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Abstract—Local State Transfer (LoST) is a simple, declara-
tive approach for enacting communication protocols. LoST is
perfectly distributed and relies only upon the local knowledge
of each business partner. It involves a novel treatment of the
information bases of protocols, especially in terms of how their
parameters are specified. As a result, LoST can capture subtle
patterns of interaction that more complex approaches cannot
handle well. Further, LoST lends itself to implementations that
are robust against unordered and lossy message transmission.

Index Terms—Business protocols; messaging; architecture

I. INTRODUCTION

We address the challenge of engineering service-based
systems, such as might support cross-organizational business
processes [1]. Such systems are characterized by the autonomy
and heterogeneity of their participants, which we can naturally
model as agents. To support loose coupling and arms-length
relationships in such settings, it is therefore natural that we
would emphasize the interactions (specifically, communica-
tions in units of messages) among such participants and
deemphasize their internal construction [2], [3].

The importance of interaction is increasingly being recog-
nized in industry and academia. Indeed, approaches such as
the choreography languages, e.g., WS-CDL [4], attempt to
provide a way for specifying the desired interactions. Industry
standards in finance (TWIST [5]), health care (HL7 [6]), and
manufacturing (RosettaNet [7]) also address interactions as
crucial, though often in an over-constrained way—for exam-
ple, RosettaNet considers only two-party interactions, each of
them structured as a request followed by a response.

However, a significant problem with existing approaches to
interaction is that they are focused on procedural abstractions,
usually based on the same constructs (e.g., sequence, branch,
and join) as are used for specifying the internal implementation
of a participant. Procedural approaches typically yield spec-
ifications that tightly couple the implementations of the par-
ticipants. Recognition of the above shortcomings has inspired
recent research on the notion of business protocols wherein the
business meanings of the communications among the parties
are specified declaratively, usually involving concepts such as
commitments, and eschewing operational constraints such as
on message ordering and occurrence [8]. The idea is that such
declarative specifications would be correct and yet flexible and

general—particular enactments would be generated from them,
instead of having been (nearly) explicitly enumerated.

However, meaning-based works are usually not well-related
to the challenges of real-life distributed computing such as
asynchrony, though there is progress [9]. Moreover, stating the
meanings relies upon details such as of message ordering and
occurrence, especially to establish the interoperability of the
participants. Further, the meaning-based approaches usually
produce specifications that are confined to the propositional
cases because the challenges of dealing with parameterized
specifications have not yet been fully understood.

The foregoing situation, with shortcomings of both the
traditional and meaning-based approaches, has led us to make
a fresh start, in two major parts, on the formulation of the
notion of protocol. The first part is a declarative language for
specifying the operational aspects of a protocol, dubbed the
Blindingly Simple Protocol Language or BSPL. We previously
introduced the main principles motivating BSPL, described the
intuitions underlying its design, and provided several important
patterns for expressing protocols in BSPL [10].

This paper is about the second part, an architectural frame-
work for distributed applications that we dub Local State
Transfer or LoST. The motivation behind LoST is to provide a
way to realize protocol interactions in declarative terms, taking
into account the special challenges of distributed computing.
Our present contribution is not tied to BSPL, but BSPL pro-
vides a convenient vehicle for showcasing it, so we introduce
just enough of BSPL to explain our running example.

LoST exhibits the philosophy of interaction-oriented pro-
gramming or IOP. IOP involves engineering systems of agents
or autonomous and heterogeneous participants by describing
their interactions. A protocol specifies interactions abstractly
between two or more roles, each to be adopted by an agent
for an enactment. The differentiating idea of IOP that LoST
adopts is that it treats the interactions themselves as first-class
entities. Section IV-B returns to this point.

Our main contribution here is the introduction of the LoST
architectural framework and a reference architecture for realiz-
ing LoST. LoST maximizes flexibility of the interactions while
ensuring correctness constraints, supporting robust enactment,
and facilitating local monitoring. This paper is limited to con-
ceptualization and architecture and elides theoretical themes.



II. MOTIVATING LOST
Our interest lies in application-level and especially cross-

organizational business communication protocols [2].
As a way to motivate LoST, it is instructive to see how

protocols are specified today. A natural way is using message
sequence charts (MSCs), similar to UML Sequence Diagrams
[11]. Figure 1 shows two MSCs: the protocol roles correspond
to the lifelines; each edge connecting two lifelines indicates
a message from a sender to a receiver role. Time flows
downward by convention and the ordering of the messages
is apparent from the chart. MSCs provide primitives to group
messages into blocks and to express blocks that are enacted
as alternatives of each other, in parallel with each other, or
iteratively. MSCs thus provide a rich language in which to
specify the control structure of a protocol.

(a) Unenforceable ordering constraint. (b) Nonlocal choice.

Fig. 1. Example challenges for message sequence charts [12].

However, such a control structure might not be possible
to enact. For example, Figure 1(a) specifies that message m1

precede message m2. But, as far as roles α and γ can discern,
m2 may equally well precede m1 at role β. Desai and Singh
[12] enumerate all the possible situations with precedence
constraints between two messages. Figure 1(b) demonstrates
the challenge of nonlocal choice, wherein the correctness of a
decision by a role depends upon the decisions of other roles.
Here, we specify that exactly one of α and β may send a
message. But obviously, there is no way for α or β to know
if the other role is sending a message. Thus the protocol of
Figure 1(b) is not enactable.

Challenges such as the above arise with other notations as
well. The usual response is to define criteria for evaluating
whether the specification is enactable: a huge body of work
addresses such problems, e.g., to determine whether commu-
nicating automata can realize a given protocol [13].

Traditional, procedural approaches suffer from two main
shortcomings. First, because they lack an information model,
they require modelers to state ordering and occurrence con-
straints in an ad hoc manner. Thus the designs are often fragile:
generally over-constrained, but equally as likely lacking impor-
tant constraints. BSPL avoids this shortcoming by removing
the need for such constraints except what are motivated by,
and apparent in, the information model. Second, traditional
approaches provide no support for enacting protocols: thus,
they require procedurally constrained agent adapters that en-
sure that agents behave correctly, which tightly couples each
agent implementation not only to its adapter but also to the
implementations of other agents. Thus, the resulting enact-
ments are rigid. LoST avoids this shortcoming by providing
constraints that sustain the BSPL information model.

A. Requirements on an Architecture for Distributed Enactment
Our main requirements are that an architectural framework

for the distributed enactment of protocols must support
autonomy, i.e., systems whose constituent entities are au-

tonomous agents. The framework cannot force an au-
tonomous agent to send any messages. The parties are
peers and none of them forces any action by another.

asynchrony, i.e., protocols being enacted over real-life sys-
tems that employ asynchronous communications. In par-
ticular, it is normal for distributed agents to observe
different sets of messages and for two communicating
agents to observe the same messages in different orders.
The correctness of an outcome should not depend on the
relative rates of execution of two agents or the ratios of
the various communication channel latencies.

myopia, i.e., support protocols being enacted by myopic
agents, who work based on what they happen to know
at a given moment, do not look ahead, and cannot be
counted on to prevent invalid computations. The frame-
work should locally prevent sending messages that could
lead to an invalid computation.

consistency, i.e., ensure that the participants view an ongoing
interaction consistently. In any snapshot of the system,
the local states of the agents can never disagree on any
information that they possess, though because of message
loss or delay, they may not possess the same information.

B. Principles of LoST
We now formulate the principles that help LoST address the

above requirements and which distinguish LoST from other
architectural approaches.
No global state. LoST needs no global repository of state.

LoST concentrates exclusively on the state of an inter-
action, which we can think of the social state [14] of
the parties involved. The social state progresses over the
course of the interaction and all information relevant to
the social state is explicit within the interaction—in the
values of the parameters of the messages exchanged.

Local but not internal. LoST concerns interactions exclu-
sively. Thus, no agent’s internal state or business logic
are relevant. Further, each agent is limited to knowing
what it can observe of the distributed system through
the messages it sends and receives. Thus, the correctness
or otherwise of an enactment depends solely upon what
is locally known and feasible for the agents involved.
Each agent maintains its local state, which corresponds
to its local view of an ongoing interaction. The purpose
of communications is to transfer the relevant components
of a local state to another agent, thereby advancing the
computation (and justifying the name LoST).

Causality through information. The progress of an inter-
action depends on the causal dependencies among its
components. Further, all such dependencies are explicit in
the underlying flow of information. The causality applies
both (1) between messages and (2) between agents, who
enact such messages based on their knowledge.



Robustness. LoST relies directly only of the contents of the
messages, not on their ordering. As a result, it is naturally
robust against any differences in message order as might
be observed by different participants. In particular, LoST
can work over non-FIFO channels naturally, including
random-access channels where the receiver can read in-
coming messages in any order (after they have been sent,
of course). LoST is also naturally resilient to message
loss, and can work over lossy channels provided the
repeated retransmission of a message eventually succeeds.

Keys and immutability. BSPL treats each message schema
as having a key: LoST ensures messages are unique with
respect to the stated key. Further, LoST ensures each
message is immutable: once set, each parameter binding
(with respect to a key) never change in any local state.

III. REALIZING LOST: LOCAL STATE TRANSFER

LoST addresses two crucial aspects of correctness that
current frameworks do not, namely, the causal structure of a
distributed computation and the knowledge of the participating
agents. The very idea of a traditional control structure (such as
sequencing) is based on a centralized way of thinking. In an
open setting, the only control that is feasible is one based on
the flow of information between the participating agents: all
enactable ordering constraints fall out for free from precisely
capturing this flow. Also, the challenge of (nonlocal) choice
can be stated and addressed precisely in terms of the integrity
of the information.

LoST maintains separate local information for each role
and ensures that each state locally satisfies constraints on
knowledge with respect to parameter adornment.

Listing 1 introduces BSPL [10] via an example. A protocol
declaration begins with a name followed by sets of its roles (B,
S, SHIPPER) and public parameters (ID, item, price, outcome).
The idea is that these roles would be adopted by agents
(standing in for business partners) who carry out a purchase
interaction. The public parameters describe what information
each enactment of Purchase involves. BSPL requires that
we specify a key, here ID, which determines the unique
enactments. Although not explicitly marked in each message,
this key applies (and some key must apply) for each message.

Listing 1. The Purchase protocol.
P u r c h a s e {
role B , S , S h i p p e r
parameter out ID key , out i tem , out p r i c e , out

outcome

B 7→ S : r f q [out ID , out i t em ]
S 7→ B : q u o t e [ in ID , in i tem , out p r i c e ]
B 7→ S : a c c e p t [ in ID , in i tem , in p r i c e , out

a d d r e s s , out r e s p o n s e ]
B 7→ S : r e j e c t [ in ID , in i tem , in p r i c e , out

outcome , out r e s p o n s e ]

S 7→ S h i p p e r : s h i p [ in ID , in i tem , in a d d r e s s ]
S h i p p e r 7→ B : d e l i v e r [ in ID , in i tem , in

a d d r e s s , out outcome ]
}

For our present purposes, we do not exercise BSPL’s func-
tionality to compose protocols, although that is an important
facility for specifications in general. Accordingly, Purchase
consists of messages rfq, quote, accept, reject, ship, and
deliver, each with its sender, receiver, and parameters as
specified. During enactment, each parameter is bound to a
value. Some parameters that show up on the messages are
not public parameters of Purchase; these private parameters
(address and response) enable intermediate computations.

Listing 1 adorns each parameter with pinq or poutq. An
pinq parameter on a message is one that is conceptually an
input, so its binding must be locally known to the sender
prior to sending the message. An poutq parameter is one that
is conceptually an output, so its binding must not be locally
known to the sender prior to sending the message. In essence,
the binding becomes part of the enactment instance during
the interaction, i.e., when it becomes public, not when it is
internally computed. This is a consequence of our interaction-
oriented approach, with benefits in composition in particular
[10]. Thus a message instance with a parameter adorned poutq
is causally prior to a message instance with the same parameter
adorned pinq (provided they use the same key bindings).

The parameter adornments apply to a protocol as well.
Each pinq public parameter (Purchase has none) must be pinq
throughout the body of the protocol. Each poutq parameter
must be poutq on an at least one constituent message. During
enactment, a protocol can compute only one binding tuple
(based on its key); thus at most one constituent message with
the same poutq parameter may be sent. Listing 1 satisfies a
correctness condition that in case of such out–out conflicts,
the same role decides which path is taken by the enactment.
Here, B’s decision to accept or reject determines the path.

A. Enactment via History Vectors

To capture the fundamental distribution of LoST, we model
its enactments as arising in a fully distributed manner. Each
agent participating in a LoST enactment can be thought of as
computing a local history of observations, which we consider
as a sequence of the messages it sends or receives. An entire
LoST enactment is nothing more than a history vector, whose
elements are the histories of the participating agents.

Valid history vectors are subject to two major requirements.
First, a message can be observed by its receiver only if it is also
(previously) observed by its sender: this is the fundamental
causality constraint of distributed computing [16]. Second,
although an agent may receive a message at any time, an
agent can send a message only if it knows the bindings of all
the pinq parameters involved in that message. LoST supports
an asymmetry between pinq and poutq parameters in this
regard. For an pinq parameter, the sender must already know
the binding as part of its local state—because of some prior
observation (message emission or reception). For an poutq
parameter, the sender must not already know the binding
as part of its local state. BSPL supports another parameter
adornment pnilq, which means that the sender neither knows
nor adds a binding for the given parameter to its local state.



LoST handles the pnilq adornment, although for simplicity
Listing 1 does not use such an adornment.

Receiving a message with an poutq parameter is not essen-
tial to receiving the associated parameter binding, which may
be conveyed through another message with the same parameter
with an pinq adornment. What the poutq adornment signifies is
that the message schema (more generally, protocol) generates
a binding. Doing so facilitates compositionality [10].

In essence, the agent creates the requisite parameter binding
as part of sending the given message. The above is the
hallmark of interaction orientation. It is true that an agent
would exercise some internal reasoning to compute such a
binding, but such a binding becomes part of the local state
of the sender only when there is a public event involving
it, namely, the public event of sending a message. Once
an agent sends or receives such a message, its local state
changes: it then knows the given binding and it cannot send
another message that binds that parameter differently. The
immutability of messages helps ensure integrity in that a
protocol enactment would compute at most one value for the
binding of any parameter (given the applicable key).

Figure 2 shows a history vector, not an MSC-like specifica-
tion, showing a possible enactment of Purchase. This vector
consists of three histories, one for each agent. Each history
consists of zero or more messages observed (sent or received)
in sequence (top to bottom) by that agent. Conceptually, each
message consists of the necessary parameter bindings. Figure 2
also shows (via selected important parameters) the causal
relationships between the observations in different histories,
omitting the parameter bindings to reduce clutter.

BUYER

rfq

SELLER

rfq

SHIPPER

ID, item //

quote quote
ID, priceoo

accept accept
ID, address //

ship ship
ID, item, address //

deliver deliver
ID, item, address, outcomeoo

Fig. 2. A possible enactment of the Purchase protocol as a history vector.

Two important aspects of distributed enactment that come
together in LoST, and which traditional approaches largely dis-
regard, are (1) causality, especially at the level of interactions,
and (2) the knowledge of agents. Their interplay is crucial
in addressing two important questions that arise in our fully
distributed treatment of enactment. First, what history vectors
can be generated through LoST? These are all the history

vectors that are causally and epistemically sound. Second, how
can we ensure that those history vectors correspond to all and
only the correct enactments of a protocol? LoST ensures that
any (role) history it generates satisfies the information model
constraints. For a protocol wherein each nonlocal choice is
causally or epistemically preceded by a local choice at some
role, all the history vectors produced by LoST are correct.

B. LoST as a Software Architecture

Figure 3 describes LoST schematically as arising between
the infrastructure and application layers. LoST maintains and
relies upon the public interaction state, which is represented
locally at each agent as its knowledge.

Fig. 3. Understanding LoST schematically as a distinct middleware layer.

LoST is realized as a communication adapter for each agent
that presents a simple queue-like interface through which an
agent can send and receive messages. LoST naturally works
over a communication infrastructure of point-to-point FIFO or
non-FIFO queues. LoST relies only upon the local knowledge
of an agent to determine whether it can send a message. Ad-
ditionally, LoST takes advantage of the parameter adornments
and their stylized meanings as introduced in Section III-A, to
whether a message attempted by an agent is legal.

It is helpful to distinguish structure from meaning in a
business protocol. LoST focuses on the structure and distin-
guishes only between cases where a parameter is bound (if
so, consistently across messages) and where it is not bound.
For example, in Purchase, LoST cares that an accept is well-
constructed in terms of syntax and local knowledge. The
business meaning of accept—that it indicates a commitment
[1] from the BUYER to pay the SELLER—is important and
public, but outside the scope of LoST. LoST captures the data
underlying such a commitment as parameter bindings, e.g., the
BUYER’s commitment to the SELLER will pay $5 or whatever
is the binding of price.

In general, an agent’s internal reasoning relies upon the
specific bindings of the parameters, e.g., to determine what
messages with what bindings to send and what internal actions
to take. For example, the SELLER would decide what price to
quote and the BUYER whether to accept it. The internal rea-
soning would generally be supported by the business meaning.

C. Information Model Underlying LoST

We model each protocol as corresponding to exactly the set
of interactions it allows, where each interaction corresponds
to a possible binding of its parameters. Thus, we imagine
a relation (i.e., a table) [15] for each protocol (including
a message schema) with a tuple for each enactment. Each



protocol defines a key consisting of a subset of the parameters
declared in it. A set of enactments corresponds to a relation
instance (the set of tuples in a relation): thus, a protocol may
be instantiated multiple times, limited only by its key.

A key parameter (i.e., part of the key) must not be pnilq.
As in the relational model, each non-nilable parameter in an
enactment (viewed as an instance or tuple of the protocol’s re-
lation) must obtain a binding for an enactment to be complete.
An important integrity requirement on our information models
is that if two constituent message schemas (or protocols) of a
protocol share a nonkey parameter, the constituent schemas
also share the key of the nonkey parameter, i.e., all the
parameters uniquify that parameter. In BSPL, these are the
keys of the schemas.

Because all interactions are grounded in messages, we ma-
terialize only the relations for the message schemas. Further,
only the sender and receiver of a message schema need
maintain a relation for it. The relation for a protocol is not
materialized. It is simply the universal relation, i.e., the cross-
product of the relations of its constituent messages, with
exactly one column for each role and parameter (since LoST
relies upon parameter names to prevent spurious enactments),
and the private roles and parameters projected out. Therefore,
the key of the protocol is the union of the keys of its messages.
The key restriction is essential for ensuring that the integrity
of a protocol enactment is preserved when its constituent
messages are properly enacted.

We make the simplifying assumption that the message
schemas are in Boyce-Codd Normal Form, which states that
there are no functional dependencies in a relation other than
from its keys [15]. Thus, the key of a constituent message must
be the intersection of the parameters of the message with the
parameters in the key for the protocol declaration.

LoST disregards duplication, just as the relational model
does. In other words, our information model must define a
message schema that allows whatever parts we wish to repeat
[10]. LoST simply ensures any enactment respects the stated
key. The maximum number of instances of a message schema
depend on the domains of its key parameters. Beyond the key
constraint, it is up to the sender of a message to decide whether
and how to repeat parts of it.

D. Ordering and Occurrence

The effect of parameter bindings is to generate ordering and
occurrence conflicts. Receiving a message is always permit-
ted in LoST. As a simple example, suppose some message
schemas involve the same key parameter that is pinq along
with the same parameter p with different adornments. Table I
captures the constraints on sending an instance of any of these
schemas relative to sending or receiving another instance of
any of these schemas.

Notice that LoST allows a message with p adorned poutq
to arrive even when a binding for p (with the same key) is
already known to the receiver. This is because LoST does
not presume ordered message transmission. Figure 4 shows
a simple commerce example where the SELLER receives an

TABLE I
SEND-SEND AND SEND-RECEIVE CONSTRAINTS ON AN AGENT.

Sends in Sends out Sends nil

Sends in Unconstrained Send out first Send nil first
Sends out Send at most one Send nil first
Sends nil Unconstrained
Receives in Receive at least

one instance
before send

Receive may
occur after send

Send before
receive

Receives out Receive at least
one instance
before send

Impossible Send before
receive

Receives nil Unconstrained Unconstrained Unconstrained

order (with poutq price) after the funds (with pinq price). Here
order is not superfluous as it produces the binding of price.

BUYER SELLER BANK

order[ID, item, price]

((

pay[ID, price] ..

funds[ID, price, conf]pp

Fig. 4. Example enactment: funds arrives before its causally prior order.

E. Implementing a LoST Adapter

A LoST adapter for an agent reads, potentially in any order,
from the its incoming queue and writes (sends messages) to
the queues for any agents that it interacts with. The adapter
maintains the relations that capture the local state of its agent.
It provides the relevant information to the agent’s internal
reasoner (possibly via the business meaning component).

Algorithm 1 specifies how a LoST adapter inserts a message
into a local store: this algorithm is common to both receiving
and sending. An insertion may fail if the message does not
match its schema, has an undefined key parameter, is a dupli-
cate, or its contents are inconsistent with a previously stored
message of the same or a different name. Discarding duplicates
separates the reception of messages from the transfer of their
contents, and precludes the possibility of the agent’s internal
reasoning carrying false dependencies on duplicated messages.
Here, [ ] indicate projection.

Algorithm 2 specifies that an agent’s LoST adapter attempts
to insert an incoming message and, if successful, notifies the
agent. Algorithm 3 describes that a sending agent’s LoST
adapter verifies that the binding specified for each of the pinq
parameters is exactly as known to the agent and that no binding
is known for each of the poutq or pnilq parameters.

As an example, let us consider the enactment of Figure 2.
In Purchase, the SELLER sees all messages except deliver; the
BUYER all except ship, and the SHIPPER only ship and deliver.
Their LoST adapters maintain the appropriate relations for
each. Initially, all relations are empty and no message with an
pinq parameter may be sent. An rfq may be sent by the BUYER



Algorithm 1 Inserting a message instance t of schema m.
1: if R(m), the relation for schema m, does not exist then
2: Throw undefined-message exception
3: else if any key or non-nilable parameter of m has nil

binding in t then
4: Throw schema-violation exception
5: else if t ∈ R(m) then
6: return false
7: else
8: for all schemas n do
9: U ← m ∩ n

10: K ← subset of U that are key parameters
11: if t[K] ∈ R(n)[K] and t[U ] 6∈ R(n)[U ] then
12: Throw inconsistent-message exception
13: end if
14: end for
15: Insert t in R(m)
16: return true
17: end if

Algorithm 2 Receiving a message instance t of schema m.
1: if (Insert t into local store) then
2: Forward t to the recipient’s listener
3: else {COMMENT: the insertion failed}
4: Notify sender of t of any exceptions
5: end if

if it generates an ID and item. When the message arrives at
SELLER, the SELLER may generate a price internally and send a
quote. Upon its receipt, the BUYER may send accept or reject :
whichever of these messages is first succeeds and inserts a
binding for response in the local relation, thereby disabling
the other. Such disabling helps LoST ensure the consistency of
an enactment. The SELLER needs to know the address to send
ship: it knows the address only if the BUYER sends it an accept.
The SHIPPER can send deliver only if it receives the bindings
for ID, item, and address. Thus, Purchase either concludes with
the BUYER sending reject or the SHIPPER sending deliver,
each of which produces outcome.

F. Robust Implementation

LoST is naturally insensitive to message transmission order.
Further, in general, in normal enactment, a receiver may
learn of a parameter binding via multiple paths. There is a
crucial distinction between business and technical messages.
LoST guarantees that no business message is duplicated: each
adapter verifies the restrictions on knowledge and conflict, and
suppresses duplicate copies of incoming or outgoing messages.
Message duplicates have no impact on their local states. The
effect of all the parameter adornments is completely captured
by the first copy of any message instance.

However, LoST can readily be implemented over infrastruc-
ture that may arbitrarily retransmit any technical message. As
long as at least one transmission of each business message suc-
ceeds, the overall enactment progresses correctly. For example,

Algorithm 3 Sending a message instance t of schema m.
1: for all parameters p in schema m do
2: known ← false
3: for all relations R(n) of any schema n where p ∈ n

do
4: U ← m ∩ n (COMMENT: thus p ∈ U )
5: if t[U ] ∈ R(n) then
6: known ← true
7: end if
8: end for
9: if not known and p is adorned pinq in m then

10: Throw in-adornment-violation exception
11: else if known and p is adorned poutq in m then
12: Throw out-adornment-violation exception
13: else if known and p is adorned pnilq in m then
14: Throw nil-adornment-violation exception
15: end if
16: end for
17: if (Insert t into local store) then
18: Forward t to its recipient
19: else {COMMENT: the insertion failed}
20: Notify sender of t of any exceptions
21: end if

we may configure the infrastructure to send two copies of each
technical message or repeatedly resend technical messages
until an acknowledgment to achieve the desired reliability. The
immutability of parameter bindings supports a relaxation of
message order, and thus facilitates even such naı̈ve approaches
being effective. A more sophisticated approach could analyze
the protocol to recognize that some messages are implicit
acknowledgments of others: for example, once a quote arrives,
there is no point in repeating rfq.

G. Verifying Termination

LoST does not require that any individual agent be aware
that a protocol enactment has completed. In Listing 1, the
BUYER (B) has visibility into all the parameters declared in
Purchase. However, in the case of accept, Purchase terminates
when deliver occurs, but the SELLER would have no knowl-
edge that deliver occurred. If necessary, one can define an
alternative protocol in which the BUYER or SHIPPER inform
the SELLER of the delivery. Conversely, in the case of reject,
not informing the SHIPPER of the termination sounds normal.

The above illustrates a strength of LoST: it does not gratu-
itously couple the agents to each other. However, if you like,
you can design a protocol wherein a particular role gathers
up all the results. In general, we expect minimal benefit from
introducing such a central role into a distributed computation,
unless there is an external regulatory reason for doing so.

IV. MAJOR RELATED APPROACHES

The immutability of parameter bindings with respect to a
key means that parameter bindings can be cached wherever
needed and for as long as needed. Further, immutability is



a basis for the robustness of LoST, because there is no harm
from multiple emissions and receptions of a message instance.
Immutability provides robustness against asynchrony, because
it ensures that bindings are never ambiguous or out of date.

A. LoST versus ReST

In broad terms, LoST shares with ReST [17] the philosoph-
ical attitude of decoupling components. However, LoST ad-
dresses a different problem than traditional web applications.
In particular, LoST considers distributed protocols with many
loci of enactment as opposed to the client-server, request-
response nature of ReST. We can think of LoST as ReST
done right for distributed settings. A loose analogy with ReST
is that LoST distinguishes adornments of parameters just as
ReST distinguishes verbs such as POST, GET, and others.

However, LoST has significant differences that help it avoid
some of the main shortcomings of ReST with respect to cross-
organizational protocol modeling and enactment. Specifically,
ReST’s client-server nature maps to orchestration where the
client carries out a workflow among the servers. ReST is
concerned with side-effects (such as through a POST) and
provides no guarantees about the repeated submissions of a
POST. LoST deals with immutable bindings and guarantees
that repetitions of messages with the same parameters are
harmless. Table II summarizes the major differences and
similarities between LoST and ReST.

B. LoST versus WS-CDL and BPMN

LoST (and BSPL) take a significantly different philosophi-
cal and technical stance from previous languages such as WS-
CDL and, especially, BPMN. The most significant differences
are the explicit causality and the information centrism of LoST,
yielding decentralization and loose coupling.

BPMN is the Business Process Modeling Notation, a stan-
dard for business process specifications [18]. BPMN defines
pools that correspond to BSPL roles. BPMN mainly specifies
the operational details of a process using procedural abstrac-
tions. BPMN’s architecture is of a centralized process engine
that has complete knowledge and control over the process. In
this way, BPMN violates the autonomy of the participants.
BPMN includes the notion of a definitional collaboration
whereby one can specify a process in terms of all its collab-
orations. This idea seems to limit extensibility and preclude
compositions, wherein one protocol role is identified with roles
in additional protocols [1]. BPMN assumes values can be read
from a global context, which does not exist in LoST.

BPMN defines a collaboration as specifying a public process
consisting of the interactions or touch-points between partic-
ipants (p. 24). It defines a choreography as the procedural
contract between participants (p. 25) and a conversation as
an informal description of message exchanges (p. 26). BPMN
uses the traditional procedural constructs (split, join, and so
on) for each of the above. It does not specify the messages
in a declarative manner as BSPL does, and lacks a semantic
characterization of conversations and choreographies.

WS-CDL is smaller than BPMN but quite complex com-
pared to BSPL. WS-CDL’s underlying architecture is dis-
tributed, like LoST. However, there are significant differences.

First, WS-CDL places into a choreography actions that
would be private to an agent, such as what it should do upon
receiving a message. LoST, because of its declarative nature,
considers only the publicly visible actions and disregards inter-
nal reasoning. Doing so maximizes autonomy and heterogene-
ity. Second, for nested choreographies, WS-CDL relies upon
local decision-making by an agent, such as whether to forward
a request received in one choreography to another. In LoST,
any such composition is accommodated through the common
parameters, not through constraints on local decision-making.
Third, and importantly, LoST supports a declarative notion of
the correctness and completion of a protocol enactment, which
WS-CDL lacks. Further, LoST makes the causal dependencies
among messages explicit, thereby facilitating more flexible
enactments than WS-CDL can. A consequence is that, when
two or more messages are performed within a given WS-CDL
choreography, they are handled sequentially by default, as in
an MSC, whereas LoST omits any arbitrary orders.

Notice that the first two points above indicate that WS-CDL
gives first-class status to agents, not to interactions.

C. Additional Relevant Literature

Traditional work on service composition primarily considers
orchestrations where a conceptually central party controls two
or more services. Semantic web services approaches formalize
service behaviors so as to enable planning and constraint
reasoning for composition. They give primacy to services, not
to their interactions. However, similar techniques, e.g., [19],
may be expanded and applied in our setting.

Recent work on artifacts treats them as representing a
business process that encapsulates all the relevant data of
an enactment [20]. In contrast, we separate and focus on
the interaction as opposed to the internal reasoning, further
separating the interaction into structure (this paper) and mean-
ing (treated as commitments over the parameter bindings
[8], [9]). The distributed computing literature has addressed
composition [21], [22], but it is focused on capturing internal
events as well as inputs and outputs of processes. In our terms,
such work treats agents, and not interactions, as first-class
entities. Further, we develop a declarative, information-based
approach in contrast with the procedural characterization of
I/O automata [22].

V. DISCUSSION

The main motivation underlying LoST is to have the agents
send and receive messages in a minimally constrained manner.
Specifically, LoST enforces the requirements of (1) knowl-
edge, (2) keys, and (3) causality. Each message emission
and reception affects the local knowledge of the agent. LoST
determines whether each emission is viable based on the local
knowledge of its sender at the time of emission and taking
into account the parameter adornments. Thus it preserves
uniqueness as well as key integrity—as one would expect.



TABLE II
COMPARING LOST AND REST WITH RESPECT TO IMPORTANT FEATURES.

ReST LoST

Modality Two-party; client-server; synchronous Multiparty interactions; peer-to-peer; asynchronous
Computation Server computes definitive resource state Each party computes its definitive local state and the parties collaboratively and

(potentially implicitly) compute the definitive interaction state
Transfer State of a resource, suitably represented Local state of an interaction via parameter bindings, suitably represented
State Server maintains no client state Each party maintains its local state and, implicitly, the relevant components of the

states of other parties from which there is a chain of messages to this party
Idempotent For some verbs, especially GET Always; repetitions are guaranteed harmless
Caching Programmer can specify if cacheable Always cacheable
Uniform interface GET, POST, . . . pinq, poutq, pnilq
Naming Of resources via URIs Of interactions via (composite) keys, whose bindings could be URIs

LoST meets the requirements of Section II-A naturally. It
preserves the autonomy of the participants constrained only
by the protocol specification. LoST never forces an agent
to send a message. It allows an agent to send any message
that respects its schema and the knowledge requirements of
the parameter adornments. LoST operates over infrastructure
that is asynchronous as well as lossy and able to retransmit
messages in an arbitrary manner. LoST works on an agent’s
current state. For protocols with local treatment of choices,
LoST handles myopia. LoST guarantees that the knowledge of
any two participants is always consistent, though not identical
because of delay or loss.

We should emphasize that LoST does not impose any
additional overhead in terms of storage. In today’s common
practice, all businesses already log all their business messages.
They do so for managing their business operations, for reg-
ulatory reasons, and to support analytics and optimization—
usually all three. LoST verifies that the messages are consistent
and unique, so there is an overhead for such tests but it yields
benefits in improved flexibility and robustness.

The idea of correlating transactions or activities within a
workflow is well known. Keys as used in LoST are a natural
enhancement of that idea: we apply keys on interactions and
use them as a basis for supporting immutability and preventing
spurious duplication.

LoST provides the architectural underpinnings of BSPL,
which is a simple declarative approach for expressing com-
munication protocols based on two main constructs: a way to
specify a message and a way to compose protocols [10]. BSPL
protocols can be naturally enacted via LoST. In particular,
BSPL lifts the guarantees of LoST, such as their uniqueness
and consistent views, to protocols at large.

A useful future direction is enhancing the treatment of the
LoST information model. For instance, it would be appropriate
to entertain multiple keys for a protocol. Further, it would be
useful to understand the impact of asserting explicit functional
dependencies [15] on the potential enactability of protocols,
and so on. Some natural extensions that we will be considering
include a principled treatment of multicast (where multiple
agents playing the same role receive a message), accommodat-
ing discovery protocols (where the roles are bound late during
enactment), and recursive protocols.
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