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Abstract—Demand-side management (DSM) is an important
theme in studies of the Smart Grid and offers the possibility
of leveling power consumption with its attendant benefits of
reducing capital expenses. This paper develops an algorithmic
mechanism that reduces peak total power consumption and en-
courages prosocial behavior, such as expressing flexibility in one’s
power consumption and reporting preferences truthfully. The ob-
jective is to provide a tractable, budget-balanced mechanism that
promotes truth-telling from households. The resulting mechanism
is theoretically and empirically proven to be ex ante budget-
balanced, weakly Pareto-efficient, and weakly Bayesian incentive-
compatible. A simulation study verifies that the mechanism could
largely reduce the computational complexity that the optimal
allocation requires, while maintaining approximately the same
performance. A user study with 20 subjects further shows the
effectiveness of the mechanism in preventing participants from
defecting and incentivizing them to reveal flexible preferences.

Index Terms—Demand-side management; Prosocial behaviors

I. INTRODUCTION

Demand-side management (DSM), which is based on the
idea of controlling demand to match supply, is a key aspect of
the Smart Grid. The objective of DSM is to reduce peak power
consumption by shifting peak-hour demand to off-peak hours.
Current DSM approaches involve either turning household
appliances on or off directly via a smart meter or applying real-
time pricing [1]. However, directly using a load control signal
to turn off appliances can lead to consumer dissatisfaction.
Real-time pricing is difficult for consumers [2] and can lead
to chaotic outcomes [3].

With advances in computing power and reliable two-way
communication infrastructures, it becomes feasible to employ
autonomous agents to capture preferences of both resource
providers and consumers, and represent the interactions be-
tween them. Therefore, instead of focusing on how each
consumer interacts with a resource provider individually, re-
searchers have begun to study approaches with aggregate load
management from multiple consumers. Existing approaches
fall into two main categories. Those in the first category
assume that consumers’ objectives are aligned with resource
providers’ objectives and model the problem as a global
optimization problem [4], [5]. Those in the second category
model the problem in a game theory setting where selfish
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consumers compete with each other to minimize their costs
[6], [7].

However, previous studies suffer from two main limitations.
First, most existing approaches either assume that consumers’
preferences are revealed truthfully [8] or require a considerable
amount of computation [9]. On the one hand, consumers may
be unwilling to reveal such private information. On the other
hand, the computational complexity of an approach would
preclude large-scale systems.

Second, most prior works do not consider whether the
budget of resource providers could remain balanced. Budget-
balance is an important property that guarantees a resource
provider won’t run into deficit; i.e, the resource provider’s
purchase payment does not exceed the sum of payments from
all of its consumers. At the macro-level, a wholesale power
market [10] functions as a single-sided auction where resource
providers bid for a given amount of power for the next day
and wholesale prices are lower during off-peak periods. At
the micro-level, each consumer pays charges to one or more
resource providers for its consumption, and each consumer
pays a smaller bill when peak consumption is lowered. Failure
to ensure the budget-balance of a resource provider may reduce
the practicality of the system.

The well-known Vickrey-Clarke-Groves or VCG mecha-
nism [11] can address the first limitation, but not the sec-
ond. VCG is a pricing method that motivates each rational
household (or an agent, in general) to reveal its true valuation.
Each household is charged according to the true social cost it
imposes on others and thus has an incentive to declare its
valuation truthfully. However, resource providers may run a
deficit, which is not acceptable in settings such as residential
DSM. In addition, a VCG mechanism may not be tractable—
under the usual assumption that a mechanism is tractable when
the computation it requires can be carried out in polynomial
time [11].

Inspired by the VCG mechanism, we propose and inves-
tigate an algorithmic mechanism in a Bayesian game setting
[12], dubbed Enki. Enki takes advantage of consumers’ flexi-
bility [13] in consuming power (a flexible consumer provides
more choices to Enki to schedule his or her consumption)
and encourages such prosocial behavior (flexible consumers
pay less), through Enki’s allocation objective and payment
mechanism. In this way, Enki aligns the interest of each



household with the overall goal of lowering peak total con-
sumption. Enki is a tractable mechanism guaranteeing that
resource providers would not run into a deficit. Further, Enki
still provides incentives to households to act according to
their true valuations, except that we relax the truth-telling
from dominant strategies in VCG to Bayes-Nash equilibrium
strategies [14].

Enki is a novel DSM method for the day-ahead energy
market setting. The method applies at a collective, i.e., neigh-
borhood, level. The neighborhood functions as a resource
provider. Every day each household (consumer) declares its
expected consumption for the next day, specifying the amount
to be consumed and a time period within which it would
be willing to confine its consumption. The report can be
made through an Energy Consumption Controller (ECC) unit
embedded in each household’s smart meter. An ECC unit
functions as a decision-making tool. Specifically, it operates
as follows:
• learn each household’s daily power consumption pattern

through machine learning techniques;
• decide; and
• report the household’s demand for the next day.

An ECC unit connects with a neighborhood controller through
a local network [6], [9]. The neighborhood allocates time
ranges to each household within which it can consume power.
The neighborhood ensures the allocation satisfies all con-
sumers’ requests while reducing peak demand. Each household
is charged with a bill for its actual (i.e., not merely predicted)
consumption.

Contributions

Enki’s novelty lies in, first, how it exploits consumers’
flexibility in power consumption to align their interests with
the group’s interest. Second, Enki is a tractable mechanism
guaranteeing that resource providers (neighborhoods) would
not run into a deficit; Enki is weakly Bayesian incentive-
compatible and weakly Pareto-efficient. Third, we conduct a
simulation study verifying that the greedy allocation in Enki
approximates the optimal allocation while reducing computa-
tion time. Evaluation results from a user study show that Enki
is effective in incentivizing participants to tell the truth and be
flexible given their preferences.

II. BACKGROUND

Demand-side management (DSM), which seeks to reduce
peak demand, is a longstanding theme in the power industry.
Current DSM approaches are of two types [15]. One, Direct
Load Control (DLC) involves a power company turning off
selected appliances (e.g., HVAC) during peak hours. Con-
sumers often find ceding such control to a power company
risky since their particular needs might not be addressed. And,
participation in such programs appears low, at least in anec-
dotal terms [16]. Two, Price-Based Control (PBC) involves
a power company incentivizing a consumer to deter peak-
time electricity usage [17]. However, PBC has the drawback
of often shifting the peak from one period to another [18].

Because consumers often respond to a price signal, they all
tend to shift to the lowest price period without a controller.

Researchers use agents that take into account consumers’
preferences to assist them in making decisions under different
pricing models. One category of existing approaches involves
an optimal allocation by maximizing social welfare [19], [20],
[21], [22], [5]. Guo et al. [4] propose a decentralized algorithm
to minimize the total energy cost within a neighborhood, where
each household may have different energy loads. However,
they do not consider consumers’ preferences.

A second category of approaches apply game theory. They
assume each consumer is self-interested and competes with
others to minimize costs. Mohsenian-Rad et al. [6] present a
game-theoretic framework to analyze the energy consumption
scheduling problem by assuming that the energy requirement
of each consumer is determined in advance. Ramchurn et al.
[23] propose a decentralized adaptive mechanism to defer each
consumers’ power usage based on their preference profile. In
this way, consumers coordinate to reduce the overall peak con-
sumption. Other works using an adaptive mechanism employ
game-theoretic analyses and assume that each consumer is
rational [8]. Chen et al. [7] formulate an aggregate game to
model the strategic behaviors of selfish consumers. The above
studies focus on changing consumer behaviors. They assume
that each consumer reveals his or her preferences truthfully.
However, consumers may be unwilling to reveal such private
information or not know how to reveal it.

Rose et al. [24] outline a mechanism to elicit true con-
sumer preferences for the wholesale market. A neighborhood
purchases power from the market using each consumer’s
prediction and allocates power to each consumer based on
the consumer’s real need. The neighborhood is charged for
any imbalance between the amount it purchased and the
aggregate amount that the neighborhood’s consumers con-
sumed. Rose et al.’s mechanism is weakly budget-balanced
and incentive-compatible. Stein et al. [25] establish similar
results for electric vehicle charging. Some researchers propose
an incentive mechanism to elicit truthful demand response
from geo-distributed data centers [26], [27].

Nevertheless, residential DSM to reveal true preferences
from consumers has garnered little attention. Notably, Samadi
et al. [9] propose a VCG mechanism for DSM and show
it satisfies the properties of efficiency, user truthfulness, and
nonnegative transfer. As for other VCG mechanisms, the
computational complexity can be NP-hard in many practical
domains [11], and Samadi et al.’s mechanism does not scale
to a large community.

Instead of using the VCG mechanism, Enki takes advantage
of households’ flexibility and designs a tractable, budget-
balanced mechanism that aligns each household’s self-interest
with the neighborhood’s overall objective. Further, Enki is
evaluated by a study with human subjects—such studies being
rare in this literature.



III. THE ENKI NEIGHBORHOOD MODEL

A neighborhood agent works with several household agents
by mediating between them and the power company. Figure 1
shows how this model works, and Table I includes important
notations.

Household Center Power
Company

1 Preference

2 Allocation

3 Consumption

4 Payment

5 Consumption

and payment

Fig. 1: Neighborhood model architecture.

TABLE I: Notation used in the paper

Symbol Description

I the set of households
H = {0, . . . , 23} hours of a day
αi true preferred beginning time
βi true preferred ending time
α̂i reported preferred beginning time
β̂i reported preferred ending time
vi preferred duration
χi = (αi, βi, vi) true preference
χ̂i = (α̂i, β̂i, vi) reported preference
si = (αs

i , β
s
i ) suggested allocation

ωi = (αω
i , β

ω
i ) real consumption

lh consumption aggregated over households
σ a scaling factor in pricing function
Ph(lh) the cost of the neighborhood at h ∈ H
κ(ω) the cost of the neighborhood
di deferment of a household’s consumption
r the power rating in kW
γh signal value (turning on power load or not)
ρi a household’s valuation factor
θi = (χi, ρi) the type of a household
τi overlap between allocation and true preference
Vi(τi, vi, ρi) the valuation of a household
fi flexibility score of a household
oi overlap ratio of consumption and allocation
δi defection score of a household
Ψi social-cost score of a household
k scaling factor in social-cost function
pi payment of a household
ξ scaling factor in payment function
Ui(ωi|χi, θi) the quasilinear utility of a household
Fi normalized flexibility score of a household
∆i normalized defection score of a household
bi power consumption of a household
pzi household’s payment without Enki
κ(ωz) cost to the neighborhood without Enki
Uz
i quasilinear utility of a household without Enki

n number of households

Preference: Through its ECC, each household reports its pre-
dicted consumption for the next day to the neighborhood
(center). We abstract the load to a single value. (One can
imagine that the households are describing when they
will use a notional appliance.) One possible application
could be charging electric vehicles. In addition, we focus
on shiftable loads [23] since the operation of nonshiftable
loads cannot be scheduled and its cost cannot be reduced.
However, our model can be easily extended to a more

concrete scenario by considering several such preferences
for a given household and adding a constant cost to each
household’s payment. We simplify our model for clarity
in our mathematical presentation and simulation.
Let I represent the set of households. Further, let H =
{0, 1, . . . , 23} be the hours of a day. For each household
i ∈ I , let χi = (αi, βi, vi) and χ̂i = (α̂i, β̂i, vi) denote its
true and reported preferences, respectively, for consuming
power for the following day. Because the duration is
fixed or varies in a limited range based on the types
of appliances in most cases, we assume that all the
households truthfully report the duration. αi (α̂i) ∈ H
is the true (reported) preferred beginning time, βi (β̂i)
∈ H is the true (reported) preferred ending time, and vi
is the preferred duration. The household’s true (reported)
preferred interval is defined as [αi, βi] ([α̂i, β̂i]). Clearly,
βi−αi ≥ vi and β̂i− α̂i ≥ vi. For example, household i
reports its current preference as χ̂i = (18, 22, 2), which
means that it wants to consume power for two hours at
any time between 6PM and 10PM. Below, we abbreviate
“true preferred interval” as “true interval” and “reported
preferred interval” as “reported interval.”

Allocation: Given all the reported preferences, the neighbor-
hood creates allocations for the households, so that (1)
each household’s allocation is scheduled within its re-
ported interval, and (2) the peak consumption is reduced.
The neighborhood takes χ̂ as input, and outputs alloca-
tions s = {si|i ∈ I}, where si = (αsi ∈ H,βsi ∈ H)
indicates that it suggests household i consume power
from αsi to βsi . Note that βsi − αsi = vi, α̂i ≤ αsi and
βsi ≤ β̂i. We do not change the duration vi household i
prefers.

Household Consumption: Each household may or may not
consume power according to the suggested allocation.
The consumption of each household i is denoted as:
ωi = (αωi , β

ω
i ), where βωi − αωi = vi. If household

i consumes power fully according to the allocation,
ωi = si. Otherwise, household i defects but within its true
interval, i.e., overrides the allocation ωi 6= si (αi ≤ αωi ,
βωi ≤ βi). Ideally, if a household has revealed its true
preference χi, it will not defect, since its allocation is
compatible with its preference.

Center and Household Payments: Following Mohsenian-
Rad et al. [6], we adopt a superlinear (quadratic) pricing
function, Ph(lh) = σl2h, where lh (in kWh) is the
aggregated consumption from all the households at
h ∈ H based on ω, and σ > 0 is a scaling factor. The
superlinearity of price provides a basis for improving
social welfare by merely reducing peak consumption.
The rationale of the pricing function lies in two as-
sumptions: the cost of generating power increases as
the aggregate load increases, and it should be strictly
convex. Whereas other forms of convex functions meet
the two assumptions (e.g., a two-step piecewise function,
as suggested in [6]), a quadratic pricing model is more



tractable for the purpose of optimization. The price paid
by the neighborhood to the power company is defined by
κ(ω):

κ(ω) =
∑
h∈H

Ph(lh) =
∑
h∈H

σl2h (1)

Accordingly, each household should make a payment pi
to the neighborhood based on its consumption. How to
calculate pi is discussed in Sections IV-B2 and IV-B3.

IV. THE ENKI MECHANISM

In residential DSM, every consumer prefers to consume
power at will (at his or her convenience) and most consumers
would like to consume it during peak hours. Schneier [28]
terms such a tension between group and self-interest a societal
dilemma. If every consumer acts according to its self-interest,
a tragedy of the commons can result [29]. For example, if all
the consumers choose to consume power during peak hours,
the supply might not keep up with demand, leading to a power
blackout. An intuitive way to address the societal dilemma [28]
is to align each household’s interest with the group interest.
Enki addresses this problem by incentivizing households to
behave prosocially in two ways: (1) revealing true preferences
and (2) requesting flexible allocations. Specifically, Enki in-
centivizes households through (1) its allocation objective and
(2) its payment mechanism.

A. Optimization and Greedy Allocation

Producing allocations can be formalized as an optimization
problem. For each household i ∈ I , let di ∈ H denote
the deferment of consumption from its reported preferred
beginning time, and r is the power rating in kW. The objective
of the allocation is to choose di for each i ∈ I so as to
minimize the neighborhood’s cost, where

min
dii∈I

24∑
h=1

Ph

(∑
i∈I

γh · r

)

s.t. γh =

{
1 if (α̂i + di) ≤ h < (α̂i + di + vi)

0 otherwise

0 ≤ di ≤ (β̂i − α̂i − vi)

(2)

such that γh ∈ {0, 1} determines whether the power load is
scheduled for that time interval. Note that r will vary when
we model multiple appliances for a given household.

The quadratic objective function results in high complexity
of computing the optimal allocation [23]. Thus, we adopt a
greedy allocation (Section IV-C) method: we consider house-
holds in an order based on a heuristically calculated flexibility,
allocating the time slots for each household in a way that
greedily minimizes the peak load for the households handled
so far.

B. Utility of a Household

For each household, we define a quasilinear utility function
[11], corresponding to a valuation (willingness to pay) minus
a payment. A household’s valuation depends on its type θi:

its true preference χi and its valuation factor ρi (a relative
measure of its willingness to pay for the same allocation).
Therefore, θi = (χi, ρi). A household’s reported valuation is
known to Enki after it has declared its type, and a misreported
type leads to a misreported valuation.

1) Valuation: We propose a valuation function Vi(τi, vi, ρi)
for each household, where τi ∈ [0, vi] is the number of time
slots the allocation satisfies a household’s true preference. We
identify these criteria for our valuation function [9], [30]:
• The valuation increases with τi until τi equals vi, whence

the household’s valuation is constant.
• The valuation increases with vi.
• The valuation increases with ρi.
• The marginal benefit of τi is nonincreasing.
Thus, we adopt this valuation function for household i:

Vi(τi, vi, ρi) = − ρi
2vi

(τi)
2 + ρiτi, τi ∈ [0, vi] (3)

Vi(τi, vi, ρi) reaches its maximum value ((ρivi)/2) when τi
is equal to vi. If a household has reported its true preference,
Enki can ensure its true valuation Vi(τi, vi, ρi) is maximized,
since Enki’s allocation is always scheduled within the house-
hold’s preferred interval. Note that a household’s valuation
need not be revealed to Enki explicitly; revealing a preference
from a household is equivalent to revealing its valuation.

2) Payment Mechanism: A VCG mechanism [11], [9]
would motivate each household to reveal its true valuation
and thus pay according to the social cost it imposes on
others. However, VCG can be intractable. We seek a payment
mechanism that approximately captures the above intuition but
is less complex. Conceptually, we model a household’s social
cost in terms of its truthfulness of preference reporting and its
flexibility in consuming power.

If a household reports its true preference, its reported
preference indicates its social cost. We introduce flexibility fi
to model the effect of household i’s reported (true) preference
χ̂i (χ̂i = χi) in peak reduction. That is, given that all the
households fully follow their allocations s, a more flexible
reported preference χ̂i has a greater contribution in reducing
peak consumption. We say household i is more flexible if it
provides a more flexible reported (true) preference χ̂i, i.e., a
higher fi, and, correspondingly, it should pay less.

Conversely, if a household has misreported its true prefer-
ence, it will defect, i.e., override si, as long as the allocation
does not satisfy its true preference. In this case, the house-
hold’s real consumption reflects its social cost. We introduce
defection to model the effect of a disobedient household in
increasing peak consumption. That is, a household i with
greater defection δi exerts a greater effect in harming the
neighborhood and it should pay more.

The payment mechanism should respect the following prop-
erties regarding flexibility and defection.

Property 1: All else being equal, a household that truthfully
reports a wider preferred interval would pay less.

Property 2: All else being equal, a household that is
truthfully more willing to consume power during off-peak
hours would pay less.



Property 3: All else being equal, a household that deviates
from its allocation pays more than one that does not.

For motivation, consider three households A, B, C.
Example 1: Suppose each household expresses its true

preference of (18, 20, 1), which means each prefers to con-
sume power for one hour from 6PM to 8PM. Because their
preferences are the same, they should get equal payments.

Example 2: Suppose each household expresses its true
preference, but they differ: χA = (18, 19, 1) and χB = χC =
(18, 20, 1). A has a higher probability of leading to a higher
peak due to its narrower true interval. Therefore, A is less
flexible and should pay more than B and C.

Example 3: Suppose each household expresses its true
preference, but they differ: χA = (16, 18, 2) and χB = χC =
(18, 21, 2). Even though the true interval of B and C is one
hour wider, A prefers an off-peak interval. Thus, A contributes
more to reducing the peak than the others.

In the allocation step of Section IV-A, the order in which
the households are considered is a permutation of A, B, and
C. The resulting allocations are shown in Figure 2:

C
A A B B C

16 2118

ABC
BCA
BAC

B
A A C C B

16 2118

ACB
CBA
CAB

Fig. 2: Allocations corresponding to Example 3.

A’s allocation remains the same, and it does not lead to the
peak consumption in any permutation. However, B and C have
a 50% probability of leading to the peak consumption. Hence,
A is more flexible and should pay less.

Example 4: Suppose A and B report the same preference:
χ̂A = χ̂B = (18, 20, 1). In the resulting allocation (Figure 3),
A takes the first hour whereas B takes the second. However,
B defects whereas A does not. Then, B should obtain a higher
defection score and A should pay less.

A B
18 20

allocation:
B
A

18 20
consumption:

Fig. 3: Household B defects and thus pays more.

3) Measuring Flexibility and Defection: We define the
flexibility score fi of household i as

fi =
βi − αi
vi

1

Ni
, (4)

where Ni =
∑βi
h=αi

nh

βi−αi is the average number of households
(including itself) consuming power within each hour of its pre-
ferred interval and nh is the number of households consuming

power in time slot h ∈ H . In Example 2, NB = 3+2
20−18 = 2.5,

and fB = 20−18
1

1
NB

= 0.8.
It is easy to check that Eq. 4 is consistent with our analyses

in Section IV-B2. In Example 2, fA < fB = fC; in Example 3:
fB = fC < fA.

We define the defection score δi of household i as

δi =
κ(s−i ∪ ωi)− κ(s)

eoi
(5)

where s captures the households’ allocations, s−i = s−{si},
and oi = |si∩ωi|

vi
∈ [0, 1] is the overlap fraction between

household i’s consumption ωi and its allocation si. |si ∩ ωi|
represents the length of the overlapped interval. oi = 1 when
household i fully follows the allocation, whereas oi = 0 when
household i consumes power fully outside its allocation. For
example, if si = (14, 18) and ωi = (15, 19), then oi = 3

4 .
κ(s−i∪{ωi}) is the cost to the neighborhood if all households
except i follow their allocations. κ(s) is the cost to the
neighborhood when all households cooperate. In Example 4,
δA = 0 and δB > 0.

Without loss of generality, we normalize the flexibility and
defection scores to [0.5, 1.5]. Thus the social-cost score Ψi for
household i is defined as (k is a scaling factor):

Ψi = k

(
δi∑
i∈I δi

+
1

2

)
/

(
fi∑
i∈I fi

+
1

2

)
(6)

Specifically, fi > 0 and δi = 0 when the household reports
truthfully and fi = 0 and δi > 0 when the household
misreports and defects. The payment pi to household i is (ξ
is a scaling factor):

pi =
Ψi∑
i∈I Ψi

· ξ · κ(ω) ξ ≥ 1 (7)

Hence, Enki charges each household the social cost that
it burdens the neighborhood without incurring high compu-
tational cost [11]. To compute the payment of each agent in
a VCG mechanism, one more optimal allocation needs to be
calculated assuming the agent was not participating.

A household i’s quasilinear utility is the difference between
its true valuation and its payment to the neighborhood:

Ui(ωi|χi, θi) = Vi(τi, vi, θi)− pi (8)

Enki’s payment mechanism incentivizes each household to
behave prosocially by (1) linking each household’s payment
with the neighborhood’s cost: a household pays more if the
peak is high, and (2) charging each household as much as it
harms the neighborhood.

C. Greedy Allocation

With flexibility scores, Enki solves the allocation problem
described in Section IV-A in a greedy way. First, Enki com-
putes each household’s predicted flexibility score, assuming
that all of them report truthfully. (Therefore, a household that
defects would obtain a positive predicted flexibility score, even
though its actual flexibility is zero.) Then Enki proceeds with
households in order of increasing predicted flexibility, break-
ing ties randomly. In Example 3, this mechanism reduces the



possibilities: either B or C (picked randomly), then the other,
then A. For example, Enki may first allocate sB = (18, 20)
to B. Second, it would tackle C, allocating sC = (19, 21)
to reduce the peak (given that sB = (18, 20)). Third, the
allocation for A is sA = (16, 18).

D. Allocation Objective

Enki always respects each household’s preference when it
determines an allocation: each household’s reported valuation
V̂i(τi, vi, θi) is ensured to be maximized. In addition, consid-
ering the objective of the optimization problem discussed in
Section IV-A, Enki’s allocation objective, which is the second
way Enki aligns each household’s self-interest with the group
interest, is formalized as

arg max
s

(∑
i∈I

V̂i(τi, vi, θi)− κ(ω)

)
(9)

Note that when we claim Enki’s allocation satisfies all
households’ requests, the requests are reported preferences.
That’s why Enki cannot guarantee strictly Pareto efficiency
(Section V-C) even if we make such a claim.

V. THEORETICAL ANALYSIS

We evaluate the Enki approach in three parts beginning with
theoretical analysis. We describe four economic properties [31]
and discuss how these properties help identify a good DSM
mechanism.

A. Ex Ante Budget Balance

Definition 1 (Ex ante budget balance): A mechanism is ex
ante budget balanced if the equilibrium net transfer to the
mechanism is not less than zero [11].

Theorem 1: The neighborhood in Enki is ex ante budget
balanced. (That is, its revenues are not less than its expendi-
tures.)

Each household i should pay the neighborhood pi. The
utility of the neighborhood Uc is: Uc =

∑
i∈I pi − κ(ω).

According to Eq. 7, as long as ξ ≥ 1, Enki can ensure the
neighborhood is ex ante budget balanced:

Uc =
∑
i∈I

pi − κ(ω) = (ξ − 1)κ(ω) ≥ 0.

B. Bayesian Incentive Compatibility

Like VCG, Enki is a mechanism in a Bayesian game setting,
where information about characteristics of other players (i.e.,
payoffs) is incomplete. However, we relax the definition of
incentive compatibility from dominant strategies to Bayes-
Nash equilibrium strategies. A Bayes-Nash equilibrium is a
Nash equilibrium in a Bayesian game [14].

Definition 2 (Bayesian incentive-compatibility): A mecha-
nism is Bayesian incentive-compatible if, for any individual
in Bayes-Nash equilibrium, truth-telling is the best strategy,
or at least not worse than another strategy [14].

Enki is Bayesian incentive-compatible if each household
obtains the most utility by truthfully reporting its preferences,
given that all the others report truthfully. We further adopt the

idea of weak Bayesian incentive-compatibility from Rose et
al. [24], which relaxes incentive compatibility so that it needs
to hold only in expectation for each household. We can show
that Enki achieves weak Bayesian incentive compatibility.

Theorem 2: Enki is weakly Bayesian incentive-compatible.
We use an example with two scenarios to motivate Bayesian

incentive-compatibility. In the first scenario, household A with
a true preference of χA = (18, 20, 2) misreports its preference
as χ̂A = (14, 20, 2), and obtains an allocation sA = (14, 16).
Instead, A defects and consumes power during ωA = (18, 20).
In this case, for the same total consumption, A should have
provided χ̂A = (18, 20, 2) rather than χ̂A = (14, 20, 2). In the
second scenario, A provides us with its true interval. Thus,
Bayesian incentive-compatibility holds only if A’s utility in
the second scenario is higher. For simplicity, we omit some
parameters.

Following Eq. 8, A’s utility in the first scenario is:

U ′A = Va(τ ′a, va, θa)− ξ · κ(ω′)
Ψ′a∑
i∈I Ψ′i

In the second scenario, A earns a utility as follows:

U ′′A = Va(τ ′′a , va, θa)− ξ · κ(ω′′)
Ψ′′a∑
i∈I Ψ′′i

Specifically, Ψ′a = 2k ·∆a = 2k
(

δa∑
i∈I δi

+ 1
2

)
and Ψ′′a =

k
2

1
Fa

= k
2

(
1

fa∑
i∈I fi

+ 1
2

)
, where ∆a and Fa are in [0.5, 1.5].

Hence, Fa · ∆a ≥ 1
4 . Thus, 2k · ∆a ≥ k/(2Fa). Hence, we

obtain Ψ′a ≥ Ψ′′a .
In addition, τ ′a ≤ va because A misreports its preference

in the first scenario, whereas τ ′′a = va in the second scenario,
Va(τ ′a, va, θa) ≤ Va(τ ′′a , va, θa). Since consumptions are equal
in both scenarios, i.e., ω′ = ω′′, we see that κ(ω′) = κ(ω′′).

Next, we check the relationship between Ψ′a/
∑
i∈I Ψ′i and

Ψ′′a/
∑
i∈I Ψ′′i , when all households, except A, have submitted

their true preferences. First, their defection scores are zero
∀i 6= a, δi = 0. Second, A’s flexibility score fa is zero in
the first scenario, whereas it becomes positive in the second
scenario. Because the sum of normalized flexibility scores
(
∑
i∈I Fi) is fixed, the average normalized flexibility score

of others decreases in the second scenario.
Based on the law of large numbers theorem [32], which

states that the sample mean converges to the distribution
mean as the sample size increases, the expected normalized
flexibility score of others decreases when the number of
households becomes large (∀i 6= a, F̄ ′i ≥ F̄ ′′i ). Accordingly,
their expected social-cost scores (Eq. 6) in the second scenario
are increasing (∀i 6= a, Ψ̄′i ≤ Ψ̄′′i ). Therefore, Ψ′a/

∑
i∈I Ψ′i is

not less than Ψ′′a/
∑
i∈I Ψ′′i .

Combined with the previous analysis, U ′A ≤ U ′′A when
the number of households is large. However, Enki may not
be strictly incentive-compatible when the number of house-
holds is small. Hence, Enki is weakly Bayesian incentive-
compatible.

Enki could be made Bayesian incentive-compatible by set-
ting the payment of each household i as pi = Ψi · κ(ω).



Instead, in order to ensure budget-balance, we set the payment
function as shown in Eq. 7, thereby limiting Enki to weakly
Bayesian incentive-compatibility. This is as expected: a VCG
mechanism cannot respect budget-balance if it is efficient and
strategy proof [11].

C. Pareto Efficiency

Definition 3 (Pareto efficiency): A mechanism is Pareto
efficient if its choice in equilibrium ensures that the sum of
the true valuations from all agents is maximized [11].

We can formalize the definition of Pareto efficiency in Enki
as ∀V ∀s′,

∑
i∈I Vi(si) ≥

∑
i∈I Vi(si

′), where Vi(si) is equal
to Vi(τi, vi, θi).

Theorem 3: Enki is weakly Pareto efficient.
Enki’s allocation objective maximizes

∑
i∈I V̂i(si)− κ(ω)

(Eq. 9). And, we have proved that Enki is weakly incentive-
compatible in Section V-B, that is, each household would re-
veal its true preference in equilibrium. Therefore, the following
is maximized in equilibrium:

∑
i∈I Vi(si) − κ(ω). Further,

κ(ω) is nearly minimized under Enki’s greedy allocation.
Thus,

∑
i∈I Vi(si) is nearly maximized in equilibrium, and

Enki is accordingly weakly Pareto efficient.

D. Individual Rationality

Definition 4 (Individual rationality): A mechanism is indi-
vidually rational if each agent would receive a nonnegative
utility from participating in the mechanism [33].

Theorem 4: Enki is not individual rational.
As for a VCG mechanism, individual rationality cannot be

ensured in Enki. In the quasilinear setting, a household’s val-
uation is independent of its payment. Once a given household
has reported its true preference, its valuation stays the same.
However, the household’s payment would still increase since
its payment depends on the peak of power usage. Thus, a
household sometimes would receive a negative utility. This
conclusion accords with the Myerson-Satterthwaite theorem
[33], which states that no mechanism exists that is ex ante
budget-balanced, efficient, Bayesian incentive-compatible, and
individually rational.

However, Enki still provides incentives for households,
especially those flexible ones, to participate.

Theorem 5: The expected utility of all households is higher
with Enki (E(Ui)).

In contrast with traditional application of mechanism design,
a household’s utility should not be zero when it does not
participate in Enki, because every household should consume
power. When not participating, we define every household as
a price taking user: it doesn’t know the effect of its actions
on the price, and therefore on its payment; it considers that
the price rate is set by the power company, even though it
is not true. (In fact, a household’s consumption will affect
the aggregate consumption as well as its own payment; we
assume that households disregard such a connection). The
utility of each household is the same as we defined in Eq. 8,
whereas the payment mechanism is a little different. We use
the proportional allocation mechanism [34]. That is, each

household pays a price that is proportional to its power usage
instead of its social cost: pzi = bi∑

i∈I bi
· ξ ·κ(ωz), where bi is

the amount of power consumption, and ξ ≥ 1. In addition, the
valuation of each household stays the same no matter whether
it participates in Enki, because each household’s preference is
respected in Enki’s allocation.

The cost of the neighborhood without Enki (κ(ωz)) should
be higher, because the greedy allocation in Enki reduces the
peak. Let n represent the number of households. We omit some
parameters to simplify the notation.

E(Ui) =

(∑
i∈I

Vi − ξ · κ(ω)

)
/n ≥

(∑
i∈I

Vi − ξ · κ(ωz)

)
/n

=
∑
i∈I

(
Vi −

bi∑
i∈I bi

· ξ · κ(ωz)

)
/n = E(Uzi )

Theorem 6: The expected utility of a flexible household is
higher with Enki (E(Uf )).

Without losing generality, let’s assume that all the house-
holds consume the same amount of power while household F
is most flexible, leading to a least social cost of household F.

E(Uf ) = Vf −
Ψf∑
i∈I Ψi

· ξ · κ(ω) ≥ Vf −
1

n
· ξ · κ(ω)

≥ Vf −
1

n
· ξ · κ(ωz) = Vf −

bf∑
i∈I bi

· ξ · κ(ωz)

= E(Uzf )

Overall, even if Enki is not individually rational according
to the traditional definition, households behave rationally by
participating in Enki, especially those with higher flexibility.

VI. SIMULATION STUDY

Because the performance of Enki’s greedy allocation hasn’t
been studied yet, and Enki is weakly incentive-compatible, we
carry out a simulation study to address three questions. First,
how effective is Enki in reducing peak consumption and thus
reducing the cost to the neighborhood? Second, how much
faster is Enki’s greedy scheduler than the optimal scheduler?
Third, how effective is Enki in incentivizing each household
to reveal its true preference?

In our simulation, each household has a usage profile: a
narrow interval, a wide interval, and a duration. A household
most prefers to consume power during its narrow interval,
whereas it can consume power during its wide interval. For
example, A household’s narrow interval to watch TV is 7PM
to 8PM, and it can watch TV for one hour during the wide
interval between 6PM and 11PM without affecting its comfort
too much. But the household would not like to watch TV
before 6PM or after 11PM.

A Poisson distribution with mean 16 generates the beginning
times of the narrow and wide intervals. A uniform distribution
[1, 4] generates the duration. The ending time of the narrow
interval is beginning time + duration. The wide interval’s
ending time comes from a uniform distribution [ending time of
its narrow interval+2, 24]. The power consumption is 2 kWh.



The valuation factor ρ comes from a uniform distribution [1,
10]. Scaling factors are set to σ = 0.3, k = 1, ξ = 1.2.

A. Social Welfare

The MIQP solver in IBM ILOG CPLEX V12.4 implements
Optimal (Eq. 2). Our metrics are the peak to average ratio
(PAR) and the cost to the neighborhood. We consider a
neighborhood with a population ranging from 10 to 50. For
each population, the simulation repeats 10 rounds to simulate
10 days. Further, every household reports its wide interval
as its true preference, and its preference is generated at the
beginning of every day. Results are averaged and the plotted
error bars represent the 95% confidence intervals. Figures 4
and 5 show that differences between the PARs and between
the neighborhood’s costs of the two allocations are not large.

Nevertheless, the time the two allocations take for schedul-
ing is significantly different (Figure 6). When the number of
households is over 40, Optimal on average takes around 600
times longer.
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Fig. 4: Peak to average ratio (PAR) for Enki and Optimal.
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Fig. 5: Cost to the neighborhood for Enki and Optimal.

B. Incentive Compatibility

We consider a neighborhood with N = 50 households. For
the first household, we assume its narrow interval is (18, 20)
while its wide interval is (16, 24); its true preference is its
narrow interval, and its valuation factor is five. For the other
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Fig. 6: Time taken to compute Enki’s allocation and Optimal.
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Fig. 7: Utility of the first household when all other households
report their preferences truthfully.

households, we assign a narrow interval to each of them as
their true preferences; we generate their usage profiles at the
beginning of the first day and keep them unchanged.

We explore the best response of the first household when
the other households declare their preference truthfully. This
process repeats 10 times, and Figure 7 shows the average
utility of the first household for each possible preference that
it could report. The first household’s best response happens
when it declares its true preference (18, 20); Enki is weakly
incentive compatible.

VII. USER STUDY

The objective of Enki is, in essence, to elicit the true
valuation from each household as a way of reducing peak
consumption. However, Enki’s mechanism is based on two
assumptions. One, “rationality” assumes that each individual
behave in a way to maximize his or her utility. Two, “con-
sistency” ignores the diversity of human subjects. To verify
whether Enki’s objective is maintained in the real world, we
conduct a user study via an online game. Evaluating Enki in
its entirety is beyond the score of this paper; we instead design
the user study to investigate two research questions:

• RQ1, how effective is Enki in preventing subjects from
defecting?



• RQ2, how effective is Enki in incentivizing subjects to
reveal a wider true interval?

A. Subjects

We recruited 20 computer science students (four female;
three undergraduates; four with prior gambling experience).
None had prior experience with economic experiments. The
idea behind this population of subjects was that they are sur-
rogates for ordinary consumers who have limited knowledge
of power systems. However, we recognize that they are not
like ordinary consumers with regard to other attributes, such
as being college educated and technically savvy. This remains
a threat to the validity of our empirical evaluation results.

B. Game Information

The study had three stages. In the instruction stage, we
explained the game (as below) and its objective to maximize
points earned. Each subject represents a household and inter-
acts with Enki (embedded in the online game) to simulate a
neighborhood. The game playing stage includes 16 rounds,
each simulating one day. We provided each subject a true
preference (a true interval and a duration), and followed these
steps:

• Preference. Each subject reports a preferred interval. In
the real application, the report will be done through ECC
automatically. In the study, we assume that each subject
has perfect information of his power demand for the next
day.

• Allocation. Enki assigns an allocation to each subject.
• Household consumption. We automate this step: selecting

real consumption to be within the subject’s true interval
and close to his allocation.

• Household payment. Each subject pays the center based
on his submission and his true preference.

• Calculation. We calculate each subject’s utility following
Eq. 8 and transform each subject’s utility into a score
between zero and 100.

• Information. We reveal each subject’s load statistics (his
consumption versus other subjects’ consumption) and
score history to himself.

In a post-study questionnaire, we asked our subjects about their
background information, understanding, and risk attitudes [11]
of playing the game.

Importantly, we tempt subjects to perform unsocial behav-
iors (misreporting): a subject may potentially earn a higher
score by broadening or shifting his or her submitted interval.
But subjects are informed that they may lose points by defec-
tion. To reduce complexity, we provide subjects a calculator
to help them estimate their payoffs from different intervals
before they submit an interval [35].

We paid subjects between $10 and $20, depending on their
performance: a fixed payment of $10 for participating plus one
cent for each point they earned.

C. Study Setting

The experiment has two treatments: each treatment has
four sessions. Each session takes approximately 40 minutes.
Treatment 1 has a group of subjects while Treatment 2 has only
one subject. To control the experiment, we add six artificial
agents in Treatment 1 and four artificial agents in Treatment 2.
The true preference of each subject changes every four rounds
so that they can learn the game and adjust their strategies. For
each artificial agent, its true preference updates every round.
Half of the agents defect in Rounds 1 to 8 whereas all agents
cooperate in Rounds 9 to 16.

D. Results

RQ1: We define the “stages” Overall, Initial, Defect, and
Cooperate respectively as Rounds 1 to 16, 1 to 4, 1 to 8, and
9 to 16. In each stage, a subject’s defection rate is the number
of rounds the subject defects divided by the stage’s number of
rounds.

Table II shows that (1) the average defection rate of all
subjects in Overall is low; (2) subjects tend to defect more
often in Initial, while learning the game and tend to less
often in Cooperate, where all artificial agents cooperate. This
corroborates that Enki is weakly incentive-compatible.

TABLE II: Average Defection Rate of 20 Subjects

Overall Initial Defect Cooperate
0.2049 0.3625 0.2938 0.125

We conduct a Mann-Whitney U test [36] to test the above
observations. Each stage has two samples, each sample being a
vector of size 20. Sample 1 contains the number of rounds that
a subject defects; Sample 2 assumes that each subject defects
randomly, thus the value of each element is half of the number
of rounds in that particular stage. For example, Overall covers
16 rounds, so the value of each element in Sample 2 is eight.

In Table III, the p-value in Overall is less than 0.0001: the
means between the two samples is significantly different, and
thus Enki is effective in preventing subjects from defecting.
Further, the difference is not significant in Initial but is so in
Defect and Cooperate.

To compare the two treatments’ effect on performance, we
make two groups, one being the 16 subjects in Treatment 1 and
the other being the four subjects in Treatment 2. We calculate
the average defection rate within each group in different stages.
Table IV shows that subjects in Treatment 2 tend to defect
less often, especially during Cooperate. This corroborates the
claim that Enki is weakly incentive-compatible: each subject
in Treatment 2 makes a decision when all the other subjects
(artificial agents) cooperate during Cooperate.

RQ2: Results regarding RQ1 show that subjects learn the
game during Initial and gain familiarity with it during Coop-
erate; if a subject has understood the game, he will choose
exactly his true interval more often in Cooperate than in
Initial. True interval selecting ratio is the ratio of the number
of rounds a subject chooses his exact true interval in one



TABLE III: Mann-Whitney U Test of Whether Enki is Effective in Preventing Defection

Overall Initial Defect Cooperate

Each element in Sample 1 # rounds that a subject defects
Each element in Sample 2 8 2 4 4
p-value < 0.0001 0.0532 0.0078 < 0.0001

TABLE IV: Average Defection Rate in Two Treatments

Overall Initial Defect Cooperate

T1 0.23 0.34 0.31 0.15
T2 0.14 0.44 0.25 0.03
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Fig. 8: Mann-Whitney U test of whether subjects select their
true interval more often in Cooperate than in Initial.

stage to the number of rounds in that stage. The average true
interval selecting ratio of 20 subjects in Initial is 23.75% and
it increases to 37.5% in Cooperate.

Four subjects reported in the post-study questionnaire that
they had not understood the game at all: they randomly
submitted an interval in each round. We removed the data of
these four subjects and conducted a Mann-Whitney U test for
the remaining 16 subjects. Sample 1 contains the true interval
selecting ratio of each subject in Initial and Sample 2 contains
the ratio in Cooperate, as shown in Figure 8. The p-value is
0.0143 supports the hypothesis that subjects tend to submit
their true interval more often in Cooperate than in Initial.

In addition, we define a subject’s flexibility ratio as the ratio
of the length of the submitted interval within the true interval
and the length of the true interval. This ratio ranges from
zero (subject defects) to one (subject chooses his exact true
interval). Interestingly, by observing changes in the flexibility
ratio for each subject, we find that two subjects (P7 and
P8) who reported that they understood the game well share
a similar changing pattern (Figure 9). Both of them defect
often in Initial and then stick to their exact true interval in
Cooperate. Figure 9 also shows that the average flexibility ratio
of four subjects, who reported an intermediate understanding
of the game, increases. That is, we can conclude that subjects
are incentivized to reveal a wider true interval in Enki.
The result additionally indicates the importance of developing
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Fig. 9: Flexibility for typical subjects and two subjects who
understand well.

intuitive user interfaces, so that consumers would properly
understand the Enki mechanism.

VIII. CONCLUSIONS

We propose Enki as a novel tractable mechanism that
reduces peak total consumption and encourages prosocial
behavior through its social objective and payment mech-
anism. We show via theoretical analysis that Enki is ex-
ante budget-balanced, weakly Pareto-efficient, and weakly
Bayesian incentive-compatible. A simulation study verifies
that Enki approximates the optimal allocation strategy while
substantially reducing computation time in producing an allo-
cation that is acceptable to all participants. A major challenge
with any new economic mechanism is that if its target users
fail to understand it and confidently participate in it, the
mechanism will fail no matter how theoretically powerful it
is. A human-subject study yields positive results by showing
that Enki motivates subjects to avoid defection and is effective
in incentivizing them to reveal flexible preferences.

In future work, we will investigate a decentralized mech-
anism and consider direct cooperation among households
forming small coalitions to reduce their joint peak demand
further. We will model more complex user behaviors than at
present and a variety of appliances [37]. In particular, we are
interested in approaches that not only reduce peak demand but
reduce aggregate demand (i.e., save power not just shift load).
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