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Abstract—Service selection, where some of the services are
accessed indirectly as constituents of composite services, is
difficult for the following reasons: (1) the interpretation of
service qualities is subjective; (2) evidence must be combined
from multiple sources; (3) service profiles change dynamically;
and (4) constituent services may be only partially observable
behind composite services. We propose an approach where we
map service qualities to a common probabilistic trust metric.
Whereas current trust approaches estimate the trustworthiness of
a composite service based on a fully observable and static setting,
we propose a statistical approach built on expectation maximized
over a finite mixture model. Our experiments show that our
approach can dynamically punish or reward the constituents of
composite services while making only partial observations.
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I. INTRODUCTION

Service selection is a key problem in service-oriented com-
puting. In service-oriented systems, there are a large number
of services offering the same functionalities. It is crucial for
consumers to select desired services not only by matching
functionalities but also by evaluating nonfunctional properties
such as quality of service (QoS). Also, services are often
accessed indirectly via composite services. In many cases,
evaluating the constituents of a composite service helps service
selection. For example, if we learn that a constituent service
behind a bad composite service is good, then instead of
abandoning the whole composite service, we might use the
good constituent service in a different composition or directly.

Service selection in the above setting poses significant chal-
lenges. One, the interpretation of the quality of service (QoS)
is subjective in two ways. First, consumers may care about
different QoS properties depending on services or consumers’
preferences. Second, consumers may have different interpreta-
tions of QoS performance depending on their preferences for
different needs. For example, one minute can be way too long
if you are waiting for a web search result, but not if you are
waiting for a bus. Thus, service selection approaches should
be able to reflect subjective interpretations from consumers.

Two, the interpretation should be exchangeable and
comparable. Consumers may have limited experience with
most services—because there are too many services for one
to experience or because consumers or services are new to
the system. In either case, consumers may want to gather

or exchange information with each other. Therefore, the QoS
information should be exchangeable and comparable.

Three, QoS should be monitored and tracked dynamically.
Another challenge is that the QoS may change over time. For
example, a web searching service may yield an unsatisfactory
response time during the day because there is higher demand
during working hours, but a shopping service may be the
opposite because consumers may not do much shopping at
work. Also, the frequency of changes in behavior can vary.
A service selection approach should be capable of monitoring
and tracking the dynamically changing quality provided by the
services.

Four, a model of service composition is key. Many existing
service selection solutions fail to take the composite service
into account [1], or assume the QoS of the constituent services
is fully observable [2]. A service composition model is needed
to better understand the QoS of the constituent services behind
the composition with limited observations. The challenge is
that the QoS of the constituent services may not be fully
exposed to consumers. For example, when interacting with an
itinerary booking service, a service consumer may observe that
a flight booking constituent service always responds before
the others. But such information may not be observed all
the time. Such partial observability makes service selection
harder, because consumers may lack information of some of
the constituent services. Estimating the QoS of constituent
services based on the QoS of the composite is not trivial, and
requires a model of service composition.

We define trust as a subjective assessment of QoS ex-
pressed probabilistically. Trust modeling in multiagent systems
provides a promising solution for the first two challenges:
subjectivity and the need for exchangeability. Trust is a subjec-
tive interpretation of objective outcomes and reflects personal
preferences and requirements. For example, ten minutes can
be interpreted as high trust for a bus service but low trust
for a web searching service. Besides, trust is comparable and
exchangeable. Further, trust can be updated, aggregated, and
propagated [3].

Existing trustworthy service selection approaches take ad-
vantage of trust modeling to support subjective, exchangeable,
and comparable interpretation of QoS, but (a) fail to deal with
the dynamic behavior of services, (b) do not take the composite
service into account, or assume the constituent services behind




the scenes are fully observable.

We overcome these limitations by modeling a composite
service as a statistical mixture. Based on the online expectation
maximization (EM) algorithm [4], our approach can learn not
only the trust to place in the constituent service but also how
that trust contributes to the trust in the composite when we do
not fully observe the constituent services. We further extend
the algorithm by improving the accuracy and the capability
of dealing with dynamic services with partial observations of
the constituents. Our approach can also adjust the discounting
factor to enhance the flexibility of dealing with different levels
of dynamism.

The rest of this paper is organized as follows. Section II
discusses the most relevant literature. Section III describes
our approach. Section IV evaluates proposed approach via
simulations. Section V concludes this paper.

II. LITERATURE

Zhang et al. [5] propose an algorithm to detect the ac-
countability of services. They apply entropy-based sensitivity
analysis in Bayesian networks, where the nodes are inputs and
outputs of the services. Zhang et al. also present an evidence-
channel selection algorithm to reduce the number of services
that need to be monitored. Their approach needs central agents
to monitor accountability, and assumes the environment is
fully observable. In contrast, our approach is fully decentral-
ized and assumes partial or even few observations.

Paradesi et al. [6] extend Wang and Singh’s trust model
[7] to propagate trust through composite services. They dis-
cuss four composition types: sequence flow, concurrent flow,
conditional flow, and loop, and define a propagation operator.
Paradesi et al. show how their operator can be used in those
four composition scenarios. However, they employ an ad hoc
linear combination for constituent services. This approach
ignores the case when the constituent and the composite
service perform erratically. By contrast, instead of making
distinctions of composition types, we use statistical analysis
to explore how trust is composed.

Luo et al. [8] propose an algorithm to select a composite
service by choosing the path with the best QoS and the lowest
cost. Luo et al.’s proposed algorithm, based on Dijkstra’s
path search, assumes that QoS attributes are additive. Luo et
al. claim that qualities such as duration and throughput are
additive. However, it is easy to see that additivity depends
on the nature of the composite service. For example, if a
composite service invokes its constituent services in parallel,
the overall duration is not the addition of the durations of the
constituents. Our approach makes no assumption about QoS
attributes. It can handle both additive and nonadditive QoS.

Nepal et al. [9] present a contribution-based method for
propagating reputation from a composite service to its con-
stituent services. Their approach assigns reputation based on
(a) the contribution of constituent services to the composite,
and (b) the difference between new and past reputation.
Compared to our approach, Nepal et al. assign trust based
on heuristics rather than statistics. Their approach requires

predefined weights to be assigned to constituent services at
the beginning. Our approach requires no predefined parameters
except the number of constituent services.

Vu et al. [10] present a trust-based service ranking method
as part of a service discovery approach. The input of this
method is a list of service candidates obtained by semantic
similarity matching based on providers’ advertisements and
consumers’ requirements. It outputs a list of services ordered
by their predicted QoS properties. Vu et al. use algorithms such
as K-means clustering and trust-distrust propagation. However,
they assume there exist several trusted third parties monitoring
services. Also, they rely heavily on the P-Grid peer-to-peer
architecture. In contrast, our approach is fully decentralized
and makes no assumptions about the architecture.

Yue et al. [11] study a Bayesian network-based approach
of generating a guidance of web service composition. Their
approach has two parts. The first one is to construct a Bayesian
network based on the past direct invocations among web
services. Yue et al. iteratively find all direct and indirect
invocations, calculate the conditional mutual information to
test the conditional independencies. The second part of their
approach is (given the Bayesian network) to use a Markov
blanket to guide the composite service. Instead of using
Bayesian networks, our approach applies a statistical model
to determine trust in the constituents of a composite services.

Vu and Aberer [12] present a framework to estimate the
quality of a service. Their framework involves three steps. In
the first step, they build a Bayesian network model to represent
QoS capabilities of the service. In the second step, they train
the model with feedback from different sources to learn the
unknown parameters for the service. In the third step, they
estimate the quality of the service by making probabilistic
inference on the basis of certain contextual information asso-
ciated with the service. By contrast, we estimate the quality
of multiple constituent services of a composite service. We
estimate the unknown parameters from a Beta-Mixture model.

Mancioppi et al. [13] study the process fragmentation
problem—identifying process fragments, a subset of process
elements (i.e., constituent services), from a process model (i.e.,
a composition) for optimizing quality of service, simplifying
and analyzing process models, and enabling the reuse of
process fragments. In our approach, we make no assumption
on how to fragment the composition. The constituent service
can be a process element or a process fragment.

Lécué¢ and Mehandjiev [14] consider the combination of
both functional and nonfunctional properties while designing
a service composition. The functional properties refer to
the semantic quality of a service whereas the nonfunctional
properties refer to QoS. They calculate the semantic quality of
a composite service based on the degree of semantic similarity
between an input and an output of the connected constituent
services. To measure such degree, Lécué and Mehandjiev
adopt the concept of a semantic link, a connection between
the corresponding pairs of web service parameters. Thus they
rank composite services based on both QoS and semantic
QoS. Given a composed service, our approach considers how



to analyze the constituent services based on nonfunctional
properties only. The analytics learned from our approach can
be incorporated into the above approach.

We propose an approach that assigns trust to constituents
of composite services in such a way as to reward or punish
constituents based on their contribution to the overall perfor-
mance.

III. APPROACH: BETA-MIXTURE

Our approach has the following characteristics. First, it sta-
tistically learns the responsibilities and trust of the constituent
services from the overall QoS. Second, it can use partial
observations (if any) from the constituent services to improve
the accuracy of its predictions. Third, it captures dynamism
in service quality by incorporating recent observations with a
discounting window.

Consider a general scenario where a consumer has been
interacting with a service C, composed of K constituent ser-
vices ¢, (k =1,...,K). The consumer tracks the composite
service iteratively as follows.

1) Collect and interpret a number of initial QoS observa-
tions as trust expectation x (Section III-A).

2) Bootstrap the initial trust 6 of all constituent services
and their corresponding responsibility 7 based on the
initial evidence, where § = {01,...,0k}, and ©7 =
{m1,..., 7Kk} (Section III-B).

3) Collect and interpret the new QoS observation as a trust
expectation x,, (Section III-A).

4) Update the current responsibility 7, and constituent trust
0, for each constituent service c; based on the new
observation x,, (Section III-B to Section III-E).

A. Background: Trust

We adopt Wang and Singh’s [7] trust representation based
on the beta probability distribution. They consider trust as
binary evidence (r,s), where » > 0 and s > 0 are the
numbers of positive and negative interactions, respectively.
Based on this representation, a prediction can be made by
calculating the expectation of the beta distribution a = .
When a consumer observes a QoS from an interaction with
a service, it translates the QoS into trust (z,1 — x), where
0 < x < 1. For example, a consumer searches a keyword
by a web searching service and receives the result in 0.5
seconds. The consumer may interpret the response time as
(0.8,0.2), whose expectation is 0.8 indicating that it is a
good experience. Suppose the consumer collects a series
of observations, say x = {x1,...,zn}, which stand for
{{z1,1—21),...,{xN,1—zN)}. We apply Bayesian inference
to %date trust by simply adding the evidence together as
<Zi:1xN,Zi]i1(1 — xn)) [15]. Note that we treat each
QoS attribute separately because service consumers may have
different interpretations and preferences of each QoS. In the
following sections, the observations refer to the QoS observa-
tions written in the form of trust expectation, which is a single
number between 0 and 1.

B. Background: Finite Mixture Models

The purpose of assigning trust to constituent services is to
correctly reward or punish them based on their contribution to
the overall performance. For example, consider the response
time of a flight ticket booking service like Bing Travel that
books tickets from either airline A or airline B. Suppose
A provides a good response time but B does not, and the
composite service ends up with a bad response time, thereby
receiving a low trust value. Then, the greater part of the
low trust value should be assigned to B. Conversely, if the
composite service ends up with a good response time, then the
greater part of the reward should be assigned to A. In other
words, if the observations of a constituent service agree more
with the overall observations, the constituent service makes a
higher contribution. Such analysis can help consumers evaluate
the constituent services and can be incorporated into monitor-
ing tools like Amazon CloudWatch whereby consumers may
attempt to optimize their compositions. For example, if airline
A causes the poor response time but B is good, then the
consumer should go to B directly, or the service composer
should improve the response time of airline A.

However, observing the QoS of constituent services is not
trivial, because they may be hidden from consumers. This
makes the underlying QoS difficult to collect. For example,
consumers may observe that a composite service is not accessi-
ble without knowing the availability of its underlying services.
Our solution is as follows: Given the observations of the
composite service, use a statistical approach to learn the trust
of the constituents and their corresponding responsibilities.

We adopt the finite mixture model [16] to learn about the
constituent services from the composed observations. The idea
of finite mixture models is to use the superposition of multiple
probability density distributions. Following our trust represen-
tation (Section III-A), we use the Beta-Mixture model [15],
where the probability density distributions of the constituents
are beta distributions with parameters 0y = (r, sx), i.e., trust
of the constituent ci. This superposition can be written as

K

p(x) = Z m Beta(x|0y), (D

k=1

where x = {z1,...,xn} is a series of observations from
the composed probability distribution, K is the number of
constituents, and 7 are the mixing coefficients of the con-
stituent probability distributions. The mixing coefficients rep-
resent how many percentages of the constituent observations
contribute to the overall observations. We can use the learned
mixing coefficients as a measure of responsibility. Note that,
since the finite mixture model and the EM algorithm can learn
the constituent distributions (i.e., assign trust to each) directly,
the motivation for learning the responsibility is that, when a
constituent service contributes few observations to the overall
observations, the traditional approach has difficulty in learning
the trust for lack of evidence. In this case, responsibility can
provide the information that the observations of the composite
are not affected by this constituent. Therefore, trust in the



constituent can be left unchanged. Besides, responsibility can
guide service composers to optimize the service composi-
tion. For example, if the overall quality is dominated by
one constituent (i.e., with high responsibility), instead of all
constituents, the service composer should focus on optimizing
the dominant constituent.

Now the problem becomes the following: Given a series
of composed observations x, what are the responsibilities
7, and the trust 0 of the K constituents? We apply the
Expectation Maximization (or EM) algorithm [17] to learn the
parameters by maximizing the log likelihood, Inp(x|6). The
EM algorithm is a two-step iterative process. In our case, the
E-Step holds 6y and computes 7. The M-Step holds 7 and
computes 6. The two steps iterate until 73, and ) converge.

Here, the EM algorithm introduces a latent binary random
variable z = {z1,..., 2k}, each of whose components indi-
cates whether a composed observation z,, is from constituent
k, where z;, € [0,1] and ), 2z = 1. The distribution of
z is specified in terms of 7 by p(zx = 1) = mg. Also,
p(z) = Hszl 7", Thus, we can rewrite p(x) as

K
p(x) = Y p(@)p(x|z) =) miBeta(x[6r), (2)

k=1

where p(x|z) = Hszl Beta(x|0)*".
The log likelihood of p(x|f) decomposes into two parts
[18]:

Inp(x|0) = Inp(x,z|0) —Inp(z|x,0) (3)
= > a(z)(lnp(x,zl0) —Ing(z) @

-3 4(@)(ng(z) - np(x.2l0) ()

= L(q,0) — KL(q| p), (6)

where ¢(z) is a distribution of the latent variable z, and
KL(q || p) > 0. Note that L(q, #) contains complete-data log
likelihood, Inp(x,z|6). From here, maximizing In p(x|) is
equivalent to maximizing L(q, 6) [4].

The EM algorithm departs from an initial guess of pa-
rameters 69 (i.e., r° and s®). Then it iterates two steps to
generate successive 0, 62, and so on, until the parameters
converge. The E-Step holds the current parameters §°/“ fixed to
maximize L(q, #°'?) with respect to ¢(z) given by p(z|x, §°!9).
the M-Step holds the q(z) = p(z|x, #°'?) obtained from the
E-Step fixed to find new parameters 6™V that maximize the
expectation of the complete-data log likelihood

Q(0,6°%) > p(zlx, 07 Inp(x,20)  (7)

= argmaxQ(6,0°') ®)

enew

We initialize the parameters by using Fuzzy C-Means Clus-
tering (or FCM) [19] and Method of Moments (or MM) [20].
Bouguila et al. [21] show that combining FCM and MM
provides good initial parameters for the EM algorithm to
converge.

C. Online EM Algorithm

In real systems, however, consumers require an online
algorithm to track the behavior of services with whom they
interact, rather than collecting observations and learning all
at once. For example, in the airlines example, a consumer
books multiple flight tickets through Bing Travel over time.
The consumer would maintain trust in Bing Travel and each
airline regarding its response time, and update its trust in them
on an ongoing basis upon making each booking. There are
two reasons for using online algorithms. First, in most cases,
it is not easy for consumers to collect enough information at
once. Instead, a more feasible way is that consumers interact
with services and evaluate their trustworthiness continually.
An online trust model should track the behavior as the inter-
action proceeds. Second, online EM algorithms are shown to
speedup the convergence and may lead to better solutions [22].
Therefore, we construct an online Beta-Mixture that learns
the behavior of the constituent services by adopting an online
variant of the EM algorithm [4].

To motivate the online EM algorithm, recall that, in the EM
algorithm described in Section III-B, the observed variable x
and latent variable z can be decomposed into {z1,...,zn}
and {z1,..., 2.}, respectively. Note that, L(q,6) is the sum-
mation of ¢(z,,)(Inp(zn, 2,|0) —Ing(z,)). Thus, we can deal
with only one observation at each step. Neal and Hinton
[4] show that updating only one observation at each E-Step
can increase L(q,0) (i.e., increase p(x|6)) until convergence.
This result shows that the online EM algorithm has the same
capability as the EM algorithm.

Another variant of an online algorithm is the stepwise
algorithm [22], which uses 7, steps to update the parameters in
the M-step. Here, k keeps the count of the number of updates
made to the parameters. We update the parameters as follows:

0 = (1= )9 + mpcarg max Q(0, 0°)

The stepwise algorithm performs similarly to online EM. In
our evaluation, we use the online EM algorithm.

D. Partial Observation

The online EM algorithm suffers from some difficulties in
dealing with dynamic behavior. For example, consider Bing
Travel composed of two constituent airline services: A (good)
and B (bad). They have the same responsibility 7. When A
turns bad and B turns good, the online EM algorithm may not
detect the change accurately because the overall performance
is not affected. Or, there are situations wherein different
sets of constituents yield similar composed quality. In these
situations, EM’s accuracy may be poor but can be improved
by considering partial observations from the constituents. For
example, when searching flight tickets through Bing Travel,
the consumer sometimes can partially observe the response
time of each airline by looking at when its result shows up.
These partial observations help EM calculate the responsibility
more accurately.

In the E-Step of the online EM algorithm, we hold the
old constituent parameters fixed to maximize the p(z|x) with



respect to the responsibility 7. When there are no partial
observations, we calculate the new m; of constituent ¢, as
the posterior percentage of the probability density:
plaale) = —meBeta@lon)
S, m;Beta(x|d;)
where z is the composed observation, and Beta is the beta
probability density function. Consider that the performance of
the k'™ constituent is observed as zj. Instead of Equation 9,
we calculate the new 7 by comparing the probability density
of x and x4, i.e.,

€))

min(Beta(x|0x), Beta(zy|0k))
max(Beta(x|0y), Beta(zy|01))

pzklz, xr) = (10)

Equation 10 follows from the idea of p(zx|z) expressing
how probable it is that the constituent k contributes the
composed observation x. Given that trust in the constituent is
0, the closer the probability densities of x and z, are the more
responsibility the constituent c; should take. Section IV-A
shows how partial observations can help improve prediction
accuracy.

E. Discounting Window

Another difficulty of dealing with dynamic behavior is that,
depending on the dynamism of the service, their next behavior
may be similar to the most recent behavior or to the overall
behavior. Suppose, airline A improves its response time by
upgrading its servers. This improvement may or may not affect
the response time of Bing Travel. The trust value of Bing
Travel and A should be able to adapt to this change.

Many modern trust models introduce an adjustable dis-
counting factor [23] to determine how much should past
experience be weighted. If the services tend to follow their
recent behavior, we should discard the old experience faster,
i.e., employ a higher discounting factor. In contrast, if the
services behave similarly to their overall performance, we
should use a lower discounting factor, which yields more
accurate predictions.

Our approach incorporates the discounting factor indirectly
as a discounting window. The size of the discounting window
indicates how many observations the model should consider.
For example, let the window size be 50. Our approach collects
as many observations as possible until the window is full.
Upon the 51t observation, our approach replaces the oldest
observation with the new one. Section IV-C discusses how
different sizes of discounting windows deal with dynamism.

The detailed procedure of our Beta-Mixture approach is
shown in Algorithm 1.

IV. EVALUATION

To show the generality of our approach, we consider dif-
ferent types of composition by adopting four composition
operators f from Hang and Singh [15]: SWITCH, MAX (MIN),
SUM, and PRODUCT. Depending on the characteristics of the
QoS and the types of interactions (e.g., sequence, flow, and

Algorithm 1 Beta-Mixture with the online EM
new 7.‘.old eold

Require: x, x
1: if size of x less than the discounting window size then
2:  append "¢ to x
3 T "

4: else

5:  replace the oldest x € x with 2™V
6: end if

7: I/ E-Step

8: for k=1 to K do

9 if there exists partial observation x; from c; then

min(Beta(x|0y), Beta(zy|0k))

max(Beta(z|0y), Beta(zy|0k))

10: Y

11:  else old

12: ﬂ_’:bew . Tk Beta($|9k)
Zﬁil 79l Beta(x|6;)

13:  end if

14: end for

15: //M-Step

16: for k =1 to K do

17: 0™ < arg maxg Q(6, 0°'9)
18: end for

19: return x, w"ew, gnevw

TABLE 1
COMPOSITION OPERATOR EXAMPLES OF DIFFERENT QUALITIES AND
THEIR INTERACTION TYPES.

QoS Sequence Flow Case

Latency SUM MAX SWITCH
Throughput MIN SUM SWITCH
Failure PRODUCT  PRODUCT  SWITCH

case, as defined in BPEL [24]), different composition operators
can be used. Table I shows some examples.

The SWITCH operator chooses the observations of one of
the constituents as the composed observations based on a
predefined multinomial distribution (i.e., 7). The MAX (MIN)
operator composes the observations by choosing the con-
stituent with the highest (lowest) observation value. The SUM
operator adds the observations from all constituents together
(but no greater than one) as the overall set of observations.
The PRODUCT operator calculates the composed observations
by multiplying together all the constituent observations. Note
that our approach is not limited to these operators, though we
restrict our attention to these operators for the evaluation.

Due to the lack of real datasets, in our experiments, we as-
sume that the constituent observation xy, is governed by a beta
distribution. We construct a simple scenario where there is one
composite service C' with two constituent services ¢; and cs.
The behavior of each constituent is defined by the probability,
damping, or random profiles. The constituent observations xj
generated by the probability profile is sampled from a fixed
beta distribution with parameter § = (r,s). The damping
profile starts with a parameter § = (r,s) and changes the
parameter to 8’ = (r’, s’) in the middle of the simulation. The



random profile uniformly samples observations of constituent
services as xy, € [0, 1].

The QoS of C' is determined by the composition operator
f. Here f can be any operator. We consider only SUM, MAX,
PRODUCT, and SWITCH because they are the most natural
ones. We calculate the root mean square error by

e — \/251(0% — ak)?
K )

where «y, is the expected behavior based on trust estimation
01, and x, is the observed behavior of the constituent cy.

Table II shows the three approaches we compare in our ex-
periments. BM and BMPO are both Beta-Mixture models. BM
uses the traditional EM algorithm and admits no constituent
observations, whereas BMPO adopts the online EM algorithm
and considers partial observations. Nepal implements Nepal
et al.’s approach [9]. Nepal represents trust as a single value
from O to 1, which corresponds to our x and assigns trust
heuristically. Nepal et al. predefine a fixed weight wy, to reflect
the responsibility (i.e., our 7) of each constituent c, whereas
BM and BMPO learn the responsibility 7, dynamically. Nepal
takes the previous averaged observation of both the composed
and the constituent services and the current composed obser-
vation as inputs. We initialize each of the three approaches
using FCM-MM, as described in Section III-B.

(1)

A. General Evaluation

The first simulation considers how our approach deals with
static behavior. Both ¢; and ¢y use the probability profile.
The parameters are set to 6; = (2,18) and 6y = (10,10).
The multinomial distribution of the SWITCH operator is given
by {0.65,0.35}. The size of the discounting window is set to
50. The experiment is conducted for 500 timesteps. We use
the first 50 observations to initialize all three approaches with
FCM-MM, and dynamically track the remaining 450 observa-
tions. Here we let BMPO observe 50% partial observations.

Figure 1 shows the prediction error of all composition
operators. In MAX, the actual responsibility 7 is obtained
by the actual constituents the MAX operator chooses during
the simulation. The actual responsibility is not available in
the SUM and the PRODUCT cases. In general, because of the
additional 50% partial observations, BMPO performs better
than BM. Nepal produces worse results, except for 1 and 7
in SWITCH.

BM performs better than BMPO in SWITCH without partial
observations. This is because SWITCH follows the intrinsic
nature of the finite mixture model, i.e., the superposition of
multiple probability densities, which means all the obser-
vations can be perfectly divided into two groups based on
which constituent service the observations are chosen from.
Thus, BM performs well without any partial observations.
Considering partial observations based on heuristics obscures
the accuracy insignificantly. However, when one constituent
is barely contributing (e.g., the first constituent in MAX), BM
cannot estimate trust (e.g., 1) of it because of the lack of
evidence. It is because the overall quality is totally dominated

by the second constituent. As mentioned in Section III-B,
for those constituents with low responsibility, although the
assigned trust may not be accurate, the consumer can ignore
such constituents because their performance does not affect
the composite service too much. For the SUM and PRODUCT
operators, since all the observations involve both constituents,
BM yields less accurate predictions. Note that the parameter
of the constituent that contributes more can be learned more
accurately than the other constituent. For example, for the
SUM operator, constituent ¢y contributes more because it has
higher expectation a = .- = 0.5 than constituent ¢;
(a = 0.1). In general, the constituent with higher responsibility
provides more evidence for BM to learn from. Fortunately, the
accuracy in all the cases is significantly improved with partial
observations. With 50% partial observations, BMPO estimates
trustworthiness of the constituent services with prediction error
less than 15%.

To summarize, this result shows BM and BMPO provide gen-
erally better predictions than Nepal. Beta-Mixture is flexible
in terms of partial observations. BMPO yields more accurate
predictions with partial observations than BM and Nepal.

B. Partial Observations

The second simulation evaluates how BMPO improves the
accuracy by considering the partial observations from con-
stituent services. We follow the same configuration as Sec-
tion IV-A except that the percentage of the partial observations
is varied from 0% to 100%. Figure 2 shows the prediction error
of BMPO for all composition operators. In SUM, the prediction
accuracy improves as the availability of partial observations
increases. In PRODUCT, only the accuracy of the good con-
stituent (o = 0.5) significantly improves, because the overall
observation is dominated by the bad constituent (o« = 0.1).
Similarly, in SUM and MAX, the dominating constituent is the
good one. Partial observations significantly help predict those
less dominating bad constituents. This experiment shows that
partial observations improve the prediction accuracy of the
constituent services, especially the less dominating ones.

C. Discounting Windows

The last simulation shows how BMPO deals with the dy-
namic behavior of the constituent services by adjusting the size
of the discounting window. Section III-E claims incorporating
discounting windows can help deal with services with varying
levels of dynamism. Here, constituent c¢; uses two dynamic
behavior profiles. The damping profile starts with 6; = (18, 2)
(a1 = 0.9) and turns to 6] = (2,18) (aj = 0.1) in the middle
of the experiment. The random profile uniformly samples
x1 € [0,1]. Constituent co adopts the probability profile,
where 0, = (10,10) (az = 0.5). We consider ten sizes
of discounting windows: 10,20,...,100. The composition
operator is SWITCH with multinomial probability {0.65,0.35}.
There are a total of 500 observations. The first 10, 20, ...,100
observations are used for initializing BMPO with correspond-
ing sizes of discounting windows and the rest are used for



TABLE I
APPROACHES COMPARED IN OUR EXPERIMENTS.

Approach  Description Online  Observation  Dynamism
BM Beta-Mixture No None Discounting Window
BMPO Beta-Mixture with Partial Observations  Yes Partial Discounting Window
Nepal Nepal et al. [9] Yes None No
! ! ! ! !
08 11BM with no Observation
: BEBMPO with 50% Observation
_ 0 Nepal with no Observation
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Fig. 1. The average prediction error e of the parameters € and the responsibility 7 with all composition operators (responsibility 7 for the SUM and PRODUCT
operators is not available because there are no actual values).
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" ~o-Poor Constituent Fig. 3. The error of predicting damping and random constituent service
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5 0.2} 1 5020 1 dows, compared with Nepal. Nepal produces the same error
= = \ . . . . .
~ 01l B N e I BN R - | across the x-axis because it does not use discounting windows.
AR b In Figure 3(a), the damping constituent can be better predicted
0 20 40 60 80 100 0 20 40 60 80 100 with a smaller discounting window. However, in Figure 3(b),
% Partial Observation % Partial Observation . . .
the random constituent is less predictable regardless of the
(c) suM (d) PRODUCT sizes of discounting windows, because its current observation

is independent to the previous observation. Using the size of
30 yields the best prediction, although the difference is not
significant. Nepal lacks the flexibility of dealing with both
dynamic profiles.

Fig. 2. The error of predicting trust of constituent services using BMPO with
varying percentages of partial observations.

online learning. We compare the last 400 predicted and actual D. Discussion
observations. We use the setting of 50% partial observations. Our evaluations show that (a) Beta-Mixture can provide

Figure 3 shows the prediction error of the dynamic con- good predictions of both responsibility and constituent pa-
stituent using BMPO with varying sizes of discounting win- rameters with four composition operators: SWITCH, MAX,



SUM, and PRODUCT; (b) Beta-Mixture can improve prediction
accuracy by considering partial observations; and (c) Beta-
Mixture deals flexibly with dynamism by adjusting the size of
the discounting window.

V. CONCLUSIONS

This paper proposes an approach for assigning trust to the
constituents of composite services. It models a composite
service as a beta-mixture and supports the following features:

o assigns trust to the constituents behind the composite
service based on their contribution to the overall per-
formance, and provides a responsibility measurement for
each constituent;

« improves prediction accuracy by considering partial ob-
servations (if any) from the constituents; and

o accommodates dynamic behavior by introducing a dis-
counting window.

Our future work includes studying more complicated set-
tings involving more constituents and deeply nested compo-
sitions with real datasets such as for scientific workflows.
Another possible extension is to learn the number of con-
stituents behind the composite service because in some cases,
consumers may lack this information. Besides, our approach
should be able to be combined with beta-distribution based
trust models. By doing this, we can incorporate indirect
evidence such as referrals into our approach. Thus, additional
trust information can be aggregated to improve the accuracy
or expedite the initialization process.
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