
2 1541-1672/16/$33.00 © 2016 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Revani: Revising and
Verifying Normative
Specifications
for Privacy
Özgür Kafalı, Nirav Ajmeri, and Munindar P. Singh, North Carolina State University

Privacy remains

a major challenge

today, partly because

it brings together

social and technical

considerations. Yet,

current software

engineering focuses

only on the technical

aspects. Revani

understands privacy

from the standpoint of

sociotechnical systems.

composed of both social (people and organiza-
tions) and technical (computers and networks)
elements.1,2 Whereas traditional engineering
approaches consider the social aspects in their
early phases, they exclude them from the spec-
ifications they ultimately produce, including
only the technical aspects therein.

There’s a natural tension between func-
tional and privacy requirements: typically,
performing a work task reveals informa-
tion, and restricting information obstructs
a work task. Because mechanisms that
are privacy-preserving at first glance of-
ten interfere with users’ work, they force a
choice on users of either failing to accom-
plish some goal or subverting those mecha-
nisms, thereby compromising privacy. For
example, a short session timeout will ei-
ther interrupt a user’s flow or force the
user to seek workarounds, such as storing a
password in a browser. The first case is ef-
fectively a denial of service and the second
risks the password being stolen. A more

subtle situation arises during disasters. The
guidelines from the American College of
Emergency Physicians (ACEP; http://goo.gl/
HXWRnH) include expanding staff capacity
and relaxing privacy requirements during a
disaster. A hospital could take the initiative
and assign temporary credentials to outside
physicians to cope with the expected load
(potentially even before the event is declared
a federal disaster). However, doing so inevi-
tably creates privacy threats.

How can we address such dilemmas? A so-
ciotechnical view doesn’t provide a magic bul-
let, but it makes these tradeoffs explicit and
thereby helps produce specifications that hit
the sweet spot between functional and pri-
vacy requirements. So how can we represent
the social aspects formally, and how can we
create an STS and verify whether it satis-
fies stakeholder requirements? Our contribu-
tion to this open research problem is Revani
(which stands for Revision and Verification
of Normative Specifications), an approach for

Our investigation of concepts and techniques to enhance

privacy begins from the recognition that privacy incorporates

both human and social aspects. Accordingly, we approach privacy from

the perspective of sociotechnical systems (STSs), which we view as systems

S e c t i o n t i t l e

SEpTEMbEr/ocTobEr 2016 www.computer.org/intelligent 3

engineering STSs that promotes pri-
vacy by incorporating the social ele-
ments in a formal computational rep-
resentation based on a particular view
of norms, employing an approach that
uses design patterns to create STS spec-
ifications that satisfy stakeholder re-
quirements, and developing a revision
tool based on temporal logic model
checking that facilitates producing cor-
rect specifications.

To demonstrate our approach, we
adopt as a running example a little-
studied part of the HIPAA (Health
Insurance Portability and Account-
ability Act) law that focuses on the
disclosure of patient information dur-
ing disasters (www.hhs.gov/ocr/pri-
vacy/hipaa/understanding/special/
emergency). In our scenario, a physi-
cian logs into the emergency depart-
ment’s computer, accesses and reviews
a patient’s electronic health record
(EHR), and logs out of the computer.
Ordinarily, the physician can’t dis-
close the patient’s protected health
information (PHI) without consent,
but during a national disaster, he or
she is allowed to share this informa-
tion with the patient’s family without

that consent. During a disaster, other
emergency physicians (including those
recruited from other hospitals to lend
a helping hand) can access this patient
data by authenticating on a computer
in the emergency department.

Two established bodies of work com-
plement our contribution. Traditional
technical solutions such as access con-
trol can constrain who has access to
what information, and modern access
control models handle exceptional con-
ditions well. For example, Rumpole3
accommodates the idea that patient
consent is waived during a disaster. Us-
able privacy and privacy engineering

approaches4,5 seek to improve user in-
terfaces for authentication, policy con-
figuration, photo sharing, and so on by
tackling the human aspects of privacy
and addressing biases in cognition and
attention. They seek to “compile out”
the human elements by producing better
technical elements. However, unlike Re-
vani, they don’t incorporate computa-
tional models of privacy’s social aspects.

In essence, both access control and
usable privacy focus on an STS’s tech-
nical elements and fail to encode any
knowledge of its social elements. These

approaches don’t identify autonomous
parties (agents) and what they’re ac-
countable for, even though it’s pre-
cisely these autonomous parties whose
requirements we’re serving and whose
interactions could lead to privacy vio-
lations. We model threats invisible to
a technical approach, such as when a
physician fails to log out and inadver-
tently enables an unauthorized per-
son to access sensitive data or when a
hospital assigns credentials to an out-
side physician. Access control doesn’t
capture what happens when an out-
side physician accesses patient data or
a staff physician discloses it. Accord-
ingly, our design process seeks to an-
swer two important research questions:
How can we design an STS that satis-
fies the given requirements? Answer:
by first constructing a formal model of
norms that determines STS enactments
and then applying our design patterns
to come up with an STS specification
that satisfies the stated requirements.
How can we determine which require-
ments are affected when a norm is vi-
olated? Answer: by first removing the
assumption that agents are compliant
with norms and then identifying which
requirements (stated as verification
properties) aren’t satisfied when there’s
a norm violation. The prospect of
agents violating norms is real in open
systems with autonomous agents.

Sociotechnical Systems
Figure 1 illustrates our conception of
an STS and highlights two important
points: the identification of coexist-
ing social and technical tiers and the
emphasis on norms and regulation.
The right part of the figure presents
an STS as a two-tier system. The up-
per (social) tier includes agents repre-
senting the stakeholders, who interact
with each other via the STS’s technical
elements. The lower (technical) tier in-
cludes software (functional and con-
trol) components that support agent
interactions in the social tier. The left

Figure 1. Conception of a sociotechnical system (STS). The right part presents an
STS as a two-tier system. The upper (social) tier includes agents representing the
stakeholders, who interact with each other via the STS’s technical elements. The
lower (technical) tier includes software (functional and control) components that
support agent interactions in the social tier. The left part of the figure shows that
an STS can be specified by stakeholders based on their requirements.

Stakeholders Agent . . . Agent

Functional and control
components

Interaction

Mechanisms
yield

Norms regulate

Identify

Specify

Social Tier
Technical Tier

4 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S e c t i o n t i t l e

part of the figure shows that an STS
can be specified by stakeholders based
on their requirements. An STS speci-
fication consists of norms that regu-
late interactions of its social elements
and mechanisms that are realized in its
nonautonomous (functional and con-
trol) components. For simplicity, we
include the domain assumptions in the
specification along with the norms
and mechanisms.

Of the possible conceptions of STSs,6
we confine ours to the present because
it’s adequate for demonstrating how
we might address privacy require-
ments in a formal, norm-based man-
ner. One benefit of our approach is the
flexibility it accords agents via social
elements. Some requirements can and
should be realized through technical
means—for example, an access control
mechanism can check for appropriate
consent, but such a requirement could
be overridden during a disaster. An im-
proved access control mechanism could
handle this by dispensing with consent
during a disaster. However, some re-
quirements are inherently social—the
fact that a hospital could legitimately
dispense with patient consent during
a disaster isn’t captured in the techni-
cal tier because it’s a property of the
social tier, specifically, will physicians
only access relevant patient data re-
quired for treatment? Similarly, a hos-
pital could grant access to patient data
to outside physicians during a disaster,
which affects the technical tier even
though the reasoning about its correct-
ness lies in the social tier. In the same
spirit, the interactions of outside physi-
cians with hospital staff are regulated
in the social tier, say, with hospital
staff prohibited from discussing non-
emergency patients with outside phy-
sicians. But what recourse do patients
have when the prohibition is violated?
Addressing these challenges requires a
computational framework that synthe-
sizes both technical and social aspects.

Norms and Accountability
At the heart of our conception of an
STS is the notion of social norms.
Prior formulations treat norms as ex-
pected social properties,7,8 usually en-
forced through (positive or negative)
social sanctions.9 Some approaches define
to whom the norm applies but don’t
indicate a counterparty. Monitoring en-
tities (centralized or distributed) are
assumed to verify the compliance of
agents to norms.

In contrast, we understand a norm
as a conditional, directed relationship
that indicates who’s accountable to
whom.2 Our notion of norms is com-
patible with deontic concepts such as
permissions and obligations intro-
duced by von Wright’s deontic logic.10
We consider three types of norms:
authorization, commitment, and pro-
hibition. For brevity, we introduce Re-
vani’s syntax and semantics through
examples: EHR is a proposition meaning
that the physician accesses a patient’s
EHR, EMERGENCY is a proposition
meaning that an emergency is de-
clared in the hospital, LOGGED_IN is a
proposition meaning that the physi-
cian logs in to a computer, and PHI_
DISCLOSED is a proposition meaning
the patient’s PHI is disclosed.

Extrapolating further,

•	A(PHY, HOS, EMERGENCY, EHR):
a physician PHY is authorized (A)
by the hospital HOS to access a pa-
tient’s EHR in an emergency. Here,
the object (HOS) is accountable
to the subject (PHY). The hospital
must ensure that a physician has
access to the EHR when the autho-
rization is detached (that is, EMER-
GENCY is true).

•	C(PHY, HOS, EHR, ¬LOGGED_IN):
a physician PHY is committed (C)
to the hospital HOS to logging out
of the computer (¬LOGGED_IN) after
he or she accesses the patient’s EHR.
The physician is accountable to the

hospital for this commitment.
•	 P(PHY, HOS, true, PHI_DISCLOSED):

a physician PHY is prohibited (P) by
the hospital HOS from disclosing a
patient’s PHI to others (PHI_DIS-
CLOSED). This prohibition is uncon-
ditional because its condition is true.
The physician is accountable to the
hospital for this prohibition.

We specify an STS’s social tier via
norms that provide a standard of cor-
rectness with which to judge an imple-
mentation, such as an access control
mechanism. For example, a traditional
approach might realize a prohibition to
read confidential information via access
control—a prohibited party isn’t allowed
access. Other prohibitions, such as
the one above that’s against disclosing
the patient’s PHI, aren’t represented at
all because they can’t be tackled purely
at the technical tier. Whereas in tra-
ditional approaches, there’s no repre-
sentation other than the technical tier,
here, norms capture the social tier in-
dependently of access control. A bene-
fit of doing this is that we can reason
about the social tier, both in under-
standing where the technical tier sup-
ports it and where it does not.

Assumptions and
Mechanisms
Assumptions characterize the STS’s op-
erating environment and describe what
can or can’t happen. An assumption is a
pair 〈Head, Body〉, written Head←Body
as an inference rule. For example,
¬LOGGED_IN← POWER_FAILURE means
that it isn’t possible to be logged in to
a computer during a power failure. The
correct working of Revani depends on
these assumptions being consistent.

Agent actions are supported by un-
derlying mechanisms. An example ac-
tion, performed by the physician, is log-
ging in to the emergency department
computer. Mechanisms can impose
enabling conditions on the actions—

SEpTEMbEr/ocTobEr 2016 www.computer.org/intelligent 5

for example, providing a correct pass-
word is the enabling condition for log-
ging in to a computer.

We write a mechanism as M(ENABLER,
ADD, DELETE). When a mechanism is
enabled (that is, ENABLER is true), its ef-
fect can take place. The effect consists of
a set of atomic propositions to be added
(ADD list) and a set of atomic propositions
to be deleted (DELETE list). Here,
M(PASSWORD, {LOGGED_IN}, {}) describes
the mechanism for logging in to a com-
puter. Some mechanisms are always
enabled.

Requirements Engineering
for STS
Researchers11 formulate traditional re-
quirements engineering (RE) as

Assumptions, Mechanisms ⊢
Requirements. (1)

The traditional RE problem is to
determine (a specification of) mecha-
nisms and domain assumptions such
that any software implementation
that follows the mechanism speci-
fication satisfies the given require-
ments, provided the assumptions
hold. This formulation omits the so-
cial elements.

We introduce norms as an addi-
tional component of the specification
to extend it to accommodate STSs:

Assumptions, Mechanisms, Norms
⊢ Requirements. (2)

The sociotechnical RE problem is
to find mechanisms and norms such
that if the software implementation
satisfies the mechanisms and the par-
ties satisfy their norms, then provided
the assumptions hold, the require-
ments are satisfied. The simplicity of
the modification belies its subtlety.
Because we introduce autonomous
parties, they can adopt local mecha-
nisms for their individual decision

making. Moreover, the satisfaction
of norms is nontrivial because norms
can be overridden or sanctions can be
applied.

Computational Representation
Broadly speaking, Revani takes two in-
puts, an STS specification and stake-
holder requirements, and produces a bi-
nary output, which indicates whether the
specification satisfies the requirements.

To perform formal verification, we
adopt model checking with branching-
time temporal logic.12 This paradigm
posits a tree-like formal model based
on the specification that’s generated
according to possible enactments of
norms with regard to agents’ actions
and domain events. All enactments be-
gin at the root; events occur serially on
a branch, and each branch corresponds
to a distinct possible enactment.

Figure 2 shows an example model.
Enactments start from an initial state
(S0). Then, the physician logs in to
the computer, which initiates a tran-
sition to S1. The physician can view a
patient’s EHR (S2); he or she can log
out in any state, creating alternative
branches (S3, S5, and S6). If the phy-
sician performs other actions (such
as passing through S4) but never logs
out, the branch leads to S7.

Specification and
Requirements
Revani’s specification is quite straight-
forward. It enumerates STS roles (here,
PHY and HOS), domain propositions,
and actions. Roles are design-time
placeholders for agents—for exam-
ple, PHY is instantiated with physician
names at runtime. A domain event such
as cut_power brings about the propo-
sition POWER_FAILURE. Similarly, an
agent action such as log_in brings
about the proposition LOGGED_IN.

We express each stakeholder require-
ment as a formula of computation tree
logic (CTL),12 a branching-time logic
based on a tree model, as in Figure 2.
CTL enhances ordinary propositional
logic with two temporal elements. A
branch quantifier, A or E, respectively,
indicates whether we’re talking about
all or some branches emanating from
the current point. A linear temporal op-
erator considers points on one branch;
for a proposition p (LOGGED_IN), Fp
means that p occurs eventually on the
current branch, and Gp means that p
always occurs on the current branch.

Consider the following healthcare
requirements:

•	R-Disclose, which states the patient’s
PHI must never be disclosed on any

Figure 2. Verification of computation tree logic formulas. R-Logout, the requirement
being verified, states that if the physician accesses the electronic health record
(EHR), he or she will eventually log out of the computer. Some branches (ending in
S3, S5, and S6) satisfy R-Logout. However, the existence of a counterexample (the
branch leading to S7) means this model violates R-Logout.

S3 S6

S7S4

S5

S2S1S0

6 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S e c t i o n t i t l e

branch. In CTL, this is AG(¬PHI_
DISCLOSED). At each point on each
branch PHI must not be disclosed.

•	R-Access, which states that physi-
cians can access an EHR. In CTL,
this is EF (EHR). There must be a
branch where EHR is eventually
accessed.

•	R-Logout, which states open ses-
sions must be closed after re-
viewing an EHR. In CTL, this is
AG(EHR→AF ¬LOGGED_IN). At any
point when the EHR is accessed,
the physician must eventually log
out on all branches.

•	R-Share, which states that in case of
a national disaster, physicians must
be allowed to share a patient’s PHI
with family members. In CTL, this
is AG(DISASTER→EF PHI_SHARED).
At any point when a disaster is
declared, there must be a branch
where PHI is eventually shared.

We assume that requirements are
explicitly stated by the stakehold-
ers and are mutually consistent. We
don’t address consistency checking of
requirements.

Verification
A model checker verifies whether the
specification satisfies each require-
ment. If so, the specification is cor-
rect; otherwise, it’s not. We adopt
NuSMV, a model checker for CTL
that provides a language for specify-
ing finite state models (http://nusmv.
fbk.eu). A NuSMV specification de-
scribes a set of variables and how
these variables progress according to
the possible enactments of the mod-
eled system. Then, NuSMV verifies
desired properties of the system ex-
pressed in CTL.

Consider the CTL formula in Fig-
ure 2 for R-Logout. The logical impli-
cation symbol means that whenever
the antecedent of the formula holds
(that is, whenever EHR is accessed or

AG EHR), the consequent must hold
(the physician must eventually log out
of the computer or AG AF ¬LOGGED_
IN). To determine whether this for-
mula is satisfied at the tree root, we
can examine each branch in turn.
The branch ending in S3 is accept-
able because the EHR is never ac-
cessed on it; the branches ending in
S5 and S6 are acceptable because a log
out follows an access to the EHR. But
R-Logout fails at the root because
there’s no log out (S7) despite the EHR
being accessed.

Revani supports two verification
scenarios:

•	Restrict an STS specification to in-
clude only correct enactments of
norms. For example, the correct
enactment of a commitment C(PHY,
HOS, EHR, ¬LOGGED_IN) would
rule out state S7. Ruling out such
violating enactments enables us to
understand what norms are nec-
essary to achieve desired behavior
in an STS. For example, the above
commitment will satisfy R-Logout.

•	 Include additional enactments
(compliant and violating) in an
STS specification and investigate
what happens in a norm viola-
tion. For example, verification of
R-Logout in NuSMV would lead to
a counterexample where the above
commitment is never satisfied.

Design Process
Determining that an STS fails its re-
quirements isn’t sufficient. We want
to revise a specification so as to sat-
isfy (possibly changing) requirements.
To this end, we adopt an iterative de-
sign process that begins from a speci-
fication and revises the specification
until it satisfies all requirements. Our
process is centered on design patterns
that exploit logical relationships sup-
ported by formalization of norms.

Norm Strength
Our logical model enables determin-
ing which norm entails another (the ⊢
symbol denotes logical consequence).
We formally define norm strength
for each norm type as follows. Sub-
scripts (i, j, 1, 2) represent instances
of norms, such as the following.

Authorization strength. Ai(SBJ, OBJ,
ANTi, CONi) is stronger than Aj(SBJ,
OBJ, ANTj, CONj), Ai ≫ Aj, if and only
if ANTj ⊢ ANTi and CONj ⊢ CONi.
Consider the following authorizations:
A1(PHY, HOS, CONSENT ∨ EMER-

GENCY, EHR ∨ ASK_PARENTS),
A2(PHY, HOS, CONSENT, EHR).
A1 ≫ A2 because CONSENT ⊢ CON-

SENT ∨ EMERGENCY and EHR ⊢ EHR
∨ ASK_PARENTS.

Commitment strength. Ci(SBJ, OBJ,
ANTi, CONi) is stronger than
Cj(SBJ, OBJ, ANTj, CONj), Ci ≫
Cj, if and only if ANTj ⊢ ANTi and
CONi ⊢ CONj. Consider the follow-
ing commitments:
C1(PHY, HOS, true, OPERATION ∧
CLINIC),
C2(PHY, HOS, EMERGENCY, OPERATION).
C1 ≫ C2 because EMERGENCY ⊢ true and
OPERATION ∧ CLINIC ⊢ OPERATION.

Prohibition strength. Pi(SBJ, OBJ,
ANTi, CONi) is stronger than Pj(SBJ,
OBJ, ANTj, CONj), Pi ≫ Pj, if and
only if ANTj ⊢ ANTi and CONj ⊢
CONi. Consider the following prohi-
bitions:
P1(PHY, HOS, true, PHI_SHARED ∨
PHI_DISCLOSED),
P2(PHY, HOS , ¬EPIDEMIC, PHI_
DISCLOSED).
P1 ≫ P2 because ¬EPIDEMIC ⊢ true
and PHI_DISCLOSED ⊢ PHI_SHARED ∨
PHI_DISCLOSED.

Design patterns
In each step of our iterative design
process, we begin from a specification

SEpTEMbEr/ocTobEr 2016 www.computer.org/intelligent 7

and systematically revise it into an-
other specification. The benefit of rea-
soning about norm strength is that it
ensures we can revise a specification
into one that enhances functionality
(by adding beneficial enactments) or
privacy (by curtailing pernicious en-
actments). We capture revisions as de-
sign patterns.

The following relaxation patterns
liberalize an STS and enable additional
enactments:

•	Expansion strengthens a given au-
thorization specification Ai by re-
placing it with Aj, where Aj >> Ai.
Suppose a physician is authorized
to access a minor patient’s EHR.
We can strengthen the authoriza-
tion so that the physician is also
authorized to talk to the minor’s
parents.

•	Release of liability weakens a given
commitment specification Ci by re-
placing it with Cj, where Ci >> Cj.
Suppose a physician is committed to
the hospital to operating on patients
as well as undertaking clinic duty.
We can weaken the commitment so
that the physician is committed only
to operating on patients.

•	Accessibility weakens a given prohi-
bition specification Pi by replacing
it with Pj, where Pi >> Pj. Suppose a
physician is prohibited by the hospi-
tal from sharing a patient’s PHI with
colleagues or publishing it online. We
can weaken the prohibition so that
the physician is prohibited from
publishing a patient’s PHI on-
line but not from sharing it with a
colleague.

Although the above patterns en-
hance functionality, they can yield
erroneous specifications, e.g., if a po-
tential norm violation that results from
the added functionality isn’t properly
handled. The following amendment
patterns address such cases:

•	Responsibility specifies a comple-
mentary commitment to capture
that the subject doesn’t misuse the
intended functionality provided by
a relaxation pattern. Formally, it re-
places Ai(SBJ, OBJ, ANTi, CONi)
with Aj(SBJ, OBJ, ANTj, CONj),
where Aj >> Ai, and adds Ck(SBJk,
OBJk, CONj, CONk). For example,
extending the session duration (via
the expansion pattern) increases the
privacy risk if the physician forgets
to log out. We can have the physi-
cian commit to logging out upon
completing the task.

•	Limitation specifies a complemen-
tary prohibition to provide com-
pensation—that is, the additional
functionality given by the relax-
ation pattern is bounded by the
limits of the new prohibition. For-
mally, it replaces Pi(SBJ, OBJ,
ANTi, CONi) with Pj(SBJ, OBJ,
ANTj, CONj), where Pi >> Pj, and
adds Pk(SBJk, OBJk, CONj, CONk).

Note that the subjects (SBJk) and
objects (OBJk) of the additional norms
for the amendment patterns aren’t
necessarily the same as the original
norms. For example, allowing the
physician to share a patient’s PHI with
colleagues (via the accessibility pat-
tern) increases the risk that the PHI is
disclosed to parties that are prohibited
from accessing the PHI. We can pro-
hibit the physician’s colleague (a new
party as the subject of the norm) from
publishing the PHI online.

The following pattern revises a mech-
anism to relax the enabling condition
for an action: enabler replaces mechanism
Mi(ENABLERi, ADD, DELETE) with
Mj(ENABLERj, ADD, DELETE) if
ENABLERi ⊢ ENABLERj. For ex-
ample, the EHR software for regular
medical practice implements a mecha-
nism that restricts access to an EHR
without consent. We can relax the en-
abling condition for this mechanism

to allow physicians to access any pa-
tient’s EHR in an emergency.

Demonstration and
Evaluation
We built a tool for Revani to suggest
revisions for a given STS specifica-
tion. To demonstrate that the tool can
come up with a norm specification
compliant with the requirements for
our scenario, we begin with an initial
specification that doesn’t satisfy some
requirements. This initial specifica-
tion reflects common practice in emer-
gency medicine before the HIPAA
privacy rule was revised in 2003
(www.hhs.gov/ocr/privacy/hipaa/
understanding/summary).

Figure 3 shows the application of
patterns through a series of specifica-
tions. Our design process is sound—that
is, when our tool suggests a revision
with respect to a requirement, the re-
vised specification satisfies the require-
ment. However, our design process isn’t
complete in that our tool might not al-
ways compute a revised specification
to satisfy a requirement. Figure 3 pres-
ents one solution among possible alter-
native revisions computed by our tool.
Let’s review each step:

•	The initial specification satisfies R-
Disclose because disclosing patients’
PHI is prohibited. However, this
specification is inflexible in disaster sit-
uations and fails R-Share. Moreover,
access to the EHR isn’t authorized
without a patient’s consent, which
leaves R-Access unsatisfied. R-Logout
fails as well, because the initial speci-
fication doesn’t regulate computer us-
age in the emergency department.

•	The authorization is substituted
with a stronger one, which allows
an alternative way for the physician
to access a patient’s EHR via the
emergency department computer.

•	 An additional commitment is specified
to improve privacy for patients’ PHIs.

8 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S e c t i o n t i t l e

The physician must log out of the com-
puter after reviewing the EHR.

•	The two prohibitions are relaxed into
a weaker prohibition, which prohib-
its the physician only from disclosing
patients’ PHIs to outsiders.

Revani differs from other formal
verification models because it

incorporates the social dimension and
thereby provides a computational basis
to regulate interactions among agents.

Norms have been adopted for cap-
turing and verifying privacy require-
ments in the contextual integrity
framework.13 Moreover, emerging
software engineering approaches in-
corporate deontic concepts.14 How-
ever, these approaches either focus on
control components or treat norms
as hard constraints, thus lacking the
sociotechnical underpinnings of Re-
vani, which are essential for compu-
tationally handling the human and
social aspects of privacy.

Recent works from the multia-
gent systems literature7,8,15 capture
the normative dimension for STSs,
but they lack Revani’s formal de-
sign methodology. One approach1
proposes a formalization for STS re-
quirements engineering, but this
formalization is limited to commit-
ments; it doesn’t formalize STS mech-
anisms or support verification.

Revani opens up several directions
for future work. Of these, develop-
ing ways to measure the improve-
ment a revision pattern provides to
a given specification (such as the
distance from an optimal specifi-
cation) are particularly important
for facilitating decision making by
stakeholders when creating STS
specifications.

Acknowledgments
This research is supported by the US
Department of Defense under the Science
of Security Lablet grant. We thank Rahul
Pandita, Jessica Staddon, Christopher
Theisen, and the anonymous reviewers for
their helpful comments on previous versions
of this article.

t h e A u t h o r S
Özgür Kafalı is a postdoctoral researcher in computer science at North Carolina State
University. His research interests include multiagent systems and computational logic.
Kafalı has a PhD in computer engineering from Bogazici University. Contact him at
rkafali@ncsu.edu.

Nirav Ajmeri is a PhD student in computer science at North Carolina State University.
His research interests include software engineering and multiagent systems, with a focus
on security and privacy. Contact him at najmeri@ncsu.edu.

Munindar p. Singh is a professor in computer science and a co-director of the Science
of Security Lablet at North Carolina State University. His research interests include the
engineering and governance of sociotechnical systems. Singh is an IEEE Fellow, a for-
mer editor in chief of IEEE Internet Computing, and the current editor in chief of ACM
Transactions on Internet Technology. Contact him at singh@ncsu.edu.

Figure 3. Applying the design patterns using the revision tool. We begin with an initial specification (top left box). Each box
shows the revised specification after the application of a pattern. Crossed out requirements aren’t satisfied by the corresponding
specification. Some norms replace existing norms (* A(…)), some are added (+ C(…)), and some are removed P(…).

Expansion pattern Accessibility pattern

Responsibility
pattern

SEpTEMbEr/ocTobEr 2016 www.computer.org/intelligent 9

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

References
1. A.K. Chopra et al., “Protos: Foundations

for Engineering Innovative Sociotechni-

cal Systems,” Proc. 18th IEEE Int’l Re-

quirements Eng. Conf., 2014, pp. 53–62.

2. M.P. Singh, “Norms as a Basis for Gov-

erning Sociotechnical Systems,” ACM

Trans. Intelligent Systems and Technol-

ogy, vol. 5, no. 1, 2013, pp. 21:1–21:23.

3. S. Marinovic, N. Dulay, and M. Sloman,

“Rumpole: An Introspective Break-

Glass Access Control Language,” ACM

Trans. Information and System Security,

vol. 17, no. 1, 2014, pp. 2:1–2:31.

4. S. Spiekermann and L.F. Cranor, “Engi-

neering Privacy,” IEEE Trans. Software

Eng., vol. 35, no. 1, 2009, pp. 67–82.

5. A. Adams and M.A. Sasse, “Users Are

Not the Enemy,” Comm. ACM, vol. 42,

no. 12, 1999, pp. 40–46.

6. I. Sommerville et al., “Large-Scale

Complex IT Systems,” Comm. ACM,

vol. 55, no. 7, 2012, pp. 71–77.

7. N. Criado, E. Argente, and V. Botti,

“Open Issues for Normative Multi-

agent Systems,” AI Comm., vol. 24, no.

3, 2011, pp. 233–264.

8. F. Dechesne et al., “No Smoking Here:

Values, Norms and Culture in Multi-

agent Systems,” Artificial Intelligence

and Law, vol. 21, no. 1, 2013,

pp. 79–107.

9. L.G. Nardin et al., “Classifying Sanc-

tions and Designing a Conceptual Sanc-

tioning Process Model for Socio-techni-

cal Systems,” Knowledge Eng. Rev., vol.

31, no. 3, 2016, pp. 142–166.

10. G.H. von Wright, “Deontic Logic: A

Personal View,” Ratio Juris, vol. 12, no.

1, 1999, pp. 26–38.

11. P. Zave and M. Jackson, “Four Dark

Corners of Requirements Engineering,”

ACM Trans. Software Eng. and Meth-

odology, vol. 6, no. 1, 1997, pp. 1–30.

12. E.M. Clarke, O. Grumberg, and D.A.

Peled, Model Checking, MIT Press, 1999.

13. A. Barth et al., “Privacy and Contextual

Integrity: Framework and Applica-

tions,” Proc. IEEE Symp. Security and

Privacy, 2006, pp. 184–198.

14. E. Letier and W. Heaven, “Requirements

Modelling by Synthesis of Deontic Input-

Output Automata,” Proc. 35th Int’l

Conf. Software Eng., 2013, pp. 592–601.

15. N. Alechina, M. Dastani, and B. Logan,

“Reasoning about Normative Update,”

Proc. 23rd Int’l Joint Conf. Artificial

Intelligence, 2013, pp. 20–26.

