and the edges from people
to jokes indicate how a person rates a joke. If a person has not read a joke, there
is no edge between them.

2 http://trust.mindswap.org
3 http://www.advogato.org/
4 http://www.grouplens.org/node/73
5 http://eigentaste.berkeley.edu/dataset/



14 Chung-Wei Hang, Munindar P. Singh

4.1 Experimental Setup

We compare LocPat with Guha [10], EigenTrust [14], and Fouss [6]. The dif-
ferences between these approaches are described in Section 2. In our comparison,
all the scores produces by these three approaches are translated into trust value
predictions using our rounding method (Section 3.4).

In our experiment, we devise eight variants of our approach with six struc-
ture graphs. Table 2 enumerates the six structure graphs, where a double circle
indicates the requesting vertex and a bold circle indicates the query vertex w. We
collectively term the transitive trust structure graphs Foaf for friend-of-a-friend.
Foaf2, Foaf3, and Foaf4 capture transitive trust with depths of two, three, and
four, respectively. We dig no deeper than four levels because it is quite well-known
(and has been confirmed by Katz and Golbeck [15] among others) that people tend
to place more trust in shorter paths, even though considering deeper paths can take
more candidates into account. We return to this point in Section 4.2. Coupling

considers the situation where a party who trusts the same items can be trustwor-
thy. A real-world example is that people tend to trust a reviewer who recommends
products that they like very much. Cocite is similar to the scenario of Coupling

except Cocite recommends the products the reviewer rates very high but which
the agent has never used. Coupling recommends a reviewer whereas Cocite rec-
ommends a product. Intro represents the case where the parties trusted by my
truster can be trustworthy. For example, one of your colleagues may introduce you
to another professional colleague, because the introducer knows both you and the
other colleague well. FoafAll is a hybrid variant that adds the weighted similarity
scores from Foaf2 (0.6 weight), Foaf3 (0.3 weight), and Foaf4 (0.1 weight). The
LocPat variant we compare with Guha, EigenTrust, and Fouss is a variant that
sums the scores from FoafAll, Coupling, Cocite, and Intro with equal weights.

For each user in a dataset, we apply all approaches to find recommendation
candidates and predict their trust values based on the training set. This leads us
to two evaluation criteria.

Error. The error is the difference between the predicted trust value and the actual
value in the testing set. We summarize the errors as the root mean square
error (RMSE), and calculate the mean and standard deviation of RMSE over
all users.

F-measure. A user is covered in a recommendation approach if a recommendation
candidate for this user exists in the testing set, the recommendation locates it.
And, the recall of an approach is simply the fraction of users in the test set who
are covered by that approach. Given the recommendation list and the testing
set of a user, the average precision is calculated by the average of the rank in
testing set divided by the rank in the recommendation list. The precision of an
approach is the mean average precision among all users. Then the F-measure

is calculated by
2 × recall × precision

recall + precision
.

We evaluate our approach by three-fold cross validation. (In MovieLens, we
use the five-fold cross validation data provided by default.) For each dataset, we
divide the edges into three disjoint sets of equal size. We iterate over each edge



Generalized Framework for Personalized Recommendations in Agent Networks 15

Table 2 Our approach captures existing approaches merely through the specification of suit-
able structure graphs. This table shows the structure graphs used in our evaluation.

Name Structure Description

Foaf2

A1

A2

A3

w

A friend of a friend is trustworthy (2
levels)

Foaf3

A1 A2

A3

w

A4

A friend of a friend of a friend is trust-
worthy (3 levels)

Foaf4

A1 A2

A3

w

A4A5

A friend of a friend of a friend of a
friend is trustworthy (4 levels)

Coupling

A1

A2

A3

w

A party who trusts the same target as
I do is trustworthy

Cocite

A1 A2

A3

w

A4

The target that is trusted by a party
who likes the same things as I like is
trustworthy

Intro

A1

A2

A3

w

A party who is trusted by a party who
trusts me is trustworthy

set. At each iteration, we take each set as a testing set, and the remaining two
sets as a training set. The training and testing sets are 67% and 33% of all edges,
respectively. We apply all the approaches to the agent network of the training set,
locate the recommendations, predict trust values of each recommendation, and
validate results on the testing set. We calculate the error and F-measure for each
iteration, and average over the three iterations.



16 Chung-Wei Hang, Munindar P. Singh

LOCPAT GUHA EIGENTRUST FOUSS
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
A

ve
ra

ge
 p

re
di

ct
io

n 
er

ro
r 

R
M

S
E

 (
on

 a
 1

0−
po

in
t s

ca
le

)

Fig. 6 Average prediction error RMSE in FilmTrust.

4.2 Results and Observations

Now we show our experimental results in social networks (Section 4.2.1) and rat-
ings networks (Section 4.2.2), and discuss the size of the neighborhood networks
considered by LocPat and local rounding compared with global rounding (Section
4.2.3). The efficiency of all approaches are studied in Section 4.2.4.

4.2.1 Social Networks

Figure 6 and 7 show the error and the F-measure of all approaches in FilmTrust.
All approaches provide competitive predictions. LocPat yields the most accurate
prediction and the best F-measure. We observe that LocPat produces the best pre-
cision but the worst recall because it only considers local neighborhood networks.
The considered local neighborhood networks cover around 75% of the testing set.
Guha, EigenTrust, and Fouss all takes the whole network into account, yielding
recall around 85%, 80%, and 100%, respectively. LocPat yields the best precision,
followed by Guha, EigenTrust, and Fouss.

Figure 8 and 9 show the error and the F-measure of all LocPat variants in
FilmTrust. Most variants yield similar accuracy as LocPat. Besides the Foaf

family of patterns, Coupling is quite effective in terms of low error. Regarding
recall and precision, Foaf2, Coupling, and Intro have the highest precision, al-
though their recall is lower than others. The rest of the Foaf family achieves
better recall by considering larger neighborhood networks, though with the pre-



Generalized Framework for Personalized Recommendations in Agent Networks 17

LOCPAT GUHA EIGENTRUST FOUSS
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
F

−
M

ea
su

re

Fig. 7 F-Measure in FilmTrust.

cision compromised. Coupling and Intro, which are not captured by traditional
trust propagation, provide effective recommendations as well.

Figure 10 and 11 compare the error and the F-measure of all approaches in Ad-
vogato. All approaches yield almost the same prediction accuracy. All approaches
have near perfect recall. LocPat produces the best F-measure with the best pre-
cision. Fouss yields the worst precision, followed by Guha and EigenTrust.

Consider the error and the F-measure of LocPat variants in Advogato. Figure
12 shows that almost all of the variants are effective in terms of prediction accuracy.
Figure 13 shows the F-measure of the LocPat variants in Advogato. Similarly to
the case for FilmTrust, Foaf2, Coupling, and Intro yield the highest F-measure
with the highest precision. Other variants have higher recall, though with their
precision compromised. Differently from the case for FilmTrust, Cocite is quite
effective in Advogato.

4.2.2 Ratings Networks

In ratings networks, edges only exist from people to items. Our goal is to recom-
mend items to people. The friend-of-a-friend type of approaches (e.g., EigenTrust

and Foaf family) are not applicable in this case because there are no paths of
length two. Note that Coupling and Intro fail to make a contribution either, be-
cause Coupling is used to recommend people to people, and Intro is used when
there exist edges connecting to people. Cocite is the only applicable pattern in
ratings networks, because it captures the idea that the items trusted by the person
who trusts the same items as you are also trustworthy. In other words, Cocite



18 Chung-Wei Hang, Munindar P. Singh

FOAF2 FOAF3 FOAF4 FOAFALLCOUPLING COCITE INTRO LOCPAT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
A

ve
ra

ge
 p

re
di

ct
io

n 
er

ro
r 

R
M

S
E

 (
on

 a
 1

0−
po

in
t s

ca
le

)

Fig. 8 Average prediction error RMSE of LocPat variants in FilmTrust.

FOAF2 FOAF3 FOAF4 FOAFALLCOUPLING COCITE INTRO LOCPAT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
−

M
ea

su
re

Fig. 9 F-Measure of LocPat variants in FilmTrust.



Generalized Framework for Personalized Recommendations in Agent Networks 19

LOCPAT GUHA EIGENTRUST FOUSS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

ve
ra

ge
 p

re
di

ct
io

n 
er

ro
r 

R
M

S
E

 (
on

 a
 3

−
po

in
t s

ca
le

)

Fig. 10 Average prediction error in Advogato.

LOCPAT GUHA EIGENTRUST FOUSS
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

F
−

M
ea

su
re

Fig. 11 F-Measure in Advogato.



20 Chung-Wei Hang, Munindar P. Singh

FOAF2 FOAF3 FOAF4 FOAFALLCOUPLING COCITE INTRO LOCPAT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
A

ve
ra

ge
 p

re
di

ct
io

n 
er

ro
r 

R
M

S
E

 (
on

 a
 3

−
po

in
t s

ca
le

)

Fig. 12 Average prediction error of LocPat variants in Advogato.

FOAF2 FOAF3 FOAF4 FOAFALLCOUPLING COCITE INTRO LOCPAT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
−

M
ea

su
re

Fig. 13 F-Measure of LocPat variants in Advogato.



Generalized Framework for Personalized Recommendations in Agent Networks 21

LOCPAT GUHA EIGENTRUST FOUSS
0

0.5

1

1.5
A

ve
ra

ge
 p

re
di

ct
io

n 
er

ro
r 

R
M

S
E

 (
on

 a
 5

−
po

in
t s

ca
le

)

Fig. 14 Average prediction error in MovieLens.

locates people who have similar interests as you, and then recommends the items
those people trust to you.

Figure 14 and 15 show the error and the F-measure of all approaches in Movie-
Lens. Guha is competitive against LocPat in terms of prediction error. Fouss

produces the worst prediction. In terms of F-measure, all approaches have perfect
recall. LocPat yields the best precision, leading to the best F-measure. Eigen-

Trust is not applicable in ratings networks. Figure 16 and 17 show similar results
in Jester, where LocPat outperforms Guha and Fouss.

4.2.3 Neighborhood Networks and Rounding

Figure 18 plots the percentage of edges in the neighborhood network considered
by variants of LocPat in FilmTrust. We average the percentage over all users.
FoafAll and LocPat on average consider about 11% of the edges. Cocite uses
9%. Coupling and Intro consider only around 2%. This result shows that Loc-

Pat provides competitive recommendations while considering only a small local
neighborhood network. Note that the percentage of edges is not necessarily corre-
lated to the coverage and prediction error. For example, FoafAll considers 10% of
edges and produces best prediction and average coverage, whereas Cocite uses 9%
of edges but yields bad prediction and low coverage. However, depending on the
network, there exist cases where the local neighborhood network contains almost
all edges. For example, in MovieLens, the local neighborhood networks considered
by Cocite contain on average 96% of the edges. This is why Cocite reaches near
perfect coverage in MovieLens.



22 Chung-Wei Hang, Munindar P. Singh

LOCPAT GUHA EIGENTRUST FOUSS
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
F

−
M

ea
su

re

Fig. 15 F-Measure in MovieLens.

LOCPAT GUHA EIGENTRUST FOUSS
0

1

2

3

4

5

6

7

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r 
R

M
S

E
 (

on
 a

 2
0−

po
in

t s
ca

le
)

Fig. 16 Average prediction error in Jester.



Generalized Framework for Personalized Recommendations in Agent Networks 23

LOCPAT GUHA EIGENTRUST FOUSS
0

0.05

0.1

0.15

0.2

0.25
F

−
M

ea
su

re

Fig. 17 F-Measure in Jester.

FOAFALL COUPLING COCITE INTRO LOCPAT
0

2

4

6

8

10

12

A
ve

ra
ge

 %
 o

f e
dg

es
 in

 n
ei

gh
bo

rh
oo

d 
ne

tw
or

ks

Fig. 18 Average percentage of edges considered by variants of LocPat in FilmTrust.



24 Chung-Wei Hang, Munindar P. Singh

FOAF2 FOAF3 FOAF4 FOAFALL GUHA COUPLING COCITE INTRO LOCPAT
0

0.5

1

1.5

2

2.5

3

Local rounding (left) vs. global rounding (right)

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r 
(o

n 
a 

10
−

po
in

t s
ca

le
)

 

 

Fig. 19 Average prediction error with local and global rounding in FilmTrust.

Figure 19 compares the local and global rounding heuristics in FilmTrust.
Global rounding assigns trust values based on the trust value distribution of the
whole dataset, whereas our proposed local rounding considers only distribution
of the trust values given by the requester. Our result shows local rounding dom-
inates global rounding in terms of the prediction error, indicating local rounding
can better reflect personal tastes. Also, local rounding is better compatible with
decentralized setting because it requires knowledge of only local trust values.

4.2.4 Efficiency

Figure 20 shows the running time of all approaches. For LocPat variants, we
plot the average running among all users. For Guha, EigenTrust, and Fouss,
the running time for each user is identical because for each user, these approaches
consider the whole network. EigenTrust is the most efficient approach, followed by
LocPat and Fouss. Guha is the worst because of its slow convergence. EigenTrust

requires only matrix-vector multiplication because it only calculates one value for
each node. The other approaches require matrix multiplication to calculate one
value for each pair of nodes.



Generalized Framework for Personalized Recommendations in Agent Networks 25

FOAFALLCOUPLING COCITE INTRO LOCPAT GUHA EIGENTRUSTFOUSS
0

0.5

1

1.5

2

2.5

3

3.5

4
A

ve
ra

ge
 r

un
ni

ng
 ti

m
e 

(s
ec

)

Fig. 20 Running time in FilmTrust.

Summary

In terms of effectiveness, our experiments show that LocPat produces effective
recommendations in four independently developed datasets involving real users.
LocPat outperforms (better or similar) three other approaches. Especially consid-
ering that LocPat only requires a local neighborhood network, whereas the other
approaches need the whole graph as input. We also show that the proposed local
rounding provides more accurate predictions than the global heuristics. In terms of
flexibility and applicability, we show that LocPat can be devised as different vari-
ants by using different structure graphs. By using appropriate variants, LocPat

can provide comprehensive recommendations and predictions in social networks
and ratings networks, for which traditional friend-of-a-friend propagation is not
applicable. We also show that LocPat is efficient. Another contribution is that
through these variants, LocPat can guide agents to understand the underlying
relationships in a certain dataset and to use the appropriate structure graphs for
generating desirable recommendations. For example, in social networks, besides
the widely used idea of friend-of-a-friend, LocPat suggests using the coupling and
introduction patterns. In ratings networks, LocPat with cocitation is the most
appropriate pattern for recommending items to people.

5 Conclusions

We present LocPat, a personalized recommendation approach that provides rec-
ommendations to a requester in an agent network. Our approach is built on a



26 Chung-Wei Hang, Munindar P. Singh

vertex similarity measurement between graphs. The similarity measurement is de-
fined by a mutual reinforcing relation. We show that by calculating the similarity
between the agent network and a structure graph, we can view the similarity score
as an indicator of how much the agent can be trusted by the requester. We also
provide a simple rounding method that can translate similarity scores into trust
value predictions. The LocPat approach offers important benefits over traditional
approaches. First, LocPat provides flexible personalized recommendation from the
perspective of an agent. Second, LocPat supports customization through the def-
inition of suitable structure graphs. Third, LocPat only requires a local subgraph
of the agent network. Fourth, LocPat is computationally efficient.

A possible future direction is to study how LocPat can be extended to pro-
vide different recommendations. For example, Hang and Singh [11] design a per-
sonalized service composition model for estimating trustworthiness of the subser-
vices underlying a composition. However, their model fails to provide a mechanism
for selecting the subservices—recommending compositions. Based on LocPat, we
should be able to construct a structure graph that satisfies their scenario.

Acknowledgements This work is supported by the U.S. Army Research Office (ARO) under
grant W911NF-08-1-0105 managed by NCSU Secure Open Systems Initiative (SOSI), and by
the Army Research Laboratory in its Network Sciences Collaborative Technology Alliance
(NS-CTA) under Cooperative Agreement Number W911NF-09-2-0053.

References

1. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Journal of
Web Semantics 5(2), 58–71 (2007)

2. Ben-Shimon, D., Tsikinovsky, A., Rokach, L., Meisels, A., Shani, G., Naamani, L.: Rec-
ommender system from personal social networks. In: Proceedings of the 5th Atlantic Web
Intelligence Conference, pp. 47–55. Springer Berlin / Heidelberg (2007)

3. Blondel, V.D., Gajardo, A., Heymans, M., Senellart, P., Dooren, P.V.: A measure of sim-
ilarity between graph vertices: Applications to synonym extraction and web searching.
SIAM Review 46(4), 647–666 (2004)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Computer
Networks and ISDN Systems 30(1–7), 107–117 (1998)

5. Cao, L., Gorodetsky, V., Mitkas, P.A.: Agent mining: The synergy of agents and data
mining. IEEE Intelligent Systems 24(3), 64–72 (2009)

6. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similar-
ities between nodes of a graph with application to collaborative recommendation. IEEE
Transactions on Knowledge and Data Engineering 19(3), 355–369 (2007)

7. Giannella, C., Bhargava, R., Kargupta, H.: Multi-agent systems and distributed data
mining. In: M. Klusch, S. Ossowski, V. Kashyap, R. Unland (eds.) Cooperative Information
Agents VIII, Lecture Notes in Computer Science, vol. 3191, pp. 1–15. Springer Berlin /
Heidelberg (2004)

8. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3 edn. The Johns Hopkins University
Press (1996)

9. Gray, E., Seigneur, J.M., Chen, Y., Jensen, C.: Trust propagation in small worlds. In: Pro-
ceedings of the 1st International Conference on Trust Management, pp. 239–254. Springer-
Verlag, Berlin, Heidelberg (2003)

10. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In:
WWW: Proceedings of the 13th International Conference on World Wide Web, pp. 403–
412. ACM Press (2004)

11. Hang, C.W., Singh, M.P.: Trustworthy service selection and composition. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS) 6(1), 5:1–5:17 (2011)



Generalized Framework for Personalized Recommendations in Agent Networks 27

12. Hang, C.W., Wang, Y., Singh, M.P.: Operators for propagating trust and their evaluation
in social networks. In: Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), vol. 2, pp. 1025–1032. IFAAMAS, Budapest
(2009)

13. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 538–543. ACM Press, New York, NY, USA (2002)

14. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust algorithm for repu-
tation management in P2P networks. In: WWW: Proceedings of the 12th International
Conference on World Wide Web, pp. 640–651. ACM Press (2003)

15. Katz, Y., Golbeck, J.: Social network-based trust in prioritized default logic. In: Pro-
ceedings of the 21st National Conference on Artificial Intelligence (AAAI), pp. 1345–1350.
AAAI Press, Menlo Park (2006)

16. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM
46(5), 604–632 (1999)

17. Klusch, M., Lodi, S., Moro, G.: The role of agents in distributed data mining: Issues and
benefits. In: Proceedings of the IEEE/WIC International Conference on Intelligent Agent
Technology, pp. 211–217. IEEE Computer Society, Washington, DC, USA (2003)

18. Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link prediction.
In: Proceedings of the 26th Annual International Conference on Machine Learning, pp.
561–568. ACM Press, New York, NY, USA (2009)

19. Kuter, U., Golbeck, J.: Using probabilistic confidence models for trust inference in web-
based social networks. ACM Transactions on Internet Technology (TOIT) 10(2), 1–23
(2010)

20. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Physical Review
E 73, 026,120 (2006)

21. Levien, R.: Attack resistant trust metrics. Ph.D. thesis, UC Berkeley (2003)
22. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal

of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)
23. Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. Journal

of Mathematical Sociology 1, 49–80 (1971)
24. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching

algorithm and its application to schema matching. In: Proceedings of the 18th Interna-
tional Conference on Data Engineering, pp. 117–128. IEEE Computer Society, Washington,
DC, USA (2002)

25. Miller, B.N., Albert, I., Lam, S.K., Konstan, J.A., Riedl, J.: MovieLens unplugged: Expe-
riences with an occasionally connected recommender system. In: Proceedings of the 8th
International Conference on Intelligent User Interfaces (IUI), pp. 263–266. ACM Press,
New York, NY, USA (2003)

26. Moemeng, C., Gorodetsky, V., Zuo, Z., Yang, Y., Zhang, C.: Agent-based distributed data
mining: A survey. In: L. Cao (ed.) Data Mining and Multi-agent Integration, chap. 3, pp.
47–58. Springer (2009)

27. Nathanson, T., Bitton, E., Goldberg, K.: Eigentaste 5.0: Constant-time adaptability in a
recommender system using item clustering. In: Proceedings of the ACM Conference on
Recommender Systems, pp. 149–152. ACM Press, New York, NY, USA (2007)

28. Quercia, D., Hailes, S., Capra, L.: Lightweight distributed trust propagation. In: Pro-
ceedings of the 7th IEEE International Conference on Data Mining (ICDM), pp. 282–291
(2007)

29. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic Web.
In: The Semantic Web: Proceedings of the 2nd International Semantic Web Conference
(ISWC), LNCS, vol. 2870, pp. 351–368. Springer (2003)

30. Shani, G., Chickering, M., Meek, C.: Mining recommendations from the web. In: Pro-
ceedings of the ACM Conference on Recommender Systems, pp. 35–42. ACM Press, New
York, NY, USA (2008)

31. Tavakolifard, M.: Similarity-based techniques for trust management. In: Z.U.H. Usmani
(ed.) Web Intelligence and Intelligent Agents, chap. 11, pp. 233–250. InTech (2010)

32. Wang, Y., Singh, M.P.: Trust representation and aggregation in a distributed agent system.
In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI), pp.
1425–1430. AAAI Press, Boston, MA, USA (2006)

33. Yu, B., Singh, M.P.: Distributed reputation management for electronic commerce. Com-
putational Intelligence 18(4), 535–549 (2002)



28 Chung-Wei Hang, Munindar P. Singh

34. Ziegler, C.N., Lausen, G.: Spreading activation models for trust propagation. In: EEE:
Proceedings of the IEEE International Conference on e-Technology, e-Commerce and e-
Service, pp. 83–97. IEEE Computer Society, Washington, DC, USA (2004)


