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Abstract. Trust is an important element of achieving secure collaboration that
deals with human judgment and decision making. We consider trust as it arises
in and influences people-driven service engagements. Existing approaches for es-
timating trust between people suffer from two important limitations. One, they
consider only commitment as the primary means of estimating trust and omit
additional significant factors, especially risk and emotions. Two, they typically
estimate trust based either on fixed parameter models that require manual setting
of parameters or based on Hidden Markov Models (HMM), which assume con-
ditional independence and are thus ill-suited to capturing complex relationships
between trust, risk, commitments, and emotions.
We propose TRACE, a model based on Conditional Random Fields (CRF) that
predicts trust from risk, commitments, and emotions. TRACE does not require
manual parameter tuning and relaxes conditional independence assumptions among
input variables. We evaluate TRACE on a dataset collected by the Intelligence
Advanced Research Projects Activity (IARPA) in a human-subject study. We find
that TRACE outperforms existing trust-estimation approaches and that incorpo-
rating risk, commitments, and emotions yields lower trust prediction error than
incorporating commitments alone.

1 Introduction

People-driven service engagements involve how people interact to carry out collab-
orative business processes [6, 7]. Such business processes involve human judgment
and decision-making [13]. Trust is a crucial element of achieving secure collaboration
where people interact since it enhances the quality of a collaboration. We consider di-
rect interaction between people, which can be used to inform the design of user agents
to facilitate collaboration among people. As people interact, they estimate and contin-
ually revise trust in each other based on their mutual interactions. Trust is established
as a crucial element of service selection, e.g., [11]. However, as service settings be-
come more complex and intertwined with social interactions, we need to expand our
understanding of trust in services to promote the human element.

Existing approaches to trust estimation consider commitments alone. Gambetta [4]
interprets trust as a truster’s assessment of a trustee for performing a specific task.
Mayer et al. [12] define trust as the willingness of a truster to be vulnerable to a trustee
for the completion of a task. Teacy et al. [18] consider trust as the truster’s estimation
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of probability that a trustee will fulfill its obligation toward the truster. Wang et al. [20]
represent trust as the belief of a truster that the trustee will cooperate, and estimate
trust by aggregating positive and negative experiences. Singh [16] provides a formal
semantics for trust that supports various postulates on trust, including how trust relates
to commitments. Kalia et al. [8] consider commitments to predict trust.

Considering trust as a dynamic variable, two major classes of trust models arise in
the literature. First, fixed-parameter trust models, where the parameters of the model
are manually fixed, typically, based on heuristics [18, 20]. Second, machine-learned
trust models, typically Hidden Markov Models (HMM) [10, 19, 21], assume that input
variables are conditionally independent of each other given the output variable.

Research Question. Our overarching question is: How can we improve trust predic-
tion by incorporating (in addition to commitments) two attributes (1) risk taken by a
truster toward a trustee, and (2) emotions displayed by a truster toward a trustee without
presuming conditional independence? We consider risk because it depends on a truster’s
belief about the likelihood of gains or losses it might incur from its relationship with
a trustee [12]. For example, a manager may trust a subordinate who performs a high-
risk task more than another who performs a low-risk task, even if both subordinates
succeed at the task. Conversely, the manager may assign high-risk tasks to a subordi-
nate whom he or she trusts more than the other. We consider emotions because studies
in psychology suggest that positive emotions (e.g., happiness, gratitude) increase trust,
whereas negative emotions (e.g., anger) decrease trust [2]. Conditional independence
may not hold in our setting. For example, consider the relationships between trust (out-
put variable) and risk and commitments (two input variables). An HMM model would
assume that risk and commitments are independent given the level of trust. However,
the likelihood of gaining from risk is higher if commitments are satisfied.

Contributions. We propose TRACE, a model of trust based on Conditional Random
Fields (CRF) [9]. TRACE avoids manual fixing of parameters and relaxes the con-
ditional independence assumption. To create TRACE, first, we propose relationships
between trust, risk, commitments, and emotions. Then, we train TRACE using the past
observations between people. Once TRACE is trained, we use it to infer trust given new
observations. Our claims are two fold: (1) by capturing complex relationships among
output and input variables, TRACE estimates trust between people better than fixed–
parameter and HMM-based trust models, and (2) by capturing risk, commitments, and
emotions, TRACE performs better than models that capture only commitments. We
evaluate our claims via data collected from a human-subject study conducted by the
Intelligence Advanced Research Projects Activity (IARPA).

2 A Conceptual Model of Trust

TRACE enhances Mayer et al.’s [12] trust antecedent framework (TAF) as shown in
Figure 1. The trust model contains four variables: trust (T), risk (R), commitments
(C), and emotions (E). We describe each variable V = 〈T, R, C, E〉 using Singh’s [15,
16] formal notation V〈debtor, creditor, antecedent, consequent〉. In the notation, the
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Fig. 1: The TRACE model enhances the trust antecedent framework [12] with emotion.

debtor and the creditor are the roles enacted by individuals. The antecedent represents
conditions and the consequent represents tasks.

Commitments. We represent a commitment as C〈trustee, truster, antecedent, conse-
quent〉. In a commitment, the trustee commits to the truster to perform the consequent.
If the trustee performs the consequent, the commitment is satisfied. If the antecedent
is true but the trustee does not perform the consequent, the commitment is violated.

Risk. We represent risk as R〈truster, trustee, antecedent, consequent〉, denoting that
the truster takes a risk by accepting the trustee’s offer to perform the consequent. If
the trustee performs the consequent, the truster gains; else, the truster suffers a loss.

Trust. We represent trust as T〈truster, trustee, antecedent, consequent〉, denoting that
the truster believes the trustee if the trustee performs the consequent. If the trustee does
not perform the consequent, the truster begins to doubt the trustee. Based on TAF, trust
has three dimensions: (1) ability, the trustee’s competency to perform the consequent,
(2) benevolence, the trustee’s willingness to perform the consequent, and (3) integrity,
the trustee’s ethics and morality in performing the consequent.

Emotions. An emotion is a psychological response to an external or internal event
[3, 17]. We introduce emotions as a response to commitment outcomes (satisfaction
or violation) in the TAF (Figure 1). Similar to trust and risk, we denote emotions as
E〈truster, trustee, antecedent, consequent〉. The truster displays a positive emotion if
the trustee performs the consequent, else a negative emotion.

Postulates. Next, we propose postulates that capture relationships between the vari-
ables above. In these postulates, Vt represents the state of the variable V at time t.

P1 : Tt → Tt+1. The trust Tt+1 is influenced by the past trust Tt. This postulate is
consistent with the HMM trust models [10, 19, 21] since they assume that a truster
computes its current trust Tt+1 for a trustee based on its past trust Tt with the trustee.

P2 : Ct→ Tt. The current commitment outcome Ct influences the current trust Tt. We
consider this postulate since Kalia et al. [8] suggest that a truster trusts a trustee if the
trustee satisfies the trustee’s commitments toward the truster.

P3 : Rt→ Ct. The risk taken influences the commitment outcome Ct or the gain or loss
realized in the risk Rt . The postulate is supported by TAF [12].

P4 : Rt → Tt. The current risk taken Rt influences the current trust Tt . The postulate
is supported by TAF [12].
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P5 : Ct → Et. The commitment outcome Ct influences the current emotion Et. Smith
and Ellsworth [17] suggest that a truster’s emotions depend on the truster’s appraisal
of a trustee’s commitments toward the truster.

P6 : Rt → Et. The risk taken Rt influences the truster’s emotion Et. We consider this
postulate to capture the indirect effect that the risk taken influences the commitment
outcomes (P3), which influence emotions (P5).

P7 : Et → Tt. The current emotion Et influences the current trust Tt. Psychological
studies suggest that a truster makes trust-based judgments toward a trustee based on
his or her emotional relationships with the trustee [2].

3 The TRACE Model

To compute trust, we propose the TRACE model using dynamic Bayesian models. In
these models, we consider T, R, C, and E as random variables. Using the variables and
the relationships proposed above, we construct two dynamic Bayesian models as show
in Figure 2a and Figure 2b, respectively. Figure 2a represents the HMM model (the
state-of-the-art-model) whereas Figure 2b represents the TRACE model.

HMM-based solutions and their limitations. Dynamic Bayesian models such as
HMMs can be adapted to compute trust as shown in Figure 2a. Here, input variables
are considered as a sequence of observations x={C, R, E}Tt=1, and output variables
are considered as a sequence of states y={T}Tt=1 where T is the length of a specific
sequence. Then, a HMM represents the joint distribution p(y,x), making two indepen-
dence assumptions: (1) the current state yt is independent of y1, y2, . . ., yt−2, given
yt−1; (2) observations xt are independent of each other, given yt. Given these indepen-
dence assumptions, the joint distribution can be computed as p(y, x) =

∏T
t=1 p(yt|yt−1)

× p(xt|yt). However, a downside of making these assumptions is that the correspond-
ing models ignore some of the trust dependencies postulated in Section 2. For example,
the HMM shown in Figure 2a assumes Ct to be independent of Et given trust Tt, which
may not be true according postulate P5.

T t T t+1

Ct Rt Et Ct+1 Rt+1 Et+1

(a) HMM

T t T t+1

Ct Rt Et Ct+1 Rt+1 Et+1

(b) TRACE

Fig. 2: Graphical representation of HMM and TRACE trust models (two time slices).
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TRACE. TRACE employs CRFs to overcome the limitations of HMM-based trust
models. As shown in Figure 2b, our CRF-based model considers all the dependencies
postulated in Section 2. As Lafferty et al. [9] describe, unlike HMMs, CRFs are agnos-
tic to dependencies between the observations. Further, the conditional probability of the
label sequence can depend on arbitrary, nonindependent features of the observation se-
quence without forcing the model to account for the distribution of those dependencies.
CRFs capture relationships between input and output variables (x, y) as feature func-
tions (undirected edges in the graphical model shown in Figure 2b). A feature function
can be computed by considering the entire input sequence.

An HMM model simplifies the computation of the joint probability by assuming
conditional independence. In contrast, a CRF model employs discriminative modeling,
where the distribution p(y|x) is learned directly from the data (not requiring to learn
the parameters of the entire joint distribution). The most important aspect of CRFs is to
relate p(y|x) and feature functions fk(yt, yt−1, xt). Each feature function covers either
a state-state pair (yt, yt−1), e.g., (Tt+1, Tt) or a state-observation pair (xt, yt), e.g., (Ct,
Tt), (Et, Tt), and (Rt, Tt). Suppose we have K feature functions that represent state-
state and state-observation pairs from x and y. Then, p(y|x) can be computed starting
from the joint distribution p(y,x) as follows.

p(y|x) = p(y,x)∑
y
p(y,x)

=

exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

}
∑
y
exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

} (1)

Training. To estimate the parameters λk in Equation 1, we consider the training data
D={xi, yi}Ni=1. The parameters can be estimated by maximizing the log-likelihood L
on the training data D, i.e., L(D) =

∑N
i=1 log p(y|x).

Inference. To find the best possible state sequence y for observations x, we use the
Viterbi algorithm [14]. According to the algorithm, we define a quantity δt(i) that indi-
cates the highest score (highest probability) of a path at time t as δt(i) = maxy1,y2,...,yt−1

p(y1,y2,. . .,yt=i, x1, x2, . . ., xt|λ) where i represents the state at time t.

4 Evaluation

We evaluate TRACE on data collected from subjects executing the Checkmate protocol
[5] adapted from the iterated investment or dictator economic decision-making game
[1]. The subjects assessed each other’s trustworthiness as they played the game.

The checkmate protocol. The protocol involves two roles: banker and game player.
The banker’s task is to loan money to a game player from an initial endowment of 50
USD. The game player’s task, in a single round of the protocol, is to complete a virtual
maze of desired difficulty and collect as many cash boxes hidden in the maze as possi-
ble within the allotted time. The game player requests a loan from the banker to play
a maze, promising to play a maze of certain difficulty and return (1) the loan with all
gains, (2) the loan with 50% of all gains, (3) 50% of the available money, or (4) a fixed
amount. After the game player’s request, the banker chooses a loan category: small (1–
7 USD), medium (4–10 USD), or big (7–13 USD). Then, a dollar amount, randomly
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generated within the banker’s chosen category, is loaned to the game player. The game
player does not know the category chosen by the banker. Next, the game player plays a
maze of a certain difficulty (not necessarily what he or she had promised). The banker
will not know the actual maze played. The difficulty of the maze determines the risk
involved: low risk (75–150%; i.e., the player could lose up to 25% or gain up to 150%
of the loan amount in this maze), moderate risk (50–200%), or high risk (0–300%).
Finally, the game player returns some money to the banker (not necessarily what he or
she had promised).

A pair of subjects (one banker; one player) executed the protocol for up to five
rounds. After each round, the subjects answered questions about their (individual) emo-
tions and perceptions of the opponent’s trustworthiness. All the money involved was
real—that is, subjects kept the money they were left with at the end of all rounds.

Data. The data consists of 431 rows collected from 63 subjects, where each row
corresponds to the sequence of rounds played between two subjects. The data we ob-
tained reflects only the banker’s perspective. Thus, our observations and predictions are
from the banker’s perspective. We compute the variables of our interest for each round
in a sequence as follows. (1) We treat the commitment from the player to the banker,
C〈player, banker, loan, return〉, as satisfied if the player returned at least the amount he
or she had loaned, and as violated, otherwise. (2) We compute the gain or loss in the
risk, R〈banker, player, loan, return〉, based on the difference between the loaned and
returned amounts. (3) The dataset represents the banker’s trust for the player after the
round, T〈banker, player, loan, return〉, as a three-tuple 〈A,B, I〉, indicating the banker’s
perception of player’s ability, benevolence, and integrity, respectively, each a real value
(0–1) derived from the post-round questionnaire. (4) The dataset represents the banker’s
emotion after he or she receives a return from the player, E〈banker, player, loan, return〉,
as real-valued (1–10) state anxiety scores derived from the post-round questionnaire.

Mean absolute error (MAE). We treat trust estimation as a classification prob-
lem. Thus, we discretized each trust dimension (A, B, and I) into three categories (low,
medium, and high) of almost equal frequency, making sure that no trust value is re-
peated across categories. The sizes of the resulting categories were A: [114, 155, 162],
B: [109, 163, 159], and I: [118, 136, 177]. We measure the performance of a trust model
via MAE =

∑N
i |actual

i−predictedi|
N .

Comparison. For comparing HMM and TRACE, we perform a three-fold cross val-
idation and compare the average MAE of the three folds. For each model, we considered
the following feature combinations to predict trust: (1) C: only commitments, (2) C+R:
commitments and risk, (3) C+E: commitments and emotions, (4) R+E: risk and emo-
tions, and (5) C+R+E: commitments, risk and emotions. For each of these settings, we
hypothesize that TRACE yields a lower MAE than HMM.

5 Results and Discussion

Table 1 compares HMM and TRACE, considering different feature combinations for
predicting trust. When we consider only C, TRACE yields lower MAEs than HMM
for each trust attribute. The primary reason for the result might be that CRF employs
discriminative modeling whereas HMM employs generative modeling. Considering all
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Table 1: MAEs of HMM and TRACE considering different feature combinations.

Input Variables
HMM TRACE

A B I A B I

C 1.1220 0.8564 1.0917 0.8744 0.7576 0.7988
C + R 0.8974 0.7655 0.8484 0.7463 0.7685 0.7876
C + E 0.8619 0.7433 0.7184 0.8617 0.7656 0.7580
R + E 0.8468 0.8376 0.7992 0.8949 0.6815 0.6568
C + R + E 0.8870 0.7977 0.7714 0.7878 0.7427 0.7141

features (C + R + E), TRACE again yields lower MAEs than HMM for each trust
attribute (A, B, and I). We attribute this result to dependencies between C, R, and E,
given T, which HMM ignores but TRACE incorporates.

Next, for C + R, TRACE performs better than HMM in predicting A and I (MAEs
for B are quite similar). Thus, not assuming C and R as conditionally independent given
T (as TRACE does) is beneficial to trust prediction than assuming so (as HMM does).
However, for C + E, HMM performs better than TRACE for B and I (MAEs for A are
quite similar). Thus, treating C and E as conditionally independent is beneficial to trust
prediction than not treating so. This result suggests that changes in a truster’s emotions
are not limited to the appraisal of commitments, but can depend on other factors present
in the truster’s environment [17]. The result for R + E is mixed: TRACE performs better
than HMM for B and I, whereas HMM performs better than TRACE for A.

In summary, these observations suggest that dependency relationships between com-
mitments, risk, and emotions vary depending on whether the observed trust attribute is
ability, benevolence, or integrity. Thus, our finding can be valuable in choosing the right
set of dependencies given input and output variables of interest.

Threats to Validity. We identify three caveats about our evaluation. First, our dataset,
although real, consists of short sequences. We expect both HMM and TRACE to per-
form better given longer sequences. Second, the dataset is skewed toward positive trust
values and our conclusions may not hold since the trust values have a different distribu-
tion. Third, the dataset represents emotions using anxiety scores only, thereby lacking
realistic emotion responses along multiple dimensions such as anger and joy.

Discussion. Despite these limitations, TRACE illustrates that a probabilistic model
of trust that incorporates commitments, risk, and emotions can produce trust estimates
with fairly good accuracy. Collaboration inevitably involves one party making itself
vulnerable to another and inherently involves negotiation. The negotiation may be ex-
plicit, as in the dataset we studied, or implicit, such as when one party decides whether
to take up any offer from another, including commonplace situations such as accessing
a weblink or an email attachment. Our findings therefore open up the possibility of de-
veloping user agents that promote secure collaboration by helping a user calibrate the
perceived trust with the risk undertaken in light of available measures of risk and gain
from commitments. We defer investigating such agents to future research.
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