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Abstract. We consider an approach to service selection wherein ser-
vice consumers choose services with desired nonfunctional properties to
maximize their utility. A consumer’s utility from using a service clearly
depends upon the qualities offered by the service. Many existing service
selection approaches support agents estimating trustworthiness of ser-
vices based on their quality of service. However, existing approaches do
not emphasize the relationship between a consumer’s interests and the
utility the consumer draws from a service. Further, they do not properly
support consumers being able to compose services with desired quality
(and utility) profiles.
We propose an adaptive service selection framework that offers three
major benefits. First, our approach enables consumers to select services
based on their individual utility functions, which reflect their prefer-
ences, and learn the providers’ quality distributions. Second, our ap-
proach guides consumers to construct service compositions that satisfy
their quality requirements. Third, an extension of our approach with
contracts approximates Pareto optimality without the use of a market
mechanism.

1 Introduction

We consider the problem of service selection. In service-oriented environments
[16], consumers consume services for direct interaction or composition. How to
select the “right” services to consume is one of the main challenges in service-
oriented computing. The “right” services are determined based on two kinds
of properties: functional and nonfunctional. Service description matching pro-
vides design-time automation for consumers to discover services with desired
functionalities. By contrast, our emphasis is on service selection, which offers
run-time automation for consumers to select services with the desired nonfunc-
tional properties—quality of service (QoS), to meet consumers’ preferences.

Three main challenges arise in service selection. First, how do consumers
collect information about the QoS offered by a particular service? In open set-
tings, quality information can be collected based on either consumers’ direct ex-
perience or third-party referrals. However, learning from direct experience with



a dynamic service (which delivers differing quality from time to time) is not
trivial. Also, how consumers accommodate false referrals provided by malicious
referrers is challenging. Second, how do consumers define their preferences for
QoS? Potentially, each consumer may have a different requirements. For exam-
ple, one may prefer high throughput, another low throughput, and yet another
intermediate throughput. Another difficulty is accommodating the consumers’
goals and context. For example, a latency of five seconds may be acceptable for a
galaxy simulation but unacceptable for a web search. Third, how do consumers
make selection decisions based on quality information and consumers’ prefer-
ences? Selecting the apparently best services may not always lead to long-term
success, because consumers have limited or incomplete knowledge, and services
may change their behavior.

Trust models provide a promising solution to the first and third challenges.
Trust models enable consumers to estimate the trustworthiness of dynamic ser-
vices in terms of QoS based on both direct and indirect evidence. We particularly
consider trust models, e.g., [10, 19, 21], that provide certainty measurement as
an indicator of how confident the estimated trustworthiness is.

Many trust-based service selection approaches have been proposed [6, 9, 11–
13, 20]. However, many of them fail to deal with the second challenge practically.
Maximilien and Singh [13] describe consumers’ preferences of QoS in terms of
utility theory. They only consider that consumer preferences follow a monotonic
increasing function of QoS (i.e., the higher the quality the better). In practical
cases, the utility function of QoS may not always be increasing (say, for price), or
even monotonic. For example, a consumer may prefer medium over high or low
capacity. Low capacity may lead to long response time because many consumers
are waiting. In contrast, high capacity may lead to long latency because the
service may not have sufficient buffer space to handle many requests at the same
time.

Many service selection approaches, e.g., [9, 12, 13], guide consumers to select
services for direct interaction but not for composition. Selecting for composition
is nontrivial because the composition changes the context and thus can affect
a consumer’s preferences. For example, a consumer may prefer low latency for
interaction but may prefer two subservices composed in parallel to have approx-
imately equal latency so as to reduce the need for buffering. But in a sequential
composition, the consumer may still prefer low latency for each service. Con-
sequently, a service selection method should guide consumers to adjust their
preferences based on the composition and quality being considered.

This paper proposes a service selection framework that enables consumers
to select services based on the utility they expect to gain from the services.
Our approach addresses all three of the above challenges. First, our approach
incorporates any probabilistic trust model to collect quality information about
the services. Second, our approach enables consumers to specify utility functions
describing their preferences. Third, our approach provides a learning policy to
explore and exploit desired services in order to maximize each consumer’s utility
based on its preferences and estimated quality of the services involved. We show



experimentally that our approach helps achieve near Pareto optimality across
the consumers. Besides, our approach can guide a consumer to adjust its prefer-
ences for desired compositions based on its quality requirements and composition
types.

Section 2 surveys the relevant literature. Section 3 defines our problem and
scope. Section 4 formalizes our approach. Section 5 evaluates our approach via
simulations. Section 6 discusses our results and highlights future directions.

2 Related Work

Maximilien and Singh [13] study trust-based service selection involving multi-
ple qualities. Their approach considers consumers’ utility of each quality, and
enables consumers to define preferences between qualities. However, Maximilien
and Singh only consider two shapes of utility functions: linear and sigmoid. Our
approach can take any utility function as input.

ServiceTrust [9] calculates reputations of services from all consumers. It intro-
duces transactional trust to detect QoS abuse, where malicious services gain rep-
utation from small transactions and cheat at large ones. However, ServiceTrust
models transactions as binary events (success or failure), and combines reports
from all consumers without taking their preferences into account.

Malik et al. [12] propose a reputation assessment approach based on Hidden
Markov Models (HMMs). They maps qualities to each consumer’s personal eval-
uations that incorporate its preferences by weighing preferred qualities higher.
Next, they calculate an aggregated reputation based both on personal evalua-
tions and ratings by others. Based on the aggregated reputation, Malik et al.
apply HMM to predict future behavior. Instead of using weights, our approach
reflects consumers preferences via utility functions. Our approach can also in-
corporate other consumers’ quality ratings by choosing probabilistic trust mod-
els that support referrals to model our quality distribution. For example, our
approach can adopt Wang and Singh’s trust model [19], which provides trust
propagation [8] and trust updates to deal with referrals from other consumers
[7].

Li et al. [11] estimate the trustworthiness of composite services using Bayesian
inference. They formalize a variety of service invocations and convert composi-
tions into a service invocation graph. Then consumers can construct a desired
composite service by finding the optimal service execution flow. Li et al. express
trust as a normal distribution. and apply Bayesian inference to maintain trust.
Our approach models a service’s QoS as a probability distribution, which is also
learned and updated via Bayesian inference. However, our approach deals with
composition differently. Consumers select subservices for composition based on
utility. More specifically, a consumer adjusts its utility function based on the
already selected subservices to achieve better orchestration.

ServiceRank [20] ranks services from two aspects: quality of service and social
information. ServiceRank considers two qualities: response time and availability.
Social information includes (1) how many consumers a service has and (2) how



frequently a service is invoked. Similar to ServiceTrust [9], ServiceRank models
transactions as binary events. Our approach does not limit to any particular
qualities and selects services with the highest expected utility of multiple qual-
ities. In our approach, an analog of social information is characterized via the
certainty of the quality distributions. Certainty measurements can be found in
many probabilistic trust models [10, 19, 21]. Certainty reflects how much evidence
a quality distribution has. If a service is seldom invoked or has few customers,
then the certainty of its quality distribution will be low.

Hang and Singh [6] present a trust model for service selection. Their model fo-
cuses on how to estimate the trustworthiness of subservices based on the observed
quality of composite services. Hang and Singh introduce composition operators

that define how a quality is composed from subservices to compositions. They
show their model can accurately estimate trustworthiness of subservices under
various composition operators. Hang and Singh fail to specify how consumers in-
terpret a quality as trust. Our approach builds trust based on the reputations of
services (i.e., their quality distributions) and consumers’ preferences (i.e., utility
functions). Following Hang and Singh’s formalization, our approach can be used
to select services for composition by adjusting utility functions. Depending on
the composition operator and existing subservices in the composition, the utility
function is adjusted differently.

Gerding et al. [5] design mechanisms for service procurement. They consider
the case where services may fail. Their mechanism guides consumers to procure
services to form a workflow for completing a task with constraints, for example,
within a certain time. The consumers aim to (1) maximize the probability of
success given the constraints and (2) balance success probability with costs.
Their work focuses on designing a mechanism to incentivise service providers
to reveal their quality information, whereas, in our approach, consumers collect
such information by themselves. Consumers apply probabilistic trust models to
collect quality information of providers from direct interaction, referrals, and
compositions. We show that our approach guides service procurement and leads
to Pareto optimality, i.e., resources are allocated efficiently.

3 Problem Description and Scope

Environment A service-oriented environment includes a set of providers P =
{ P1, . . . , Pm } and a set of consumers C = { C1, . . . , Cn }. The providers
provide services of the same underlying functionality, but each provider po-
tentially offers different levels of the l qualities in Q = {Q1, . . . , Ql}. A
service composition is defined as χ = 〈S, T 〉, where S ⊆ P are services,
and the composition type T is one of sequence, flow, and case, as in typical
orchestrations [2].

Assumption We assume the value of quality Qk offered by provider Pj is gov-
erned by a probability distribution that is independent of the consumer and
the service composition in consideration.

Objective Each consumer defines a utility function for each quality to describe
its preferences and selects services to maximize its utility.



Scenario 1: Select Services for Direct Interaction A consumer Ci would
like to interact with a service from P to maximize its utility regarding Q.

Scenario 2: Select Services for Composition We are given a partial com-
position χ′ = 〈S ′, T 〉 with existing subservices S′ ⊆ P, and a consumer Ci’s
utility function regarding Q. Now, Ci would like to create a “supercomposi-
tion” of χ′ as χ = 〈S ′ ∪ S ′′, T 〉 that builds on χ′ by adding services S ′′ to
the composition.

4 Approach

We propose an adaptive service selection framework that enables consumers to
select providers to maximize their utility based both on their preferences of
qualities and what they learn about the providers’ quality distributions.
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Fig. 1. Illustration of our approach. Consumer Ci describes its preferences of quali-
ties via utility functions, collects information about and learns the distributions of all
qualities of each provider, and calculates the expected utility of each provider.

Figure 1 illustrates the service selection process. For a consumer Ci, its utility

functions with respect to each quality Qk ∈ Q are given. Next Ci applies the
following steps.

1. Collect quality information and learn the quality distributions of each provider
Pj ∈ P with respect to each quality Qk ∈ Q.



2. Calculate expected utility of each provider Pj ∈ P with respect to all qualities
Qk ∈ Q.

3. Select a provider Pj ∈ P to interact with.
4. Repeat Step 1.

In the remainder of this section, we (1) define utility functions and qual-
ity distributions; (2) introduce calculating expected utility involving multiple
qualities; (3) relate the service selection strategy to the learning policy used in
reinforcement learning; and (4) explain how our service selection can be used for
selecting subservices in service compositions.

4.1 Describe Service Consumers: Utility Functions

We describe a consumer’s preference of a particular quality by a utility function.

Definition 1. Utility function U(x). Let Cj be a consumer and random variable

x be the volume of some quality of service Qk. Cj’s utility function U(x) is defined

as a function that maps Qk’s value x to Cj’s utility.

Table 1 shows some examples of utility functions.

Table 1. Example utility functions: Describing consumer preferences

Function Plot Description

Logistic [13]

1

1 + e−(x−u)/s

0 1

Q

U
til

ity

Rapid increase close
to desired value, as
for availability

Logarithm

log x

0 1

Q

U
til

ity

Diminishing returns,
as for throughput

Gaussian

1√
2πσ2

e
−

(x−µ)2

2σ2

0 1

Q

U
til

ity

Tradeoff between be-
ing idle or buffer-
ing heavily, as for
throughput of subser-
vice

4.2 Describe Service Providers: Quality Distributions

We capture the quality of service provided by a service provider Pj by introducing
a quality distribution.



Definition 2. Quality distribution Qk(x). Let Pj be a service and random vari-

able xj be the quality of service Qk provided by Pj along some suitable dimension.

Then Pj’s quality function Qk(xj) with respect to quality Qk is defined as the

probability density function of the probability distribution that governs xj.

The quality distributions can be learned by probabilistic trust models based on
evidence regarding quality, which can be obtained through 1. direct experience
[19], 2. referrals [8], or 3. composition [6, 14].

4.3 Calculate Expected Utility of Providers

The consumers’ decision making is based on the utility they expect to obtain
from a provider.

Definition 3. Expected utility with respect to a quality. Let Pj’s quality distri-

bution be Qk(xj), and Ci be a consumer with utility function Uk(x). The expected

utility of quality Qk that Ci can obtain from Pj is defined as

EU i
k(Pj) =

∫

xj

Uk(xj)Qk(xj)dxj . (1)

The expected utility of provider Pj based on all its qualities is as follows.

Definition 4. Expected utility with respect to all qualities. Suppose Q1(x), . . . ,

Ql(x) are quality distributions of provider Pj and U1(x), . . . , Ul(x) are utility

functions of consumer Ci. Then Ci’s expected utility of Pj is defined as

EU i(Pj) =
∑

k=1,...,l

EU i
k(Pj) =

∑

k=1,...,l

∫

xj

Uk(xj)Qk(xj)dxj (2)

4.4 Select Services: Exploration vs. Exploitation

Based on the expected utility of a provider with respect to all qualities, a con-
sumer Ci can decide on which providers to interact with to maximize its utility
as follows:

Pj = arg max
Pj∈P

EU i(Pj) (3)

However, given the assumption that the consumer can only learn the quality
distributions from direct experience, selecting the provider that yields the most
utility may not lead to long-term success. This is because the consumer lacks evi-
dence (direct experience) to learn accurate quality distributions of the providers.

Here, we address this challenge by modeling the service selection problem as
the multiarmed bandit problem [15, 1]. An agent (gambler) seeks to maximize
its reward by taking a series of actions (pulling levers from a multiarmed slot
machine). At each instant, the reward is based on a probability distribution
associated with each action. Notice that a myopic decision (choosing an action
with the highest known reward) may not yield the most long-term reward. A



policy is a function that predicts the (long-term) rewards from each action.
Research in reinforcement learning [18] studies how to learn an optimal policy, by
which the agent can select its actions. Doing so involves addressing the tradeoff
between exploration (trying new alternatives that might lead to higher payoffs)
and exploitation (making decision based on current knowledge).

We model the service-oriented environment as a multiarmed bandit, where
the providers are the options and each consumer selects providers to maximize
its long-term reward. Here, the reward is defined as the utility derived by the
consumer and consumers learn a policy that maps actions (selecting a Pj ∈ P)
to their expected utility. To balance the above tradeoff between exploration and
exploitation, we adopt Boltzmann Exploration [3], a widely used learning policy
in reinforcement learning, written in our setting as:

Pr(Pj |EU i) =
eT∗EUi(Pj)

∑

Pi∈P
eT∗EUi(Pi)

, (4)

where Pj ∈ P is a service, EU i(Pj) is Ci’s expected utility of Pj , and T is a
temperature parameter. The consumer Ci chooses service Pj with probability
Pr(Pj |EU i). The idea of Boltzmann Exploration is for consumers to choose
services based on their expected utility. The services with low expected utility
(i.e., exploration) are chosen less frequently than those with high expected utility
(i.e., exploitation). The actual percentage of exploration and exploitation can be
adjusted by T . There are two ways of choosing T . For stationary environments,
T increases over time to reduce the probability of exploration after the policy is
learned. In contrast, for nonstationary environments, consumers may use a fixed
T to ensure continual exploration. Satinder Singh et al. [17] show a convergent
result for choosing T . Applying their result to our case, we can define T as
ln t/Ct, where t is the timestep, Ct = maxPj∈P |EU i(Pmax) − EU i(Pj)| and
Pmax = arg maxPj∈P EU i(Pj).

4.5 Selecting Services for Composition

Now we describe how our approach guides consumers to select services for com-
position. Section 3 mentions a scenario where a consumer Ci would like to add
services S ′′ from P to a current composition χ′ = 〈S ′, T 〉 to maximize the util-
ity of the resulting composition χ = 〈S ′ ∪ S ′′, T 〉 where S ′ ⊆ P is the set of
constituent services of χ′ and T is the composition type.

Following our previous work [6], we introduce the composition operators

switch, sum, max, min, and product. These operators determine the quality
values of a composite service based on the quality values of the constituent ser-
vices. They depend upon the composition type (sequence, flow, or case), and on
the nature of the quality being considered. Table 2 shows examples of composi-
tion operators given the types of compositions and qualities.

Based on the expected quality of the existing subservices S ′ in a composition
χ, consumer Ci can adjust the utility function Uk(x) of the composition with
respect to Qk. This adjustment depends on (1) the composition operator f , (2)



Table 2. Mapping composition types and representative qualities to operators [6].

Quality Sequence Flow Case

Latency sum max switch

Throughput min sum switch

Failure product product switch

composition χ’s preferences of the quality Qk, and (3) the expected quality xS′

of existing subservices S ′. For example, let f be max, the maximum of expected
quality Qk of S ′ be E[xPmax

], and χ’s original utility function be Uk(x), Then
the adjusted utility function U ′

k should be

U ′
k(x) =

{

Uk(E[xPmax
]) if x < E[xPmax

]
Uk(x) otherwise.

(5)

The idea behind this adjustment is that if the quality x provided by the new sub-
services is lower than E[xPmax

], then the composite quality xχ is dominated by
Pmax because xχ = max(x,E[xPmax

]) = E[xPmax
]. Thus, the composite utility

will be Uk(E[xPmax
]). Conversely, if x > E[xPmax

], then the composite quality
xχ is dominated by x. The composite utility will be Uk(x).

Table 3 shows utility function examples for various composition operators. It
shows how monotonically increasing and decreasing utility functions are adjusted
based on existing constituent services and the composition types. Note that our
approach is not limited to these composition operators or utility functions.

5 Experiments

We conduct three experiments to evaluate the effectiveness of our approach.
The first experiment examines how accurately the expected utility can predict
the actual gained utility. The second experiment verifies the selection strategy
described in Section 4.4 by checking if the consumers can quickly learn the qual-
ity distributions of all providers (exploration), and select the provider with the
highest expected utility afterwards (exploitation). The third experiment adopts
a resource allocation perspective and examines how closely our approach can
lead to Pareto optimal allocations [4].

5.1 Two Consumers, Three Providers, One Quality, No Selection

We consider three providers: Low, Medium, and High, whose quality Q is gov-
erned by beta distributions with low, fair, and high means, respectively. We
create two consumers, respectively with utility functions Logistic (prefers high
over low Q) and Gaussian (prefers mid range Q over high or low values). At each
timestep, each consumer interacts with all providers once, and learns their qual-
ity distributions. Figure 2 plots the expected and gained utility of the Logistic



(left) and Gaussian (right) consumers from provider Medium at each timestep.
Medium provides average Q1 values, yielding utility around 0.50 for Logistic,
whose gained utility has a high variance, because Logistic is highly sensitive to
Q1. Medium brings a fair amount of utility to Gaussian, who is less picky. The
expected utility calculated by both consumers accurately predicts the actual
gained utility. The experiment has total 100 timesteps. Low and High providers
yield similar results. The result verifies that the expected utility is an effective
basis to maximize consumers’ utility.
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Fig. 2. The expected and gained utility of Logistic (left) and Gaussian (right) against
Medium. Both consumers receive the same QoS from Medium but gain different utility
based on their utility functions. Logistic is sensitive to quality, and thus has high
variance in its gained utility. This experiment shows the expected utility correctly
predicts the actual gained utility. The other providers yield similar results.

5.2 Two Consumers, Three Providers, One Quality, Selection

This experiment helps us evaluate the effectiveness of the strategy described in
Section 4.4. Its setting follows Section 5.1, except that the consumers choose only
one provider instead of all to interact with. Each consumer seeks to maximize its
long-term utility. Figure 3 shows Logistic’s (left) and Gaussian’s (right) expected
utilities of all providers and the actual utility gained from the sole provider each
chooses to interact with at each timestep. Logistic explores all providers at the
beginning, gaining low utility at the beginning. After it determines High is its
desired provider, Logistic selects High much more than the other providers. Gaus-

sian has a similar strategy as Logistic at the beginning. However, since Gaussian

is not as picky as Logistic, Gaussian chooses all providers almost equally often,
but because Medium offers a slightly better expected utility, Gaussian selects
Medium slightly more often than the other two. Both consumers gain utility
close to optimal.
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Fig. 3. The expected and gained utility of Logistic (left) and Gaussian (right) con-
sumers against three providers. In each timestep, consumers select one of the providers
to interact with. This shows each consumer learns the expected utility of all providers
(exploration), and subsequently interacts with the desired provider to maximize its
utility (exploitation).

Figure 4 plots the comparison of optimal and actual gained utility of two
consumers. Our approach learns the quality distribution through greater explo-
ration at the beginning followed by greater exploitation subsequently. Because
the gained utility is smaller than the optimal when the consumers choose to
explore (or when the quality distribution is not learned accurately), the utility
increases over time.

This result shows our service selection approach not only efficiently learns
the quality distributions of the providers, but also exploits the desired provider
to maximize each consumer’s utility.

5.3 Contracts as a Means to Approximate Pareto Optimality

A resource allocation is Pareto optimal if and only if it is impossible to alter the
allocation that would offer increased utility to one agent without offering reduced
utility to another. In other words, no two agents can trade (their allocations)
where they would both gain. Pareto optimality is a widely used indicator of eco-
nomic efficiency. The intuition behind it is that we should allocate each resource
to the party who values the resource the most. To ensure Pareto optimality
typically requires some market mechanism such as an auction that takes bids
from all consumers and allocates resources in a way to guarantee efficiency. For
example, allocating each resource to the highest bidder means that the bidder
who values the resource the most gets to use it.

We show how a natural extension of our approach with contracts leads to
approximating Pareto optimality despite independent decision making by the
consumers and without any central mechanism such as an auction clearinghouse.
In an important departure from the previous experiments, here a consumer may
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Fig. 4. Comparison of optimal and gained
utilities of Logistic and Gaussian. Con-
sumers choose nonoptimal services for ex-
ploration. This shows that when expected
utilities of providers are close, the con-
sumers are more willing to explore.
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sign a long-term contract with a provider. A contract is a way for a consumer
to exploit (i.e., select the provider with most expected utility). We consider an
exploitation strategy where the contract length is proportional to (ten times as)
the expected utility. When a consumer chooses to explore, it interacts with the
selected provider for one timestep. The intuitive motivation is that the consumers
who value a provider the most will sign the longest contracts with it and thus
gain the greatest utility from it for the longest time.

We create four consumers with different preferences of two qualities: through-
put and price. Intuitively, the consumers vary from rich (prefers the highest
throughput at any price) to poor (prefers to save money and accepts a little
throughput). The consumers have logistic utility functions (monotonically in-
creasing) for throughput with parameters (µ, s) = (0.8, 0.05), (0.6, 0.05), (0.4, 0.05),
(0.2, 0.05), respectively. For price, each consumer has a negative exponentially
decreasing utility function, with σ of 5, 4, 3, and 2, respectively:

Uprice(x) = −
xσ

100σ
(6)

Three providers provide throughput governed by beta distributions with means
0.75, 0.5, and 0.25, and asking $75, $50, and $25 for their service, respectively.

The experiment runs for 500 timesteps. At each timestep, the consumers
select one provider to interact with. A provider can serve two consumers at a
time. We check if the resource allocation at each timestep is Pareto optimal.

For each timestep, Figure 5 shows the consumers’ average utility and the
cumulative percentage of instantaneous allocations that are Pareto optimal. We



see that the rate of Pareto optimality increases as the average individual utility
increases. This indicates that when the consumers maximize their utility, Pareto
optimality is likely to be achieved. Pareto optimality is not achieved in every
instance of exploitation because a consumer may not be able to sign a contract
with its best provider who might be under another contract or because of the
effects of randomness in quality. In general, though, this experiment shows that
our approach can approximate Pareto optimality by selecting services in an
economically efficient way.

6 Conclusions and Directions

This paper proposes an adaptive service selection approach, which enables ser-
vice consumers to 1. collect quality information of service providers efficiently,
2. describe their preferences of quality by defining utility functions, and 3. select
“right” service providers to maximize their long-term utility. Besides, our ap-
proach can guide consumers to select services for composition by defining utility
functions for service compositions. Importantly, our approach yields a natural
way to approximate Pareto optimality of service selection.

Important directions for future study include the generalization of our models
of quality and utility. In particular, we hypothesize that if we allow the providers
to change their quality profiles dynamically, that will yield protection against
greedy consumers signing arbitrarily long contracts with the best current service
and thus blocking other consumers.
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single-step on-policy reinforcement-learning algorithms. Machine Learning 38(3),
287–308 (2000)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

19. Wang, Y., Singh, M.P.: Formal trust model for multiagent systems. In: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI). pp.
1551–1556. IJCAI, Detroit, MI, USA (2007)

20. Wu, Q., Iyengar, A., Subramanian, R., Rouvellou, I., Silva-Lepe, I., Mikalsen, T.A.:
Combining quality of service and social information for ranking services. In: Pro-
ceedings of the 7th International Conference on Service Oriented Computing. pp.
561–575 (2009)

21. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Ap-
plied Artificial Intelligence 14(9), 881–907 (2000)



Table 3. Utility function examples for composition operators based on two linear utility
function: prefer higher and prefer lower. E[xi] is the expected quality from provide Pi.
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