
E. Michael Maximilien
IBM Corporation

Munindar P. Singh
North Carolina State University

A Framework and
Ontology for Dynamic
Web Services Selection

Current Web services standards lack the means for expressing a service’s

nonfunctional attributes — namely, its quality of service. QoS can be objective

(encompassing reliability, availability, and request-to-response time) or subjective

(focusing on user experience). QoS attributes are key to dynamically selecting

the services that best meet user needs.This article addresses dynamic service

selection via an agent framework coupled with a QoS ontology. With this

approach, participants can collaborate to determine each other’s service quality

and trustworthiness.

Aservice-oriented architecture (SOA)
promises the ready creation of appli-
cations composed of dynamically

selected components. However, service
selection also implies an established level
of trust between these components: the
consumer trusts the service to provide the
necessary functionality as well as quality.

Current techniques for publishing and
finding services (such as the Web Services
Description Language [WSDL] and uni-
versal description, discovery, and integra-
tion [UDDI]) rely on static descriptions of
service interfaces, forcing consumers to
find and bind services at design time.
Such techniques don’t address runtime
service selection based on a dynamic
assessment of nonfunctional attributes,
collectively known as quality of service.
Matchmaking techniques based on

Semantic Web technologies help fine-tune
service interfaces and needs,1 but such
solutions currently ignore QoS and there-
fore apply only at design time. Service
selection based on QoS is challenging: it
can’t readily be described via an interface
because it depends on how, by whom, and
where a given service is instantiated. Fur-
thermore, consumers might have specific
QoS profiles and requirements.

Dynamic service selection calls for an
agent-based solution. Agents can repre-
sent autonomous service consumers and
providers as well as collaborate to
dynamically configure and reconfigure
services-based software applications.
Most importantly, agencies gather QoS
data from agents, and store, aggregate,
and present it to agents. Thus they enable
agents to share QoS data about different

84 SEPTEMBER • OCTOBER 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

A
ge

nt
 T

ra
ck Editor : Michael N. Huhns • huhns@sc .edu

services: in principle, each QoS attribute of inter-
est resides in its own agency.

Our approach implements this agent-based
architecture and is realized in the Web Services
Agent Framework (WSAF). WSAF incorporates ser-
vice selection agents that use the QoS ontology
(described herein) and an XML policy language that
allows service consumers and providers to expose
their quality preferences and advertisements.

System Architecture, Design, and Use
When a consumer application built with WSAF
needs to use a service, it employs its agents to
communicate with the service. For each service,
WSAF creates a service agent that exposes the ser-
vice’s interface, augmented with functionality to
capture the consumer’s QoS preferences or policies
and to query agencies or other agents for a suit-
able match. The agent can determine objective
QoS-attribute values (such as reliability, availabil-
ity, and request-to-response time) on its own and
get user feedback for subjective attributes (such as
the user’s overall experience). It then conveys
these QoS values to the appropriate agencies.

As Figure 1 shows, WSAF respects the classi-
cal SOA2 but uses agents as broker implementa-
tions for service consumers and agencies.

To get a better understanding of our exten-
sions to the classical SOA architecture, let’s first
take a high-level look at WSAF’s main compo-
nents, followed by a detailed analysis of the typ-
ical system usage:

• Service providers describe each service via
WSDL.

• Service brokers augment UDDI broker registries
with agencies in which service agents can col-
laborate and share data.

• WSAF servers host service agents, QoS ontolo-
gies, configuration details, and host agencies.

• Consumer applications contain business
objects as well as proxy objects, which act as
local proxies to service agents.

Figure 2 (next page) incorporates a UML sequence
diagram to illustrate a typical consumer-to-agent
interaction and control flow:

• Upon initialization, WSAF sets up all config-
ured agencies (steps 1 and 2).

• Providers register service implementations with
WSAF by configuring each service in terms of
WSDL URIs, service domains, and the service’s

advertised QoS policy (steps 3 and 4). Each
configured service interface has an agent.

• The consumer application creates a local proxy
object for the service agent; the consumer
invokes the proxy with its policy (steps 5 to 6).

• The agent uses the policy and its configuration
to load and run its script. The script typically
consults the QoS and service ontologies to
complete its configuration (steps 7 to 7.3). This
setup occurs once per consumer-to-agent
interaction episode.

• By default, the agent performs a binding oper-
ation once configured (steps 8 to 8.3). Con-
sumers can initiate a rebinding or specify an
automatic rebinding initiation in their policies.
The agent selects a service implementation
based on agency data, and then dynamically
creates a proxy object for each selected service.

• The consumer invokes the agent’s service
operations (steps 9 to 13). Each invocation is
forwarded to the service proxy, while being
monitored by the agent; when the service
responds, the agent inserts appropriate data to
the relevant agencies.

Because WSAF is a framework, it provides basic
structures for agents and agencies that can be
extended for various purposes in an SOA solution.

Agent and Agency Design
WSAF agents are autonomous: they can partici-
pate in agencies, behave reactively, and serve as
mediators between a given application and the

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2004 85

Dynamic Web Services Selection

Figure 1. Agents and agencies in a service-oriented architecture. In
classic SOAs, service providers publish to registries (and agencies, in
our case), and service consumers query the agencies and then select
and bind to a service provider. Because agents and agencies reside
in a known application server, agents don’t impose any additional
computational burden on the consumer’s resources.

1. Publish
WSDL

Service
provider

2. Find
UDDI

3. Bind
SOAP

Service
broker

Agency A

Agency B

Service
consumer

Agent 1

Agent 2

Agent 3

implementations of the consumed services. WSAF
agents also provide methods that let consumers set
their QoS preferences and rank services.

As Figure 3 shows, these agents consist of sev-
eral components:

• Input ontologies (the shared conceptualizations
among agents, consumers, and providers). The

agent-behavior ontology specifies the behav-
iors with which an agent is configured. An
agent that participates in a performance
agency, for instance, uses the defined behav-
iors for collecting performance QoS data.

• Agency data. An agent can query or insert data
into each agency in which it participates.

• Augmented service interface. A proxy agent

86 SEPTEMBER • OCTOBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 2. Typical agent usage control flow. Using a UML sequence diagram, we see the different sequence of actions
among the main actors (the consumer application, service agents, service providers, and our framework).

:ProviderN :ServiceA :ServiceB :WSAF :WsAgency :WsAgent:Consumer
application

3. Register service interface and implementations

5. Create local proxy of agent instance
for service InterfaceA from published WSDL

6. setPolicyBeach (:PolicyBean)

1. Initialize

2. Set up and load agency data

4. Set up agent for each interface

7. Load and run agent script

7.1 Consult QoS, service,
and behavior ontologies

7.2 Create and load behaviors

7.3 Access each
participating

agency

8. Select and bind

8.3 Create selected service proxy instance and bind

10. Monitor invocation

11. Forward operation call to service

9. Invoke operation

11.1 Return from operation call

13. Return from operation call

11.2 Monitor invocation return

12. Save data to
agencies from

objective
behaviors

8.1 Consult agencies

8.2 Decide on
implementation

exposes the service’s interface but is augment-
ed with agent-specific methods.

• Scripting engine. A script specifies an agent’s
behavior. Jython (Python in Java; see www.
jython.org), for example, supports rapid proto-
typing and object-oriented paradigms.

Specifically, an application uses the augmented
interface to specify its QoS preferences (used by
the agent to select services) prior to using the ser-
vice’s methods. The application can then interact
with the agent to select appropriate services. The
application uses the agent interface to provide
feedback on QoS attributes that apply to its use of
the service. This feedback can be explicit (the con-
sumer fills out a form in consultation with the
human user) or implicit (the agent infers the con-
sumer’s rating based on heuristics such as repeat-
ed usage).

Figure 4 (next page) illustrates a WSAF
agent’s key interfaces:

• Ws is a surrogate for the available services.
• WsAgentConfig is used to configure an agent at

deployment or during runtime.
• WsAgent is the primary interface to a WSAF

agent. This interface aggregates the other
objects and acts as a proxy for the service. The
agent dynamically generates a proxy object
with the same interface as the service, inter-
cepts all method calls, and then forwards them
to the ServiceInterceptors prior to for-
warding calls to the service proxy object. This
interception lets the agent monitor the service,
add behaviors to service methods, and dynam-
ically select new service instances.

• WsAgency provides a facade to the data shared
between WsAgents. Agencies enable the per-
sistence of QoS information.

• ServiceInterceptor provides a generic way
for WsAgent to intercept a consumer’s method
call to a service.

• AgentBehavior extends ServiceIntercep-
tor; ServiceInterceptors are notified of all
service method calls, before and after invoca-
tions. By virtue of being part of an agent, a
behavior can contribute data to the agencies in
which the agent participates.

• AgentScript abstracts the agent’s programs.
For a service selection agent, for example, the
script contains the selection algorithm. It pro-
vides the lifecycle methods called for the script
along with the agent lifecycle methods,

including init() and dispose(). The
abstraction enables the agent to be imple-
mented dynamically.

Any WSAF agent can participate in an agency as
long as it respects the agency’s database schema.
Figure 5 (next page) illustrates an agency’s key
interfaces. The interface WsAgencyPopulator
abstracts methods that enable flexible popula-
tion of agencies; WSAF implements this inter-
face via Apache’s Xindice XML database (http://
xml.apache.org/xindice/).

Knowledge Representation
So far, we’ve shown how our framework uses
agents and agencies to address the challenges of
dynamic service selection in a manner that
respects QoS. But to realize such agents and agen-
cies in a principled manner presupposes that we
have rich knowledge representations for services
and qualities. Such representations would help us
capture the most important requirements and
engineer agents and agencies that behave as
desired. These representations are the service and

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2004 87

Dynamic Web Services Selection

Figure 3. Agent design. The input ontologies conceptualize the
knowledge needed for the agent’s tasks; the agency data is the
structured data about QoS shared among the agents; and the
scripting engine provides a rapid-prototyping programming
environment.

WSDL-augmented
service interface

Service
QoS
policy

Own
thread of
control

<<usesAnd
Contributes>>

WS agent
proxy object

Ontologies
(for example, QoS)

Consumer
policies

Agent
script

Agent
in server

Consumer
application

Agent
behaviors

Agency
data

Agent

Service proxy

Jython engine

QoS ontologies, respectively. The service ontology
relates services to QoS whereas the QoS ontology
nails down the quality concepts. Let’s look at such
a representation’s main components.

Service Ontology
Figure 6 illustrates our service ontology. Each ser-
vice is associated with a service domain and has
an interface and potentially many implementa-

88 SEPTEMBER • OCTOBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 4. Agent UML static class diagram. This diagram shows an agent’s main interfaces and classes.
By emphasizing interfaces, we allow different implementations of the framework to be provided.

<<interface>>
ServiceMethodFiller

<<interface>>
Ws

+ preMethodCall(...) : void
+ postMethodCall(...) : void

0 .. n

<<proxies>>

0 .. n

<<participatesIn>>

<<executes>>

<<delegates>>

<<forwardCalls>>

1

11

11

1

<<interface>>
ServiceInterceptor

+ isHandleMethodCall(...) : boolean
+ handleMethodCall(...) : void

<<interface>>
AgentBehavior

+ <<prop>> ontology: URI
+ <<prop>> behavior: OntResource
+ <<prop>> agency: WsAgency

+ <<prop>> interface: URI
+ <<prop>> implementation: URI
+ <<prop>> serviceID: URI

<<interface>>
WsAgent

<<interface>>
WsAgency

+ <<prop>> agentID: URI
+ init(config: WsAgentConfig): void
+ dispose(): void

<<jythonClass>>
AgentScript

+ preExe(): void
+ postExe(): void
+ execute(): void

<<dynamicProxy>>
InvocationHandler

JythonInterpreter
<<generatedClass>>

<Service>Proxy

+ invoke(obj: Object, args: Object[], ret: Object): void

<<interface>>
WsAgentConfig

:serviceProxyObject

Figure 5. Agency design. At its core, an agency is a collection of agency DataSets, which in turn maintain
a collection of DataItems, which can be composed of additional DataItems. Each DataSet is associated
with the agent and service that it proxies.

DataItem

+ <<prop>> name: String
+ <<prop>> value: Object

DataSet

+ <<prop>> agentID: URI
+ <<prop>> serviceID: URI
+ <<prop>> date: Date
+ add(di: DataItem): void
+ remove(di: DataItem): void
+ iterator(): Iterator
+ createDataItem(): DataItem

<<participatesIn>>

<<interface>>
WsAgent

0 .. n

<<proxies>>

<<populates>>

1

<<interface>>
Ws

<<interface>>
WsAgency

+ init(config: WsAgencyConfig): void
+ dispose(): void
+ add(ds: Dataset): void
+ remove(ds: DataSet): void
+ iterator(): Iterator
+ createDataSet(URI: agentID, URI: serviceID): DataSet

<<interface>>
WsAgencyPopulator

+ load(uri: URI, props: Properties): DataSet[]
+ store(sets:DataSet[]: void

XMLDbPopulator XMLPopulator

1

0 .. n

<<loadsAndStores>>

tions. A ServiceDomain aggregates services that
have common qualities.

QoS Ontology
Our QoS ontology lets service agents match
advertised quality levels for its consumers with
specific QoS preferences. Providers express poli-
cies and consumers express preferences using the
QoS ontology, which also enables the consumers
to configure service proxy agents so that they
have the necessary behaviors to monitor and
record consumer and service interactions. It helps
to distinguish three ontologies for QoS: upper,
middle, and lower.

Figure 7 (next page) reviews the key aspects of
our QoS upper ontology. The upper ontology cap-
tures the most generic quality concepts and defines
the basic concepts associated with a quality, such
as quality measurement and relationships:

• Quality represents a measurable nonfunc-
tional aspect of a service within a given
domain. Quality attributes relate to each other.
Figure 8 (next page) describes our middle
ontology with specific quality concepts. The
middle ontology differs from upper and lower
ontologies in that it captures the quality con-
cepts that are applicable to multiple domains
(such as performance qualities).

• QAttribute captures a given quality’s type —
for example, whether it’s a monotonic float
attribute (a quality whose value is a floating-

point number and increases in the value
reflect improvements in the quality).

• QMeasurement measures a Quality objective-
ly or subjectively. Agents make objective mea-
surements automatically, whereas subjective
measurements involve humans. A measurement
has a validity period and can be certified.

• QRelationship describes how qualities are
correlated. Service response time, for example,
could be negatively correlated to throughput.
Such quality relationships often reflect the
trade-offs providers make in their service
implementations. Qualities are potentially
related in terms of direction (opposite, parallel,
independent, or unknown) and strength (such
as weak, mild, strong, or none).

• AggregateQuality is a quality composed from
other qualities. The price–performance ratio, for
instance, aggregates price and performance.

The QoS middle ontology incorporates several
quality aspects encountered in distributed sys-
tems.3–5 Figure 8 (next page) defines the middle
ontology for Web services QoS:

• Availability is the probability that a service can
respond to consumer requests. It has two sub-
classes: MTTR (mean time to repair, meaning the
average time for restoring a failed service) and
UpTime (the duration for which the service has
been operational continuously without failure).
Availability is mildly parallel to reliability and

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2004 89

Dynamic Web Services Selection

Figure 6. Service ontology. The service ontology classifies services into domains and associates qualities with
domains.We can then capture the agents that make use of services (service agents) and their behaviors.

range

range

range

range

Class

ServiceAgent

Class

AgentBehavior

Class

AutomaticBehavior

InteractiveBehavior

Class

Agent

Class

WsdIUri

domain

domain

ObjectProperty

behaviors

subClassOf

subClassOf

Class

domain

domain

domain
Service

ObjectProperty

proxies

ObjectProperty

serviceDomains

DataTypeProperty

isFree

Class

range

range

xsd: boolean

Class

ServiceDomain

Class

Recreational

Class

Business

Class

Quality

Class

Govenment

Class

Computational

ObjectProperty

interface

domain

domainrange ObjectProperty

implementation

domainObjectProperty

hasQoSClass

QoS range

ObjectProperty

forQuality

subClassOf

typically mildly opposite to capacity.
• Capacity is the limit on the number of requests

a service can handle. When a service is operat-
ed beyond its capacity, its availability and reli-

ability are negatively affected.
• Economic captures the economic conditions of

using the service. Usage cost is a key econom-
ic attribute.

90 SEPTEMBER • OCTOBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 8. QoS middle ontology (arrows indicate subClassOf). This ontology specifies domain-
independent quality concepts and is typically completed by a domain-specific lower ontology.

Class

Integrity

Class

DataIntegrity

Class

Robustness

Class

Quality

Class

UpTime

Class

Stability

Class

Capacity

Class

ServiceInterface
Stability

Class

Non-Repudiation

Class

Auditablity

Class

Encryption

Class

Authentication

Class

Disaster

Class

Failover

Class

Message

Class

Data

Class

Class

MethodSignature
Stability

Security

Class

Recoverable

Class

Messaging

Class

Reliability

Class

MTBF

Class

Consistency

Class

Interoperability

Class

Performance

Class

ResponseTime

Class

LoadBalancing

Class

Economic

Class

Throughput

Class

Latency

Class

Availability

Class

MTTR

Class

Cost

Figure 7. QoS upper ontology. This ontology includes the basic characteristics of all qualities and the
main concepts associated with them.

Class

Subjective

domain

rangeClass

QMeasurement

DiscreteAttribute

Class

Agent

range

range

domain

domain

ObjectProperty

certifiedBy

subClassOf

Class

Objective

subClassOf

Class

Strong

ObjectProperty

agent ObjectProperty

measurement

DataTypeProperty

value

Class

Mild

Weak

Class

domain
domaindomain

domain

range

range
Thing

Class

AggregateQuality

Class

Quality

Class

QAttribute

Class
ValueImpact

Class
Parallel

Class
ValueDirection

Class
Opposite

Class
ValuedAttribute

QRelationship

ObjectProperty

attributes

range

range

subClassOfsubClassOf

MonotonicAttribute

Class

subClassOf

DecayingAttribute

Class

subClassOf

Class

Class

su
bC

las
sO

f
ObjectProperty

aggregatedQualities

ObjectProperty

relationships

ObjectProperty

relatedQualities

Class
Inverse

domain
range

• Interoperability is the ease with which a con-
sumer application or agent interoperates with
a service. It defines, for example, whether the
service is compliant with a specified standard,
such as the WS-I Basic Profile,6 or specific ver-
sions of standards like WSDL.

• Performance characterizes performance from
the consumer’s perspective. Examples are
Throughput (the rate of successful service-
request completion) and ResponseTime (the
delay from the request to getting a response
from the service).

• Reliability is the likelihood of successfully
using a service. Typically, it parallels avail-
ability, but its main aspects also include Fault
Rate (the rate of invocation failure for the ser-
vice’s methods); MTBF (mean time between fail-
ures); Consistency (the failure rate’s lack of
variability); Recoverability (how well the
service recovers from failures); Failover
(whether the service employs failover re-
sources, and how quickly); and Disaster
resilience (how well the service resists natural
and human-made disasters).

• Robustness is resilience to ill-formed input and
incorrect invocation sequences.

• Scalability defines whether the service capaci-
ty can increase as needed.

• Security captures the level and kind of secu-
rity a service provides. Its key components
include Auditability (the service maintains
auditable logs); Authentication (the service
either requires user authentication or accepts
anonymous users); Encryption (the type and

strength of encryption technology used for
storage and messaging); and NonRepudia-
tion (whether consumers can deny having
used the service).

• Integrity is a measure of the service’s ability to
prevent unauthorized access and preserve its
data’s integrity.

• Stability is the rate of change of the service’s
attributes, such as its service interface and
method signatures.

Let’s now apply the above framework and ontol-
ogy using a realistic example.

Comprehensive Example
We can demonstrate our approach with a compre-
hensive scenario that involves a consumer shop-
ping for financing and insurance to buy a car.
Standardized Web services interfaces for insurance
and loan providers already exist, as do lower QoS
ontologies for the insurance and loan domains.
Figure 9 shows our approach’s main components
as applied here.

The insurance QoS ontology contains the con-
cepts of PremiumPrice (subclass of Price) and
Deduction (specific to the insurance domain).
Similarly, the loan QoS ontology includes the
domain-specific concept InterestRate. Natural-
ly, both domains also use concepts such as secu-
rity and performance, as in the middle ontology
illustrated in Figure 8.

Figure 9 shows a consumer application using
two service agents to select the best available
insurance and loan service implementations. The

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2004 91

Dynamic Web Services Selection

Figure 9. Components for the insurance and loan example. The providers are shown in two parts
(insurance and loan services), and agencies are shown as the UDDI registry and the WSAF QoS agency.
An alternative topology is to deploy the agents in the consumer application.

WSAF QoS agency
Agency

data

Internet

Ontologies
Web services

platform

WSAF agent server

Insurance Web service providers

<WsPolicy
.../>

<WsPolicy
.../>

Loan Web service providers

<WsPolicy
.../>

<WsPolicy
.../>

LWSPnLWSP1

Consumer
application

User interface

<WsPolicy
.../>

Application
objects

IWSP1 IWSPn

Database

UDDI
service registry

Database

92 SEPTEMBER • OCTOBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

following is a snippet of the advertised policy for
an insurance provider:

<WsPolicy name=
”insuranceServiceProvider1” …>
<Services><Service name=”isp1”

interfaceUri
=”http://.../insurance?wsdl”/>

… </Services>
<Ontologies>
<Ontology name=”InsuranceOnt”
uri=”http://.../insurance-

qos.owl”/>
… </Ontologies>
<QoSPolicy ontologyName=”InsuranceOnt”

serviceNames=”isp1” methods=”*”>
<QoS name=”PremiumPrice”><qValue>
<unit>USD</unit><min>2000</min>

<max>6000</max><typical>4000</typical>
</qValue></QoS>

<QoS name=”Deduction”><qValue>
<unit>USD</unit><min>50</min>

<max>1000</max><typical>500</typical>
</qValue></QoS>

</QoSPolicy>
</WsPolicy>

The loan service providers specify policy adver-
tisements similarly. The consumer’s QoS needs are
as follows:

<WsPolicy name=”consumer” …>
<Services><Service name

=”insuranceService”
interfaceUri=”http://.../insurance?

wsdl”/>
<Service name=”loanService”

interfaceUri=”http://.../loan?wsdl”/>
… </Services>

<Ontologies><Ontology name=”InsuranceOnt”
uri=”http://.../insurance-qos.owl”/>

<Ontology name=”PerfOnt”
uri=”http://.../perf-qos.owl”/>

<Ontology name=”BindingOnt”
uri=”http://.../wsaf.owl”/>

</Ontologies>
<BindingPolicy ontologyName

=”BindingOnt” services=”*”>
<Bind when=”onConnect”

type=”bestMatch”/>
… </BindingPolicy>

<QoSPolicy ontologyName=”LoanOnt”
serviceNames=”loanService”>

<QoS name=”InterestRate”><qValue>
<unit>percent</unit><max>5</max>
<preferred>2.5</preferred>

</qValue></QoS>
… </QoSPolicy>
<QoSPolicy ontologyName=”PerfOnt”

serviceNames=”*”>
<QoS name=”Availability”><qValue>
<unit>percent</unit><min>98</min>
<preferred>100</preferred>
</qValue></QoS>

… </QoSPolicy>
…

</WsPolicy>

Some of the consumer’s needs in this code snippet
refer to subjective qualities (such as
PremiumPrice); others refer to objective qualities
(such as Service Availability).

The service agent finds services matching the
given interface in the traditional manner (using
UDDI), and then applies the consumer’s policy on
the available quality data to rank the service
implementations. The ranking is computed from
the quality–degree match, which is based on what
the provider advertises along with the provider’s
reputation for the given quality, and how the qual-
ity in question relates to other needed qualities.
Because the insurance premium price is opposite
of the deductible, for example, the agent would
adjust the degree match to trade off the premium
with the deductible if the consumer wanted a low
premium and low deductible. The match for a ser-
vice implementation is an aggregation of the
matches for the applicable qualities.

Discussion
To evaluate WSAF and its QoS ontology, we built a
simulation testbed on top of WSAF and evaluated
our approach with scenarios involving consumers
with different policies and services with different
QoS advertisements. By artificially controlling the
services qualities (such as accuracy, response time,
reliability, and availability), we could verify
whether each consumer selected the right services
(given its preferences). The preliminary results are
promising and suggest that this approach can sup-
port dynamic trust establishment. In ongoing
work, we are attempting to show how it achieves
self-adjusting trust in the sense of autonomic com-
puting.7 As a service QoS drops below its con-
sumer’s QoS requirements, the agent will no longer
select it; when the service’s qualities improve, it

will again be considered for selection.
An important technical direction is to select

services in the face of multiple qualities (which
might be mutually independent or dependent).
We’re developing an approach based on multi-
attribute utility theory, which accommodates the
relevant relationships, both statistical (as inferred
from agency data) and qualitative (as given by a
conceptual modeler).

Of the other work in this area, OWL-S is the
most relevant (see www.daml.org/services/owl-s/
1.0/). The OWL-S service ontology captures the
service profile as well as the service-process
model. Our approach complements OWL-S by
emphasizing the quality aspects.

An area of future research opened by our
approach is how to prevent malfeasant agents
from biasing the agencies’ data. Current security
infrastructures are not sufficient because they’re
vulnerable to attacks such as spoofing. Solutions
to combat this problem could include those based
on reputation and social networks.8

References

1. K. Sycara et al., “Automated Discovery, Interaction and

Composition of Semantic Web Services,” J. Web Seman-

tics, vol. 1, no. 1, 2003, pp. 27–46.

2. Web Services Conceptual Architecture (WSCA 1.0), IBM

Corp. specification, 2001; http://www-306.ibm.com/

software/solutions/webservices/pdf/WSCA.pdf.

3. S. Ran, “A Model for Web Services Discovery with QoS,”

SIGEcom Exchanges, vol. 4, no. 1, 2004, pp. 1–10.

4. B. Sabata et al., “Taxonomy for QoS Specifications,” Work-

shop on Object-Oriented Real-Time Dependable Systems

(WORDS ‘97), IEEE CS Press, 1997.

5. K.-C. Lee et al., “QoS for Web Services: Requirements and

Possible Approaches,” World Wide Web Consortium (W3C)

note, Nov. 2003; www.w3c.or.kr/kr-office/TR/2003/ws-qos/.

6. K. Ballinger et al., WS-I Basic Profile Version 1.0a, Web

Services Interoperability Org., 2003; http://www.ws-i.

org/Profiles/.

7. J.O. Kephart and D.M. Chess, “The Vision of Autonomic

Computing,” Computer, vol. 36, no. 1, 2003, pp. 41–50.

8. B. Yu and M.P. Singh, “An Evidential Model of Distributed

Reputation Management,” Proc. 1st Int’l Joint Conf.

Autonomous Agents and Multiagent Systems, ACM Press,

2002, pp. 294–301.

E. Michael Maximilien is a PhD candidate in computer science

at North Carolina State University, Raleigh, where he

received an MS in computer science. His research interests

include Semantic Web services, multiagent systems, and

software engineering. Maximilien also serves as an advi-

sory software architect for IBM. He is a member of the IEEE

and the ACM. Contact him at maxim@us.ibm.com.

Munindar P. Singh is a full professor of computer science at

North Carolina State University. His research interests

include multiagent systems and Web services —

specifically, the challenges of trust, service discovery, and

business processes and protocols in large-scale open envi-

ronments. Contact him at singh@ncsu.edu.

Dynamic Web Services Selection

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r..zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (recruitment)
Jana Smith
Phone: +1 404 256 3800
Fax: +1 404 255 7942
Email: jsmith@bmmatlanta.com

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassociates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
Sandy Brown
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sbrown@computer.org

Europe (product/recruitmen)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X S E P T E M B E R / O C T O B E R 2 0 0 4

CTIA Wireless I.T. & Entertainment 2004 Cover 4

IEEE Computer Society Membership Cover 3

WWW 2005 Cover 2

Classified Advertising 5

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

