
Chapter 1

Tools for Implementing Multiagent
Systems Based on Protocols

Amit K. Chopra[0000−0003−4629−7594],
Samuel H. Christie V[0000−0003−1341−0087], and
Munindar P. Singh[0000−0003−3599−3893]

Abstract Interaction-Oriented Programming (IOP) is an approach to building
a multiagent system by modeling the interactions between its roles via a flexible
interaction protocol and implementing agents to realize the interactions of the
roles they play in the protocol.

In recent years, we have developed an extensive suite of software that enables
multiagent system developers to apply IOP. These include tools for efficiently
verifying protocols for properties such as liveness and safety and middleware
that simplifies the implementation of agents. This paper presents some of that
software suite.

1.1 Motivation

Software systems increasingly support interactions among autonomous princi-
pals (humans and organizations) in various settings, e.g., e-commerce, health-
care, finance, and so on. Owing to autonomy, it is natural to realize such systems
as multiagent systems in which principals are represented by agents who interact
by exchanging messages.

The main challenges in realizing multiagent systems can be divided into broad
categories. One, how can we model a multiagent system in a manner that en-
ables realizing it as a loosely-coupled system of agents who can interact with
each other with maximal flexibility. Intelligent actions by agents presumes flex-
ibility; it means an agent can take into account the relevant circumstances in
making decisions. Loose coupling [52, 61] means minimizing and making explicit

Lancaster University, UK,
e-mail: amit.chopra@lancaster.ac.uk
North Carolina State University,
e-mail: schrist@ncsu.edu
North Carolina State University,
e-mail: singh@ncsu.edu

1

amit.chopra@lancaster.ac.uk
schrist@ncsu.edu
singh@ncsu.edu

2 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

the architectural assumptions that agents (as system components) make of each
other. Loose coupling thus promotes architectural simplicity, clarity, and effi-
ciency. Crucially, it enables implementing an agent without knowing how other
agents are implemented (which in open systems may not be possible anyway).

Two, given a model of a multiagent system, we are faced with the problem
of implementing an agent to play a role in it. How can we exploit the model to
facilitate such engineering? In particular, how can we engineer flexible, fault-
tolerant agents that are correct with respect to the model in a manner that
enables programmers to focus on encoding an agent’s decision making.

Modeling multiagent systems, first and foremost, in terms of interaction pro-
tocols is the most promising way we know of addressing these challenges. This
approach offers several benefits. First, a protocol supports autonomy by cap-
turing communication constraints but otherwise leaving the principals free to
apply their own business logic and engage flexibly. Second, a protocol helps
principals implement their software agents by providing role-based interfaces.
Third, protocols enable realizing software in terms of loosely coupled, decentral-
ized components (the agents). Fourth, protocols may be composed and verified,
which enables reasoning about a system before any agents are implemented [69].
Fifth, they support high-level abstractions such as social commitments [63] and,
more generally, norms, which inform agent decision making.

The importance of interaction protocols was recognized early on in multia-
gent systems research [36, 39], which spurred research on languages for speci-
fying protocols. AUML [50] was a notable early result of this activity and was
highly influential, finding application in communication standards and software
methodologies. However, AUML and most of the other work (reviewed in Sec-
tion 1.2) that followed it did not enable realizing the above-mentioned benefits.

The situation changed with the development of information protocols [65,
66, 67, 68], a novel declarative approach for specifying multiagent protocols.
Traditionally, protocols specified message ordering. Information protocols depart
from this tradition by specifying information causality and integrity constraints
on communication. In recent years, we have built a software suite that enables
verifying information protocols and implementing flexible, robust agents based
on high-level information-based abstractions.

Our goal in this contribution is to show via concrete examples how this suite
enables realizing all of the above-mentioned benefits.

1.2 Literature

We review the literature on related themes.

1 Tools for Implementing Multiagent Systems Based on Protocols 3

1.2.1 Agent Communication Languages

Agent communication is usually understood as building on elements of the phi-
losophy of language, especially speech act theory [4]. Here, a communication is
an action performed by the speaker (depending on context). For example, if a
referee in a soccer match says “foul,” it’s a foul (and changes the state of the
game), but if a player says “foul,” it has no such effect. If a fan skeets “foul by
Smith” they may inform (or misinform) their readers, but cannot cause a foul
to be recorded.

Speech act theory separates propositional content (e.g., “foul”) from illocu-
tionary type (e.g., declarative to make the content true or informative to report
on the content). Traditional AI approaches define a handful of message formats,
one for each major illocutionary type, which is inherently limited since there
are potentially as many sets of illocutions as multiagent systems [17, Section 7].
KQML (Knowledge Query and Manipulation Language) [32] was designed for
agents viewed as homogeneous knowledge bases (KBs). The agents can query
each other’s KBs and tell each other facts to be believed, as well as give com-
mands to be achieved. FIPA [54] is a successor to KQML: streamlined but similar
in spirit to it [63].

Modeling meaning is essential for reasoning about interactions. For example,
a “quote” may refer to

1. the last trading price on a stock exchange
2. an offer to sell

Yet, current approaches specify meaning only informally. The early formal mod-
els, such as FIPA and KQML, follow a mentalist semantics [60], interpreting
communicative acts in terms of the beliefs and intentions of the participants.
Such models are unsuited to autonomous and heterogeneous agents, whose in-
ternal representations are hidden.

We established the contrary social semantics in AI [63], about the social
semantics of a communicative act based on the commitments it presupposes
and alters [64]. Modern philosophy of language is reviving elements of Austin’s
theory pertaining to conventions and norms [12, 58, 59], which were downplayed
in the purely cognitive approaches. When the social state is expressed via norms,
communications map to changes in norms and can be formally reasoned about
[23]. For example, an offer by a seller creates a commitment; a buyer’s acceptance
of an offer makes the buyer committed to paying the offered price and advances
the seller’s commitment to one where the seller has to supply the goods.

1.2.2 Protocol Languages

Protocols are crucial to multiagent systems engineering methodologies [15, 29,
51, 56]. However, protocols are traditionally expressed in informal UML-inspired

4 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

notations such asAgent UML [40]. FIPA [34] specifies a select few protocols using
AUML. An agent plays a role in a protocol and communicates accordingly.

However, FIPA and UML provide no formal model of the protocol. Since they
lack a formal semantics, it is not possible to verify protocols for desirable prop-
erties, provide a principled programming model, or check whether each message
respects the protocol semantics. Moreover, the few protocols that FIPA specifies
cannot meet the requirements of the potentially infinite variety of multiagent
systems. Thus, they fall short of the goals for engineering multiagent systems
[79].

Formal protocol specification approaches generally express the information
content implicitly and coordination explicitly, which limits flexibility. Baldoni
et al. [6, 5] specify protocols as state machines where the transitions represent
messages. Ferrando et al. [31] specify protocols as trace expressions over mes-
sages. Winikoff et al. [80] specify protocols via a notation reminiscent of stat-
echarts and augmented with information constraints. ASEME [73] is another
model inspired by statecharts. Although these approaches can be applied to-
ward engineering nominally decentralized multiagent systems, these approaches
are neither conducive to loose coupling nor flexibility.

1.2.3 Agent Programming

JADE [8, 9], a programming model for multiagent systems, is noteworthy for its
early support for FIPA protocols [34]; however, as discussed above, the FIPA
approach is long outdated [63] and the FIPA protocols are limited to a few
patterns of interaction specified in terms of message ordering. SARL [35] is an
imperative language for agents; it lacks support for protocols.

Agent-oriented programming models such as Jason [11] and JaCaMo [10] pro-
vide cognitive abstractions for encoding an agent’s internal reasoning but do not
support protocols. Jason uses KQML-inspired communication abstractions; Ja-
CaMo includes Jason and, in addition, supports communication between agents
via Web services-style artifacts.

1.3 Toolkit Description

We first introduce the idea of information protocols. Then we introduce re-
lated tooling. First, we describe a tool for verifying information protocols.
Then, we describe protocol-based programming models, specifically Kiko [26]
and Mandrake [25]. Kiko demonstrates how a generic information-based adapter
abstracts over the network and presents a simple information-based interface
for programming agents. Mandrake shows how agent developers may specify
application-level message forwarding policies to deal with potentially lost mes-
sages.

1 Tools for Implementing Multiagent Systems Based on Protocols 5

1.3.1 Information Protocols

We introduce a simple ebusiness scenario in which buyer may Request some
item from a seller. After sending the Request, buyermay send Payment at any
time; after receiving Request, seller may send Shipment at any time. Notice,
therefore, that it is possible that buyer and seller send Payment and Shipment
concurrently. Indeed, all enactments of Figure 1.1 are possible, highlighting the
flexibility we desire.

buyer seller

Request

Shipm
ent

Payment

(a) Shipment first.

buyer seller

Request

Payment

Shipm
ent

(b) Payment first.

buyer seller

Request

Payment

Ship
ment

(c) Concurrent.

Fig. 1.1: Three possible enactments in an ebusiness scenario.

The scenario described above cannot be captured in traditional protocol spec-
ification approaches [20]. In the information protocols paradigm, it is straight-
forward to capture it. Listing 1 gives an information protocol for this scenario.

Listing 1: An information protocol.

F l e x i b l e Purchase {
role B, S
parameter out ID key , out item , out s tatus , out paid

B 7→ S : Request [out ID , out item]
S 7→ B: Shipment [in ID , in item , out s t a tu s]
B 7→ S : Payment [in ID , in item , out paid]

}

In the listing, ⌜in⌝ and ⌜out⌝ capture information dependencies. An agent can
send any message whose information dependencies are satisfied by its local state
(the set of messages sent and received by the agent). The adornment ⌜in⌝ for a
parameter means that the binding for the parameter must exist in the agent’s
local state; ⌜out⌝ means that the binding for the parameter must not exist in the

6 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

local state, but the act of sending the message generates it. Thus, enactments
of Figure 1.1 are all entertained because sending and receiving Request satisfy
the information dependencies for sending Payment and Shipment, respectively.
Notice that specifying information dependencies as described above means mes-
sages can be received in any order. This operational flexibility truly liberates
decision making.

For example, even though buyer can emit Payment only after emitting Re-
quest, seller can receive Payment first. Further, whenever seller receives
Payment, regardless of whether it has received Request, S may emit Shipment
(because its information dependencies would be satisfied). Further, retransmis-
sions of messages and receptions of duplicate messages are harmless because,
information-wise, they are idempotent. What this means is that information
protocols can be flexibly enacted over unordered, lossy communication services
such as the Internet.

1.3.2 Tango

Before a protocol may be used to implement agents, we would like to verify that
it has certain desirable properties. Tango is an approach for verifying the safety
and liveness of information protocols [70]. A protocol is safe if no enactment
may generate more than one binding for a parameter. A protocol is live if
any enactment is able to progress to completion. Tango is implemented in a
command line tool called bspl, available at https://gitlab.com/masr/bspl/

To verify a property, we must check that it holds for all possible proto-
col enactments. Because information protocols can be flexibly and fully asyn-
chronously enacted (it requires no assumption about message ordering), a pro-
tocol may have a large number of enactments, which can make verification in-
efficient. An important feature of the Tango approach is that it reduces the set
of enactments of protocol to a set of canonical enactments and then performs
the checking against the set of canonical enactments. For example, all the en-
actments in Figure 1.1 reduce to one of them. Thus, instead of checking several
enactments, we need to check only one of them. This reduction leads to vastly
improved verification performance compared to earlier verification approaches
for information protocols [67].

Listing 2 gives the results of executing liveness and safety queries for Flex-
ible Purchase, the protocol in Listing 1. A maximal path is one that cannot
be extended by further emissions or receptions by an agent. The third query
(all paths) makes it clear that there are 12 maximal paths; the tooling re-
duces them to one for purposes of liveness and safety checking.

Listing 2: Executing Tango on Flexible Purchase (Listing 1). Output shown in
blue.

>bspl verify liveness Flexible-Purchase.bspl

https://gitlab.com/masr/bspl/

1 Tools for Implementing Multiagent Systems Based on Protocols 7

{’live’: True, ’checked’: 7, ’maximal paths’: 1, ’elapsed’:

0.0010309999343007803}

>bspl verify safety Flexible-Purchase.bspl

{’safe’: True, ’checked’: 7, ’maximal paths’: 1, ’elapsed’:

0.0009660000214353204}

>bspl verify all_paths Flexible-Purchase.bspl

40 paths, longest path: 6, maximal paths: 12, elapsed: 0.005732199992053211

(B!Request, S!Shipment, S?Request, B!Payment, S?Payment, B?Shipment)

(B!Request, S!Shipment, S?Request, B!Payment, B?Shipment, S?Payment)

(B!Request, S!Shipment, S?Request, B?Shipment, B!Payment, S?Payment)

(B!Request, S!Shipment, B?Shipment, B!Payment, S?Payment, S?Request)

(B!Request, S!Shipment, B?Shipment, B!Payment, S?Request, S?Payment)

(B!Request, S!Shipment, B?Shipment, S?Request, B!Payment, S?Payment)

(B!Request, S?Request, B!Payment, S?Payment, S!Shipment, B?Shipment)

(B!Request, S?Request, B!Payment, S!Shipment, B?Shipment, S?Payment)

(B!Request, S?Request, B!Payment, S!Shipment, S?Payment, B?Shipment)

(B!Request, S?Request, S!Shipment, B!Payment, S?Payment, B?Shipment)

(B!Request, S?Request, S!Shipment, B!Payment, B?Shipment, S?Payment)

(B!Request, S?Request, S!Shipment, B?Shipment, B!Payment, S?Payment)

Listing 3 gives a buggy variant of Flexible Purchase. It is not live because
status, which must be bound for the completion, cannot be bound in any en-
actment. It is unsafe because both B and S can send Payment and Shipment
concurrently, thus concurrently binding paid.

Listing 3: An unsafe and nonlive version of the protocol in Listing 1.

Buggy F l e x i b l e Purchase {
r o l e s B, S
parameters out ID key , out item , out s tatus , out paid

B −> S : Request [out ID key , out item]
S −> B: Shipment [in ID key , in item , out paid]
B −> S : Payment [in ID key , in item , out paid]

}

Listing 4 shows the outcomes of liveness and safety queries for this proto-
col, giving counterexamples for both. For liveness, it gives a enactment that is
deadlocked. For safety, it reports the parameter (paid) as being multiply bound.

Listing 4: Executing Tango on Buggy Flexible Purchase

>bspl verify liveness Buggy-Flexible-Purchase.bspl

{’live’: False, ’reason’: ’Found path that does not extend to completion’, ’

path’: (B!Request, B!Payment, S?Payment, S?Request), ’checked’: 5, ’

maximal paths’: 1, ’elapsed’: 0.001316600013524294}

>bspl verify safety Buggy-Flexible-Purchase.bspl

{’safe’: False, ’reason’: ’Found parameter with multiple sources in a path’,

’path’: (B!Request, B!Payment, S?Request, S!Shipment), ’parameter’: ’

paid’, ’checked’: 7, ’maximal paths’: 1, ’elapsed’:

0.0017665999475866556}

8 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

1.3.3 Kiko

Kiko is a protocol-based programming model for agents. Specifically, given an
information protocol, it enables implementing agents that play roles in the pro-
tocol. To make agent development easy, Kiko includes a middleware that exposes
an event-driven, information-based interface that may be used to implement an
agent’s internal reasoning.

Internal Logic
(Decision Making)

Protocol Adapter

Internet

Information-Based
API

Network API

Fig. 1.2: Agent architecture in the Kiko programming model.

As Figure 1.2 shows, each Kiko agent has an information protocol adapter
that sits between the network and the agent’s decision making, that is, its in-
ternal logic. An agent’s Kiko adapter maintains its local state. Based on the
local state and the protocol specification, it keeps track of information-enabled
forms. The forms are necessarily partial message instances that would be legal
to send if completed. Specifically, a form’s ⌜in⌝ parameters are bound (from the
local state) and the ⌜out⌝ parameters are unbound (because they don’t exist in
the local state). (Information protocols may also feature the ⌜nil⌝ adornment,
which we omit from this discussion for simplicity.) Figure 1.3 gives a possible
local state for a buyer agent and the forms available to it in that state.

Request(1, fig)
Request(2, jam)
Payment(1, fig, $10)

(a) Local state

Request(ID, item)
Payment(2, jam, paid)

(b) Enabled forms

Fig. 1.3: A possible local state for a buyer agent and the enabled forms in that
state.

1 Tools for Implementing Multiagent Systems Based on Protocols 9

To create a Kiko agent, a developer writes a set of decision makers. A decision
maker is an event-triggered piece of code that gets the set of enabled forms and
completes some subset via some logic. The completed forms are emitted by the
adapter as messages and added to the local state.

Listing 5 shows a decision maker for a buyer agent. Its logic is to complete
those Payment forms for which Shipment has been received. The completed
Payment forms are sent by the adapter as messages. The decision maker is
triggered at 1700 hours every day. In other words, it processes enabled Payments
in a batch every day.

Listing 5: A buyer agent’s decision maker that sends Payment only in those
enactments (as identified by ID) in which Shipment has been received.

@adapter . s c h e d u l e d e c i s i o n (00 17 ∗ ∗ ∗)
de f payment (enab led , s t a t e) :

payments = enab l ed . messages (Payment)
f o r p i n payments :

i f (nex t (s t a t e . messages (Shipment , system=p . system ,
ID=p [” ID ”])))
p . b ind (pa id =”10”)

Listing 6 informally describes the logic of the adapter. In essence, the adapter
runs a loop in which it either responds to a trigger by invoking the corresponding
decision maker or receives a message (if one is available).

Attempts refer to completed forms. This terminology reflects the fact that
completed forms may be mutually inconsistent and therefore must be checked by
the adapter before emission. Notice how the adapter abstracts away the actual
emission and reception of messages from the agent developer. Unlike alternative
approaches, a Kiko developer never needs to selectively receive messages—that
is, specify which message to receive next and block until it arrives. As in the
actor model [38], messages are received and added to the local state as they are
made available by the network. A feature of Kiko is that it needs nothing more
than UDP (part of the Internet Protocol suite) for transport. UDP, notably,
supports only best-effort (unreliable, unordered) message delivery.

Listing 6: Adapter logic.

//ti : di r e p r e s e n t s a d e c i s i o n maker di with t r i g g e r ti
//ci r e p r e s e n t s a channe l on which messages from anothe r agent

may be r e c e i v e d
wh i l e ()

r = l i s t e n (t1 , . . . ,tm , c1 , . . . ,cn)
i f (r i s a ti)

a t tempts = invoke (di , fo rms)
i f (check (at tempts))

upda t eLoca l S t a t e (a t tempts)
emit (a t tempts)

e l s e
m = r e c e i v e (r)
i f (check (m))

upda t eLoca l S t a t e (m)

10 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

The Kiko adapter, documentation, and sample code are available at:
https://gitlab.com/masr/bspl/-/tree/kiko/

1.3.4 Mandrake

Mandrake is another protocol-based programming model. Kiko’s enablement-
based programming is more general and convenient to use than Mandrake’s
reactive programming model (an agent reacts to the reception of a message by
sending a message). Where Mandrake goes beyond Kiko is in the handling of
delayed (potentially lost) messages, a kind of fault that may arise when using
network transports such as UDP. Specifically, Mandrake enables writing agent-
level policies for dealing with such faults.

Mandrake is inspired by the end-to-end principle [57]. Although it is to-
day customary to assume a reliable transport layer such as TCP (also part of
the Internet Protocol suite), the end-to-end principle advises that lower-layer
reliability guarantees are inadequate for building reliable multiagent systems.
Instead, the agents must encode the necessary reliability mechanisms.

A simple example highlights the inadequacy of lower-level reliability guaran-
tees. Suppose the seller agent has sent Shipment but has not received Payment
even after waiting a considerable amount of time. There are two reasons why
the seller has not received Payment. Either buyer sent the Payment but it
was delayed in transit, or buyer never sent Payment. These reasons are indis-
tinguishable to the seller.

Whereas TCP can help address network problems via retransmission, it is of
no help if an agent never sends a message. Therefore, the seller must imple-
ment some fault handling logic. For example, as is often the case in real life, it
may remind the buyer about its Shipment. Listing 7 shows such a retransmis-
sion policy for a seller agent. The policy specifically is to send a daily reminder
of the Shipment to the buyer until it receives the Payment or it has sent five
reminders.

Listing 7: A seller’s reminder policy.

− a c t i o n : remind Buyer o f Shipment u n t i l Payment
when : 0 0 ∗ ∗ ∗ // d a i l y
max t r i e s : 5

Notice that the reminders amount to application-level retransmission of mes-
sages. As explained above, they are necessary, but once we have them at the
application level, lower-level reliability mechanisms, such as those provided by
TCP, are obviated, thus leading to potentially improved performance. Mandrake
is available at https://gitlab.com/masr/bspl/-/tree/mandrake/

https://gitlab.com/masr/bspl/-/tree/kiko/
https://gitlab.com/masr/bspl/-/tree/mandrake/

1 Tools for Implementing Multiagent Systems Based on Protocols 11

1.3.5 Reflections

The autonomy of entities motivates protocols, which are thus inherent to mul-
tiagent systems. There are, of course, multiagent systems that are implemented
without specifying a protocol. In such cases, the agent programmer implements
the protocol in low-level agent code. For anything but the most trivial proto-
cols, such an exercise is bound to be complex and error-prone. By enabling the
specification of protocols and implementing protocol-based agents, our tooling
addresses this gap.

We started with a simple protocol Flexible Purchase; verified it for safety
and liveness using Tango, and showed how one might implement agents using
Kiko and Mandrake. Keeping in mind the alternative approaches described in
Section 1.2, the following points are noteworthy about our approach.

• Our approach is formal, and our tooling enables implementing a verified
protocol. That is, the model you verify is the model you implement.

• Flexible Purchase, as simple as it is, is not even expressible as a well-formed
protocol in alternative protocol specification approaches [20].

• In general, protocol specifications can be much more complex than our ex-
amples. The number of possible enactments of a protocol can, in the worst
case, grow exponentially with the size of the protocol. Kiko’s enablement-
based approach abstracts away much of this complexity.

• Our approach does not require message ordering guarantees from the com-
munication infrastructure. Both the actor model [1, 38] and the end-to-end
principle [57] argue against such guarantees. Mandrake enables agent pro-
grammers to encode policies for handling potential communication failures
in a straightforward manner.

• Our approach leads to decentralized multiagent systems—agents communi-
cate with each other via asynchronous messaging. A “centralized” multia-
gent system would be a special case in which the protocol is such that there
is one role such that all communications are between it and the other roles.

• High-level meaning is important. Although not the focus of this contribu-
tion, Table 1.1 gives pointers to tools that show how protocols are a substrate
that supports meaning. Both are necessary: whereas protocols define the le-
gal communicative moves with respect to causality and integrity, notions
such as commitments capture their meaning.

1.4 Summary of Tools for Interaction-Oriented
Programming

This paper introduces publicly available software that embodies the principles
of Interaction-Oriented Programming (IOP) and should help facilitate the adop-
tion of multiagent systems by developers. The software is centered on the idea

12 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

of information protocols, a novel approach for modeling flexible multiagent sys-
tems. The software enables verifying protocols and implementing protocol-based
agents. Table 1.1 summarizes the various tools for engineering multiagent sys-
tems based on models of interaction that we have developed and which are still
active. We have explained Tango, Kiko, and Mandrake above. We briefly explain
the others below.

Table 1.1: Tools for engineering multiagent systems based on interaction: infor-
mation protocols and commitments. Internals refers to the language the tool is
constructed using and Usage refers to the language it outputs or analyzes.

Language

Tool Main purpose Internals Usage Status

Tango Verifying protocols Python BSPL Stable
Kiko Enablement-based imperative agent pro-

gramming
Python Python Stable

Mandrake Reactive, fault-tolerant agent programming Python Python Stable
Orpheus Enablement-based cognitive agent pro-

gramming
Jason Jason Beta

Cupid Compile commitments into database
queries

Cupid SQL Beta

Azorus Enablement-based cognitive agent pro-
gramming with commitments

Jason Jason Alpha

Orpheus [7] is a programming model inspired by Kiko but geared toward
implementing cognitive agents in Jason. Orpheus provides a tool that generates
much of the general-purpose reasoning needed by an agent that is based on
the given protocol (and the BSPL semantics). A programmer needs to provide
only the business logic comprising the agent’s goals (presumably to support the
agent’s principal’s requirements) and the mapping of these goals to the messages
the agent needs to send.

Communication meaning is a defining theme in multiagent systems. A su-
perior alternative to the FIPA ACL [33] and KQML [16] is specifying social
meaning [64] in terms of commitments and kinds of norms. Cupid is a language
for specifying the meaning of communicative acts in terms of commitments [22].
Cupid is accompanied by a compiler that translates commitment specifications
into SQL queries over a database of communicative acts.

Azorus [18] extends Orpheus by incorporating support for commitment-based
reasoning in Jason. Specifically, Azorus includes a Cupid compiler targeted to
Jason. Jason programmers can now write agents that query states of commit-
ments and take protocol-based actions accordingly. Interestingly, though com-
mitment protocols [77, 81] precede information protocols by over a decade, the
connection between commitments and information protocols for the purpose
of programming multiagent systems was not fleshed out until recently. Azorus
begins to fill that gap.

1 Tools for Implementing Multiagent Systems Based on Protocols 13

1.5 Artificial Intelligence Context

Our current techniques fall squarely in the so-called Good Old-Fashioned AI
(GOFAI) camp in that we seek to model and verify multiagent systems on the
basis of requirements and then implement them using middleware-supported
programming abstractions.

We seek representations that are intuitive to both stakeholders and program-
mers. Our whole enterprise is, in fact, motivated by the need for explicitly
modeling the high-level meaning of interactions via notions such as commit-
ments and other norms. It is worth keeping in mind that interoperability is
an important goal of engineering multiagent systems, and because interoper-
ability between agents depends on them having a common understanding of
such meaning, there is no alternative to specifying it explicitly. In this regard,
ours is no different from any existing multiagent systems engineering approach.
Our approach has room for exploiting semantic descriptions of objects [45] and
planning-based agents [47, 76].

The Theory of Mind (ToM) is the notion that agents model other agents as
having minds [13, 55]. ToM justifies the use of folk psychological concepts (e.g.,
beliefs and goals) in AI, e.g., [28, 49, 62].

Although the current paper deemphasizes representing agents in terms of
BDI, our other work (discussed above) addresses this theme. There is also an
opportunity to combine our approach with learning agents [75, 2]. For example,
an agent may learn to act in ways that represent violations of the specified norms
but lead to overall societal benefit. We are agnostic on the representation of an
agent’s decision making except where it interfaces with communications. Those
communications must be made based on protocols (for interoperability) and in
the light of their specified meaning (ignoring which could result in unexpected
sanctions and missed opportunities).

Large Language Models (LLMs) and other generative AI have upended many
intellectual fields. LLMs perform comparably to humans in tasks such as ques-
tion answering and code generation [48], though with well-known limitations in
reasoning [78].

The agentic methods form “agents” by combining generative AI with in-
formation and abilities to sense and act, e.g., via web services [82]. Current
frameworks emphasize workflows to execute compositions of agents specified
as task graphs [44, 30]. Formulating agent coordination in task graphs sounds
attractive, but its shortcomings have been known for decades [27, 72, 3]. Chore-
ographies [53] go beyond workflows in considering multiple loci of action, and
they too are limited [65, 67].

A major shortcoming of workflows and choreographies is their rigidity, which
limits agent autonomy and responsiveness to exceptions [46]. Thus, their adop-
tion in modern agentic frameworks is particularly unfortunate—the capabilities
of agents built with modern AI techniques would be stymied by poor coordina-
tion. Thus, a challenge is to develop agents who can reason about and interact
based on protocols. LLMs have shown capabilities comparable to humans on

14 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

some ToM tasks, mostly focused on beliefs [43, 74], whereas humans (even chil-
dren) understand desires more readily than beliefs [37]. Enhancements to LLMs
for collaboration via ToM could help go beyond today’s trivial agentic models.

1.6 Blue Skies All Around!

A vision that inspired the field of multiagent systems was that agents would bet-
ter capture autonomy in distributed systems. A key enabling idea in this direc-
tion was that of interaction meaning: If agents could understand the meaning of
their interactions, then they could make decisions intelligently. Early approaches
emphasize mentalist semantics, e.g., as in KQML and FIPA ACL. Despite their
many and well-documented shortcomings (as discussed in Section 1.2), their us-
age continues within popular multiagent programming frameworks. The work
highlighted in this paper highlights a practical basis for intelligent, decentralized
decision making without the shortcomings of the mentalist approaches. A di-
rection for the entire engineering multiagent systems (EMAS) community is to
reorient their abstractions and tooling to incorporate protocols and norms. Ad-
ditionally, we need standards for developing multiagent systems that are based
on these ideas. We think such standards would galvanize the EMAS community
and make its work attractive to practitioners.

Interaction-Oriented Programming is very much an ongoing effort, and we
expect to augment and improve the software suite over the coming years. We
highlight some specific directions here. An additional Blue Sky discussion is in
[19].

Higher-Level Protocol Languages. Although BSPL is foundational and higher-
level than alternative protocol languages, it captures individual messages and
may be thought of as an assembly language for operational protocols. In par-
ticular, it does not distinguish information that is essential to message meaning
from information that is purely coordinative. For example, in the context of an
alternative purchase protocol, imagine that a buyer may send either Accept
or Reject in response to an Offer. Parameters such as ID, item, price are related
to the meaning of Accept and Reject and thus would feature in both. To make
Accept and Reject mutually exclusive in BSPL, we would need another param-
eter which would be ⌜out⌝ in both. This parameter is purely coordinative; it
has nothing to do with the meanings of Accept and Reject. The coordination
requirements could, of course, be more complex than mutual exclusion, and
a protocol designer would have to map those requirements to the elementary
notions in BSPL. This motivates protocol languages that are higher-level than
BSPL in that they are focused on meaning and enable generating the necessary
coordination. Langshaw [71] is a start in that direction. Langshaw protocols are
synchronous and specify agent actions and saysos (the capability of generating
it) over information. BSPL protocols are compiled out from Langshaw protocols.

Fault Tolerance and scalability. These are both of practical importance but
are not particularly well-addressed in the EMAS community. Mandrake requires

1 Tools for Implementing Multiagent Systems Based on Protocols 15

the specification of fault tolerance policies. Ideally, we should exploit the mean-
ing specifications to automate fault tolerance. For example, commitment spec-
ifications could tell an agent when and which communications are important
and, therefore, worth retransmitting.

Modern architectural paradigms, such as the cloud, are motivated by scala-
bility. Though there have been efforts linking information protocols and cloud
computing paradigms such as serverless computing [24] and microservices [42],
research on engineering multiagent systems, including IOP, lacks a story for how
to realize highly scalable multiagent systems. The actor model is known for its
scalability; developing a synthesis of protocols and actors would be a valuable
direction.

Types. A type theory for protocols would further enhance the programming
mode by catching errors at compile time and guiding the implementation of
agents. For example, we could capture at compile time the error of an agent
attempting to send both Accept and Reject in an enactment. The notion of
dependent types (e.g., as in Idris [41]) could be interesting for this purpose.

Methodologies. Developing methodologies for specifying meaning, protocols,
and implementing agents will be important. We need to understand how re-
quirements map to the specification of meaning in terms of norms, e.g., in the
spirit of Protos [21]. We need to extend Tango to support the verification of a
broader class of properties, e.g., encoding the stakeholder requirements on pro-
tocols. We need to understand how to map agent requirements into agent code
in programming models such as Kiko. Kiko guarantees an agent’s compliance
with the protocol— statically, in the case of sequential agents. We may also want
to verify that the agent’s internal logic meets requirements via formal methods
and testing.

1.7 Reproducibility

The entire codebase referenced in this paper, as well as other related tools,
are available online at https://gitlab.com/masr. Software developed in [42] is
available at https://gitlab.com/masr/information-protocols-dapr-emas-2022.
Software developed in [24] is available at https://gitlab.com/masr/deserv.

Acknowledgments

Thanks to the NSF (grant IIS-1908374) and EPSRC (grant EP/N027965/1) for
support.

https://gitlab.com/masr
https://gitlab.com/masr/information-protocols-dapr-emas-2022
https://gitlab.com/masr/deserv

16 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

References

1. Agha, G.A.: Actors. MIT Press, Cambridge, Massachusetts (1986).
https://doi.org/10.7551/mitpress/1086.001.0001

2. Agrawal, R., Ajmeri, N., Singh, M.P.: Socially intelligent genetic agents for the
emergence of explicit norms. In: Proceedings of the 31st International Joint Con-
ference on Artificial Intelligence (IJCAI). pp. 10–16. IJCAI, Vienna (Jul 2022).
https://doi.org/10.24963/ijcai.2022/2

3. Attie, P.C., Singh, M.P., Sheth, A.P., Rusinkiewicz, M.: Specifying and enforcing
intertask dependencies. In: Proceedings of the 19th International Conference on
Very Large Data Bases (VLDB). pp. 134–145. Morgan Kaufmann, Dublin (Aug
1993), http://www.vldb.org/conf/1993/P134.PDF

4. Austin, J.L.: How to Do Things with Words. Clarendon Press, Oxford (1962)
5. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh, M.P.: Choice,

interoperability, and conformance in interaction protocols and service choreogra-
phies. In: Proceedings of the 8th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS). pp. 843–850. IFAAMAS, Budapest (May 2009).
https://doi.org/10.5555/1558109.1558129

6. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verifica-
tion for guaranteeing interoperability in open environments. In: Proceedings of
the 4th International Conference on Service-Oriented Computing (ICSOC). Lecture
Notes in Computer Science, vol. 4294, pp. 339–351. Springer, Chicago (Dec 2006).
https://doi.org/10.1007/11948148 28

7. Baldoni, M., Christie V, S.H., Singh, M.P., Chopra, A.K.: Orpheus: Engineering
multiagent systems via communicating agents. In: Proceedings of the 39th AAAI
Conference on Artificial Intelligence (AAAI). pp. 23135–23143. AAAI, Philadelphia
(Feb 2025). https://doi.org/10.1609/aaai.v39i22.34478

8. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester, UK (2007). https://doi.org/10.1002/9780470058411

9. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based
software development with JADE. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS) 34(2), 36 (2020). https://doi.org/10.1007/s10458-020-09460-z

10. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Science of Computer Programming 78(6), 747–761 (Jun
2013). https://doi.org/10.1016/j.scico.2011.10.004

11. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan
failure and some internal actions). In: Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI). Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 635–640. IOS Press, Lisbon (Aug 2010). https://doi.org/10.3233/978-
1-60750-606-5-635

12. Caponetto, L., Labinaz, P. (eds.): Sbisà on Speech as Action. Philosophers in Depth,
Palgrave Macmillan, Cham, Switzerland (2023). https://doi.org/10.1007/978-3-031-
22528-4

13. Carruthers, P., Smith, P.K.: Introduction. In: Theories of Theories of Mind [14],
chap. 1, pp. 1–8. https://doi.org/10.1017/CBO9780511597985

14. Carruthers, P., Smith, P.K. (eds.): Theories of Theories of Mind. Cambridge Uni-
versity Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511597985

15. Cernuzzi, L., Zambonelli, F.: Experiencing AUML in the GAIA methodology. In:
Proceedings of the 6th International Conference on Enterprise Information Systems
(ICEIS). pp. 283–288. Science and Technology Publications, Lda, Porto, Portugal
(Apr 2004). https://doi.org/10.5220/0002618802830288

16. Chalupsky, H., Finin, T., Fritzson, R., McKay, D., Shapiro, S., Wiederhold, G.: An
overview of KQML: A knowledge query and manipulation language. TR, University
of Maryland Computer Science Department, Baltimore (Apr 1992)

http://www.vldb.org/conf/1993/P134.PDF

1 Tools for Implementing Multiagent Systems Based on Protocols 17

17. Chopra, A.K., Artikis, A., Bentahar, J., Colombetti, M., Dignum, F., Fornara, N.,
Jones, A.J.I., Singh, M.P., Yolum, P.: Research directions in agent communication.
ACM Transactions on Intelligent Systems and Technology (TIST) 42(2), 20:1–20:23
(Mar 2013). https://doi.org/10.1145/2438653.2438655

18. Chopra, A.K., Baldoni, M., Christie V, S.H., Singh, M.P.: Azorus: Commitments
over protocols for BDI agents. In: Proceedings of the 24th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 490–499. IFAA-
MAS, Detroit (May 2025)

19. Chopra, A.K., Christie V, S.H.: Communication meaning: Foundations and direc-
tions for systems research. In: Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems. pp. 1786–1791. ACM, London (2023)

20. Chopra, A.K., Christie V, S.H., Singh, M.P.: An evaluation of communication pro-
tocol languages for engineering multiagent systems. Journal of Artificial Intelligence
Research (JAIR) 69, 1351–1393 (Dec 2020). https://doi.org/10.1613/jair.1.12212

21. Chopra, A.K., Dalpiaz, F., Aydemir, F.B., Giorgini, P., Mylopoulos, J., Singh,
M.P.: Protos: Foundations for engineering innovative sociotechnical systems. In:
Proceedings of the 22nd IEEE International Requirements Engineering Confer-
ence (RE). pp. 53–62. IEEE Computer Society, Karlskrona, Sweden (Aug 2014).
https://doi.org/10.1109/RE.2014.6912247

22. Chopra, A.K., Singh, M.P.: Cupid: Commitments in relational algebra. In: Proceed-
ings of the 29th Conference on Artificial Intelligence (AAAI). pp. 2052–2059. AAAI
Press, Austin, Texas (Jan 2015). https://doi.org/10.1609/aaai.v29i1.9443

23. Chopra, A.K., Singh, M.P.: Custard: Computing norm states over information stores.
In: Proceedings of the 15th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). pp. 1096–1105. IFAAMAS, Singapore (May 2016).
https://doi.org/10.5555/2936924.2937085

24. Christie V, S.H., Chopra, A.K., Singh, M.P.: Deserv: Decentralized server-
less computing. In: Proceedings of the 19th IEEE International Conference on
Web Services (ICWS). pp. 51–60. IEEE Computer Society, Virtual (Sep 2021).
https://doi.org/10.1109/ICWS53863.2021.00020

25. Christie V, S.H., Chopra, A.K., Singh, M.P.: Mandrake: Multiagent systems as
a basis for programming fault-tolerant decentralized applications. Journal of Au-
tonomous Agents and Multi-Agent Systems (JAAMAS) 36(1), 16:1–16:30 (Apr
2022). https://doi.org/10.1007/s10458-021-09540-8

26. Christie V, S.H., Singh, M.P., Chopra, A.K.: Kiko: Programming agents to enact
interaction protocols. In: Proceedings of the 22nd International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS). pp. 1154–1163. IFAAMAS,
London (May 2023). https://doi.org/10.5555/3545946.3598758

27. Chrysanthis, P.K., Ramamritham, K.: Synthesis of extended transaction models
using ACTA. ACM Transactions on Database Systems 19(3), 450–491 (Sep 1994).
https://doi.org/10.1145/185827.185843

28. Dennett, D.C.: The Intentional Stance. MIT Press, Cambridge, Massachusetts
(1987)

29. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: OWL-P: A methodology
for business process development. In: Proceedings of the 7th International Bi-
Conference on Agent-Oriented Information Systems (AOIS). Lecture Notes in Com-
puter Science, vol. 3529, pp. 79–94. Springer, Utrecht, The Netherlands (Jul 2005).
https://doi.org/10.1007/11916291 6

30. Dibia, V., Chen, J., Bansal, G., Syed, S., Fourney, A., Zhu, E., Wang,
C., Amershi, S.: AutoGen Studio: A no-code developer tool for build-
ing and debugging multi-agent systems. CoRR abs/2408.15247 (Aug 2024).
https://doi.org/10.48550/ARXIV.2408.15247

31. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactability
of agent interaction protocols: Towards a unified approach. In: Proceedings of the
7th International Workshop on Engineering Multi-Agent Systems (EMAS). Lecture

18 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

Notes in Computer Science, vol. 12058, pp. 43–64. Springer, Montréal (May 2019).
https://doi.org/10.1007/978-3-030-51417-4 3

32. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication
language. In: Proceedings of the 3rd International Conference on Information and
Knowledge Management. pp. 456–463. ACM Press, Gaithersburg, Maryland (Dec
1994). https://doi.org/10.1145/191246.191322

33. FIPA: FIPA agent communication language specifications. http://www.fipa.org/
repository/aclspecs.html (2002), FIPA: The Foundation for Intelligent Physical
Agents. Accessed 2025-01-20

34. FIPA: FIPA interaction protocol specifications. http://www.fipa.org/repository
/ips.html (2003), FIPA: The Foundation for Intelligent Physical Agents. Accessed
2024-11-24

35. Galland, S., Rodriguez, S., Gaud, N.: Run-time environment for the
SARL agent-programming language: The example of the Janus plat-
form. Future Generation Computer Systems 107, 1105–1115 (Jun 2020).
https://doi.org/10.1016/j.future.2017.10.020

36. Gasser, L.: Social conceptions of knowledge and action: DAI foundations and
open systems semantics. Artificial Intelligence 47(1–3), 107–138 (Jan 1991).
https://doi.org/10.1016/0004-3702(91)90052-L

37. Harris, P.: Desires, beliefs, and language. In: Carruthers and Smith [14], chap. 13,
pp. 200–220. https://doi.org/10.1017/CBO9780511597985

38. Hewitt, C.: Viewing control structures as patterns of passing messages. Artificial
Intelligence 8(3), 323–364 (Jun 1977). https://doi.org/10.1016/0004-3702(77)90033-
9

39. Hewitt, C.: Open information systems semantics for distributed artificial intelligence.
Artificial Intelligence 47(1–3), 79–106 (Jan 1991). https://doi.org/10.1016/0004-
3702(91)90051-K

40. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In:
Proceedings of the 5th International Workshop on Agent-Oriented Software Engi-
neering (AOSE). Lecture Notes in Computer Science, vol. 3382, pp. 16–30. Springer,
New York (Jul 2004). https://doi.org/10.1007/978-3-540-30578-1 2

41. Idris: Idris: A language for type-driven development (Mar 2025), www.idris-lang.org,
accessed 2025-03-05

42. Khadse, A.K., Christie V, S.H., Chopra, A.K., Singh, M.P.: Protocol-based engi-
neering of microservices. In: Proceedings of the 11th International Workshop on
Engineering Multi-Agent Systems (EMAS). pp. 61–77. No. 14378 in Lecture Notes
in Artificial Intelligence, London (May 2023). https://doi.org/10.1007/978-3-031-
48539-8 4

43. Kosinski, M.: Evaluating large language models in theory of mind tasks. Pro-
ceedings of the National Academy of Sciences 121(45), e2405460121 (Oct 2024).
https://doi.org/10.1073/pnas.2405460121

44. LangGraph: LangGraph: Building language agents as graphs (Dec 2024), https:
//langchain-ai.github.io/langgraph/, accessed 2024-12-05

45. Lemée, J., Vachtsevanou, D., Mayer, S., Ciortea, A.: Signifiers for conveying and
exploiting affordances: From human-computer interaction to multi-agent systems.
Annals of Mathematics and Artificial Intelligence 92(4), 815–835 (2024)

46. Lichtenstein, T., Chopra, A.K., Singh, M.P., Weske, M.: From visual chore-
ographies to flexible information protocols. In: Proceedings of the 22nd Inter-
national Conference on Service-Oriented Computing (ICSOC). pp. 354–369. No.
15404 in Lecture Notes in Computer Science, Springer, Tunis, Tunisia (Dec 2024).
https://doi.org/10.1007/978-981-96-0805-8 25

47. Meneguzzi, F., Telang, P.R., Singh, M.P.: A first-order formalization of commit-
ments and goals for planning. In: Proceedings of the 27th Conference on Artificial
Intelligence (AAAI). pp. 697–703. AAAI Press, Bellevue, Washington (Jul 2013).
https://doi.org/10.1609/aaai.v27i1.8632

http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
www.idris-lang.org
https://langchain-ai.github.io/langgraph/
https://langchain-ai.github.io/langgraph/

1 Tools for Implementing Multiagent Systems Based on Protocols 19

48. Mozannar, H., Bansal, G., Fourney, A., Horvitz, E.: When to show a suggestion?
Integrating human feedback in AI-assisted programming. In: Proceedings of the 38th
AAAI Conference on Artificial Intelligence (AAAI). pp. 10137–10144. AAAI Press,
Vancouver (Feb 2024). https://doi.org/10.1609/AAAI.V38I9.28878

49. Newell, A.: The knowledge level. Artificial Intelligence 18(1), 87–127 (Jan 1982).
https://doi.org/10.1016/0004-3702(82)90012-1

50. Odell, J., Parunak, H.V.D., Bauer, B.: Representing agent interaction protocols in
UML. In: Proceedings of the 1st International Workshop on Agent-Oriented Software
Engineering (AOSE 2000). Lecture Notes in Computer Science, vol. 1957, pp. 121–
140. Springer, Toronto (Jun 2001). https://doi.org/10.1007/3-540-44564-1 8

51. Padgham, L., Winikoff, M.: Prometheus: A practical agent-oriented methodology. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, chap. 5, pp.
107–135. Idea Group, Hershey, Pennsylvania (2005). https://doi.org/10.4018/978-1-
59140-581-8.ch005

52. Parnas, D.L.: Information distribution aspects of design methodology. In: Proceed-
ings of the International Federation for Information Processing Congress. vol. TA-3,
pp. 26–30. North Holland, Amsterdam (1971)

53. Peltz, C.: Web service orchestration and choreography. IEEE Computer 36(10), 46–
52 (Oct 2003). https://doi.org/10.1109/MC.2003.1236471

54. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS) 2(4), 15:1–15:24 (Nov 2007).
https://doi.org/10.1145/1293731.1293735

55. Premack, D., Woodruff, G.: Does the chimpanzee have a theory
of mind? Behavioral and Brain Sciences 1(4), 515–526 (Dec 1978).
https://doi.org/10.1017/S0140525X00076512

56. Rooney, C., Collier, R.W., O’Hare, G.M.P.: VIPER: A VIsual protocol editoR. In:
Proceedings of the 6th International Conference on Coordination Models and Lan-
guages COORDINATION. Lecture Notes in Computer Science, vol. 2949, pp. 279–
293. Springer, Pisa (Feb 2004). https://doi.org/10.1007/978-3-540-24634-3 21

57. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system de-
sign. ACM Transactions on Computer Systems 2(4), 277–288 (Nov 1984).
https://doi.org/10.1145/357401.357402

58. Sbisà, M.: How to read Austin. Pragmatics 17(3), 461–473 (Sep 2007).
https://doi.org/10.1075/prag.17.3.06sbi

59. Sbisà, M.: Varieties of speech act norms. In: Witek, M., Witczak-Plisiecka, I. (eds.)
Normativity and Variety of Speech Actions, Poznań Studies in the Philosophy of the
Sciences and the Humanities, vol. 112, pp. 23–50. Brill Rodopi, Leiden, Netherlands
(2018). https://doi.org/10.1163/9789004366527 003

60. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, Cambridge, United Kingdom (1969).
https://doi.org/10.1017/CBO9781139173438

61. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Upper Saddle River, New Jersey (1996)

62. Singh, M.P.: Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications. No. 799 in Lecture Notes in Computer Science, Springer,
Heidelberg (1994). https://doi.org/10.1007/BFb0030531, http://www.csc.ncsu.edu
/faculty/mpsingh/books/MAS/

63. Singh, M.P.: Agent communication languages: Rethinking the principles. IEEE Com-
puter 31(12), 40–47 (Dec 1998)

64. Singh, M.P.: A social semantics for agent communication languages. In: Proceed-
ings of the 1999 IJCAI Workshop on Agent Communication Languages. pp. 31–
45. No. 1916 in Lecture Notes in Artificial Intelligence, Springer, Berlin (2000).
https://doi.org/10.1007/10722777 3

65. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
Blindingly Simple Protocol Language. In: Proceedings of the 10th International Con-

http://www.csc.ncsu.edu/faculty/mpsingh/books/MAS/
http://www.csc.ncsu.edu/faculty/mpsingh/books/MAS/

20 Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh

ference on Autonomous Agents and MultiAgent Systems (AAMAS). pp. 491–498.
IFAAMAS, Taipei (May 2011). https://doi.org/10.5555/2031678.2031687

66. Singh, M.P.: LoST: Local State Transfer—An architectural style for the distributed
enactment of business protocols. In: Proceedings of the 9th IEEE International Con-
ference on Web Services (ICWS). pp. 57–64. IEEE Computer Society, Washington,
DC (Jul 2011). https://doi.org/10.1109/ICWS.2011.48

67. Singh, M.P.: Semantics and verification of information-based protocols. In: Pro-
ceedings of the 11th International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS). pp. 1149–1156. IFAAMAS, Valencia, Spain (Jun 2012).
https://doi.org/10.5555/2343776.2343861

68. Singh, M.P.: Bliss: Specifying declarative service protocols. In: Proceed-
ings of the 11th IEEE International Conference on Services Computing
(SCC). pp. 235–242. IEEE Computer Society, Anchorage, Alaska (Jun 2014).
https://doi.org/10.1109/SCC.2014.39

69. Singh, M.P., Chopra, A.K.: Programming multiagent systems without programming
agents. In: Proceedings of the 7th International Workshop on Programming Mul-
tiagent Systems (ProMAS 2009). pp. 1–14. No. 5919 in Lecture Notes in Artificial
Intelligence, Springer (May 2010). https://doi.org/10.1007/978-3-642-14843-9 1, in-
vited paper

70. Singh, M.P., Christie V, S.H.: Tango: Declarative semantics for multiagent com-
munication protocols. In: Proceedings of the 30th International Joint Confer-
ence on Artificial Intelligence (IJCAI). pp. 391–397. IJCAI, Online (Aug 2021).
https://doi.org/10.24963/ijcai.2021/55

71. Singh, M.P., Christie V, S.H., Chopra, A.K.: Langshaw: Declarative interaction pro-
tocols based on sayso and conflict. In: Proceedings of the 30th International Joint
Conference on Artificial Intelligence (IJCAI). pp. 202–210. IJCAI, Jeju, Korea (Aug
2024). https://doi.org/10.24963/ijcai.2024/23

72. Singh, M.P., Huhns, M.N.: Automating workflows for service order processing:
Integrating AI and database technologies. IEEE Expert 9(5), 19–23 (Oct 1994).
https://doi.org/10.1109/64.331480

73. Spanoudakis, N.I., Moraitis, P.: The ASEME methodology. International
Journal of Agent-Oriented Software Engineering 7(2), 79–107 (May 2022).
https://doi.org/10.1504/IJAOSE.2022.122600

74. Strachan, J.W.A., Albergo, D., Borghini, G., Pansardi, O., Scaliti, E., Gupta, S.,
Saxena, K., Rufo, A., Panzeri, S., Manzi, G., Graziano, M.S.A., Becchio, C.: Testing
theory of mind in large language models and humans. Nature Human Behaviour 8,
1285–1295 (Jul 2024). https://doi.org/10.1038/s41562-024-01882-z

75. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive Com-
putation and Machine Learning, MIT Press, Cambridge, Massachusetts, 2nd edition
edn. (2018)

76. Telang, P.R., Meneguzzi, F., Singh, M.P.: Hierarchical planning about goals and
commitments. In: Proceedings of the 12th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). pp. 877–884. IFAAMAS, St. Paul, Min-
nesota (May 2013). https://doi.org/10.5555/2484920.2485059

77. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment pro-
tocols: Enabling open Web-based multiagent systems. Journal of Autonomous
Agents and Multi-Agent Systems (JAAMAS) 2(3), 217–236 (Sep 1999).
https://doi.org/10.1023/A:1010056221226

78. Verma, M., Bhambri, S., Kambhampati, S.: On the brittle foundations of ReAct
prompting for agentic large language models. CoRR abs/2405.13966 (May 2024).
https://doi.org/10.48550/ARXIV.2405.13966

79. Winikoff, M.: Implementing commitment-based interactions. In: Proceedings
of the 6th International Joint Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS). pp. 868–875. IFAAMAS, Honolulu (May 2007).
https://doi.org/10.1145/1329125.1329283

1 Tools for Implementing Multiagent Systems Based on Protocols 21

80. Winikoff, M., Yadav, N., Padgham, L.: A new Hierarchical Agent Protocol Notation.
Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 32(1), 59–133
(Jan 2018). https://doi.org/10.1007/s10458-017-9373-9

81. Yolum, P., Singh, M.P.: Commitment machines. In: Proceedings of the 8th Inter-
national Workshop on Agent Theories, Architectures, and Languages (ATAL 2001).
pp. 235–247. No. 2333 in Lecture Notes in Artificial Intelligence, Springer, Seattle
(2002). https://doi.org/10.1007/3-540-45448-9 17

82. Zhang, J., Lan, T., Zhu, M., Liu, Z., Hoang, T., Kokane, S., Yao, W., Tan, J.,
Prabhakar, A., Chen, H., Liu, Z., Feng, Y., Awalgaonkar, T.M., Murthy, R., Hu,
E., Chen, Z., Xu, R., Niebles, J.C., Heinecke, S., Wang, H., Savarese, S., Xiong,
C.: xLAM: A family of large action models to empower AI agent systems. CoRR
abs/2409.03215 (Sep 2024). https://doi.org/10.48550/ARXIV.2409.03215

	Tools for Implementing Multiagent Systems Based on Protocols
	Amit K. Chopra[0000-0003-4629-7594], Samuel H. Christie V[0000-0003-1341-0087], and Munindar P. Singh[0000-0003-3599-3893]
	Motivation
	Literature
	Agent Communication Languages
	Protocol Languages
	Agent Programming

	Toolkit Description
	Information Protocols
	Tango
	Kiko
	Mandrake
	Reflections

	Summary of Tools for Interaction-Oriented Programming
	Artificial Intelligence Context
	Blue Skies All Around!
	Reproducibility
	Acknowledgments
	References
	References

