
46 Published by the IEEE Computer Society 1089-7801/08/$25.00 © 2008 IEEE IEEE INTERNET COMPUTING

Editors : M . Br ian Blake • mb7@george town .edu
Michael N . Huhns • huhns@sc .edu

Incorporating Events
into Cross-Organizational
Business Processes

Payal Chakravarty
IBM Tivoli

Munindar P. Singh
North Carolina State University

Because Web-scale processes are inherently cross-organizational, they require

the robust enactment of interactions among autonomous parties. However,

specifying the processes involved is difficult. To overcome this obstacle, the

authors use a business protocol that lets the applicable events and responses

vary based on where the process is deployed and the infrastructure and IT

applications installed therein. Treating events and business logic as separate

concerns also yields clearer models and improves reusability. The authors de-

scribe the architecture and tools and outline a methodology by which each

participant in a process can define, detect, and respond to events.

W eb-based business workflows
and processes aren’t just dis-
tributed — they’re also inherent-

ly cross-organizational. Even a simple
Web process such as shipping a product
involves more than one autonomous
party. Moreover, Web-scale distribution
makes such processes vulnerable to the
vagaries of the real world. So how can
we implement Web-scale processes for
robust enactment?

Event-driven architecture (EDA) of-
fers hope by helping IT systems iden-
tify and respond to exceptions and
opportunities.1 However, conventional
process models complicate event in-
corporation — events of interest often
depend on specific configurations of
physical sensors and effectors, and re-

sponses to events often depend on the
participants’ business goals. A delayed
shipment of medications to a warehouse
might be acceptable, for example, but
a delayed shipment to a disaster area
might not.

In our EDA, we address the engi-
neering challenge of incorporating
events in a Web process in a reusable
manner — that is, without hard coding
events into a process model. Specifical-
ly, we capture process models as pro-
tocols, which express an interaction’s
business logic in terms of commitments
among the agents representing the var-
ious participants. Protocols provide a
framework for capturing each agent’s
local policies by expressing responses
to events in a particular usage set-

W
eb

-S
ca

le
 W

or
kf

lo
w

 T
ra

ck

MARCH/APRIL 2008 47

Web-Scale Workflow Track

ting.2,3 In this article, we introduce our EDA as
well as a methodology and tools for specifying
events that naturally reflect business agree-
ments among participants.

Motivating Example
For motivation, consider the familiar situa-
tion in which a sender hires a shipper to ship
a package to a receiver. This situation can be
realized via a business process, with three par-
ties exchanging messages by using agreed-on
formats and meanings. In a typical enactment,
the three parties would forge a deal, and the
shipper would perform accordingly, culminat-
ing in its delivery of the package to the re-
ceiver. However, several exceptions (that is,
failures) can occur — for example, the package
could be lost or damaged on the way. The only
way to ensure robust shipping is to monitor the
relevant events and, if and when they occur,
respond appropriately. To monitor events pre-
sumes the necessary infrastructure is in place
— the shipper might install RFID sensors at one
or more checkpoints, which would make the en-
actment visible to the shipper’s IT system. The
checkpoints would generate events that help the
shipper track progress. Should the package fail
to materialize at a checkpoint as expected, the
shipper can take corrective action, which might
take the form of the shipper notifying the send-
er and possibly paying a penalty. The sender in
turn might supply another package to deliver
to the receiver or offer the receiver a refund or
some other form of compensation.

Business Protocols and Commitments
An orchestration — as in the Business Process
Execution Language (BPEL; http://docs.oasis
-open.org/wsbpel/2.0/) — specifies a process as
a procedure (consisting of tasks with control
and data flows among them) to be executed by
a central engine. A choreography — as in ebBP
(the ebXML Business Process schema; http://
docs.oasis-open.org/ebxml-bp/2.0.4/HTML/)
or the Choreography Description Language
(www.w3.org/TR/ws-cdl-10/) — specifies a pro-
cess in terms of messages among participants.
In contrast, a business protocol describes in-
teractions (realized as messages) in terms of
how they create and manipulate commitments
among participants.2,3 Physical interactions
such as shipments are included in protocols on
par with messages because they’re important

for discharging commitments.
In our EDA, we model an autonomous busi-

ness partner as an agent; a commitment is a di-
rected conditional obligation from a debtor to
a creditor agent. In our approach, each com-
mitment is stated in terms of agents debtor
and creditor and formulas precondition and
condition.4 The term commitment(debtor,
creditor, precondition, condition) means
that debtor commits to creditor that if pre-
condition becomes true, debtor will enact
condition. When precondition holds, debtor
becomes unconditionally committed. Further-
more, the agents involved might manipulate a
commitment — the debtor by delegating it to a
new debtor, and the creditor by assigning it to
a new creditor. Here, precondition and condi-
tion resemble the preconditions and effects of
services (as in conventional markup for servic-
es; www.w3.org/Submission/OWL-S/) but carry
contractual weight, which traditional approach-
es tend to disregard.

A business protocol specifies messages ex-
changed among two or more interacting roles.
For each role, the protocol yields a skeleton con-
sisting of rules that capture applicable temporal
constraints and meanings. The business mean-
ings of messages naturally correspond to the
conditions they bring about as well as how they
create, discharge, or manipulate commitments.
To create an agent that plays a role, we flesh out
its skeleton via additional rules to capture the
necessary decision-making policies.

Viewed as a protocol, our shipping scenario
involves three roles: receiver, sender, and ship-
per.2 The top of Figure 1 shows the important
(asynchronous) messages involved in shipping
— specifically, the quote from shipper to sender
reflects a commitment that if the sender pays
the specified charges, the shipper will deliver
the packages. The sender’s acceptance commits
it to paying and the shipper to delivering when
the payment is received. Each party’s policies
determine whether to enter into commitments
and how to carry them out.

Events
Events can be normal or exceptional. An ex-
ample of a normal event is the timely delivery
of a package. Exceptions can be anticipated or
unanticipated — an anticipated exception, such
as a delayed shipment, is one that business an-
alysts have considered but that the IT system

Web-Scale Workflow Track

48 www.computer.org/internet/ IEEE INTERNET COMPUTING

doesn’t properly handle, whereas an unantici-
pated exception is one that business analysts
have failed to model. Our approach shows how
to address anticipated exceptions in modeling
or during configuration.

An EDA provides a way of organizing sys-
tems that sense, analyze, and respond to events.
For business processes, sensing involves receiv-
ing events from multiple sources (sensors, soft-
ware applications, and such), analyzing involves
deciding a response (perhaps by aggregating
such events), and responding involves updat-
ing expectations and modifying executions. For
simplicity, we assume that the IT infrastruc-
ture is robust: messages aren’t lost, and sensors
don’t fail, but shipments might be delayed or
damaged.

This infrastructure produces a simple event
— in the bottom of Figure 1, for example, check-
points (equipped with RFID or other sensors) can
detect packages and produce messages inform-
ing participants of significant events. Here, one
means that the shipper receives an acknowl-

edgment from Checkpoint One before a speci-
fied timeout. Similarly, two and ack arrive from
Checkpoint Two and the receiver, respectively.
The connection between the shipment and the
checkpoints is through the sensors and isn’t ex-
plicit in this diagram. We specify a simple event
instance through its name and parameter val-
ues1 (typical parameters include a transaction
ID, when and where the event occurred, and
other domain-specific content).

A complex event is expressed as a pattern
over simple events — for example, we can
express shipping success as the pattern that
one, two, and ack occur in sequence. Notice that
we could alternatively model success simply as
ack, but checkpoints are introduced precisely
to enable fine-grained tracking: robustness
isn’t merely about succeeding but about track-
ing progress all the way to success. Shipping
failure (an exception) means that at least one
of the messages fails to arrive before its time-
out: assuming the sensors don’t fail, this means
the shipment has encountered some trouble.

Receiver Sender Shipper

submitShipInfo

reqForShipOptions

shipment

shipOrder

shipperOptionQuote

chooseOption

senderOptionQuote

Receiver Sender Shipper Checkpoint One Checkpoint Two

submitShipInfo

reqForShipOptions

shipment

shipOrder
trackShipment

one

trackShipment

two

shipperOptionQuote

chooseOption

senderOptionQuote

ack

Figure 1. Shipping scenario. The rule-based specification is definitive and is configured by using checkpoints with
sensors. The horizontal lines with arrows represent messages.

MARCH/APRIL 2008 49

Web-Scale Workflow Track

In business settings, events relate naturally
to commitments. Because of the importance of
commitments to a cross-organizational pro-
cess, we want to specify events so as to moni-
tor the creation, progress on, and discharge or
violation of various commitments. A debtor
would monitor a commitment to ensure that
it isn’t violated or to make amends if it is; in
our running example, the shipper might track
its shipment all the way to delivery. Howev-
er, a creditor would monitor a commitment
to make sure its internal plans — and its own
dependent commitments to others — aren’t ad-
versely affected or to take corrective action if
necessary.

Protocols, Skeletons, and Policies
Throughout this article, we use a simple lan-
guage based on event-condition-action (ECA)
rules for protocols, skeletons, and policies (to
emphasize important concepts, we use informal
notation throughout):

WHEN event
IF condition
THEN action

This type of rule is understood as follows:
whenever an event occurs, the rule interpreter
performs (in some arbitrary order) the actions
of all matching rules whose conditions hold.

The following pseudocode snippets from
Figure 1 are typical for messages in a proto-
col, which can constrain how messages inter-
relate — for example, a request should lead to a
quote. The IF part includes zero or more gating
requirements; a policy placeholder leaves some
discretion with the agent playing the appropri-
ate role (a “?” indicates a variable):

WHEN requestForShipOptions(?ID, ?item,
?from, ?to)
IF quoting policy (placeholder)
THEN sendShipperOptionQuote(?ID, ?item,
?from, ?to, ?charges)

More important, a protocol specifies each
message’s meaning, which includes any opera-
tions performed on commitments — for example,
a quote creates a commitment that if payment is
made, the item will be delivered:

WHEN sendShipperOptionQuote(?ID, ?item,

 ?weight, ?from, ?to,
?charges)

IF true
THEN CREATE(commitment
 (shipper, sender,
 shipOrder(?ID, ?charges),
 shipment(?ID, ?item, ?from,
 ?to)))

Other messages might mean delegating, assign-
ing, canceling, or releasing a commitment and
would be expressed via similar rules.

In addition, rules for processing commit-
ments are implicitly incorporated in every pro-
tocol, so, for example, if

shipOrder(?ID, ?charges)

occurs, the commitment created by this rule
would become unconditional:

commitment(shipper, sender, true,
shipment(?ID, ?item, ?from, ?to))

Rules such as this one express the protocol’s
perspective. Agents adopt the various roles in a
protocol to enact it — for example, a customer
could be the receiver and a merchant the sender,
but they might use other protocols to determine
parameters such as item, price, and address. As
mentioned earlier, a role skeleton consists of
rules generated from the protocol specification
to reflect the role’s perspective. Specifically, a
skeleton includes the rules that define the mean-
ing of each message the role sends or receives
along with constraints on message parameters
and occurrence, especially with respect to other
messages.2 An agent can choose its messages,
but when it sends one, its meaning is firm: a
message means what the protocol specifies.
Notice that commitments provide an interface
between choreography and orchestration: they
serve externally as contracts and internally as
agent goals. The messages an agent sends and
receives affect its commitments.

A process implementer specifies an agent
playing a role by augmenting the role skeleton
with rules to describe both the policies the pro-
tocol has left as placeholders and responses to
commitments. The policies capture the busi-
ness logic to determine whether and with what
parameters an action must occur. If the policy
fails, the agent won’t perform the consequent

Web-Scale Workflow Track

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

action. In some cases, as in sending a quote,
there are no ramifications on correctness be-
cause the protocol gives the agent discretion
in this regard. In other cases, as in a commit-
ment, an agent might violate a commitment,
which would usually be considered noncompli-
ant behavior.

An agent’s policies specify how it responds
to different exceptions. If a package is delayed
or lost, for example, the receiver could send a
reminder, the shipper could initiate a search for
the package, the sender could ship a duplicate
set of goods, and so on. Such responses make
the business process more robust. Notice that
exceptions are treated on par with other events:

WHEN ShippingFailure(?ID, ?item, ?from,
?to)
IF resendPolicy(?ID, ?item, ?from, ?to)
THEN resendShipment(?ID, ?item, ?from,
?to)

Our approach ensures that policies address
normal and exceptional events. Policies in gen-
eral — and responses to exceptions in particular
— are specific to each agent’s business goals, but
they fall into common patterns from extended
transaction models, such as redoing an entire
transaction, retrying a subtransaction that fails,
or undoing a subtransaction that succeeds.5

Event-Based Architecture
for Process Enactment
As Figure 2 shows, our agent architecture sepa-
rates but composes event reasoning with busi-

ness rules. An agent primarily consists of a rule
engine and an event reasoner: simple events ar-
rive at the reasoner, which maintains (partially
detected) complex events in its pattern store.

Event patterns that don’t mention a simple
event aren’t affected by its occurrence and
those that do are simplified by it. Suppose the
shipper’s pattern store initially contains ship-
ping success and shipping failure, as de-
fined earlier. When the shipper receives one,
its stored patterns are simplified — shipping
success reduces to the pattern of two preced-
ing ack. Similarly, shipping failure reduces
to the pattern of either two or ack failing to oc-
cur before their corresponding timeout occurs.
Now, if two fails to occur before its timeout,
shipping success reduces to false and ship-
ping failure to true.

Patterns remain in the store until they reduce
to true (occurred) or false (impossible). As soon
as a pattern reduces to true, the event reasoner
notifies the rule engine about the corresponding
complex event’s occurrence, and the engine ap-
plies the matching business rules, executing any
actions as appropriate. An action is treated as
a simple event and might appear in event pat-
terns. Thus, we achieve process enactment (by
each partner) in two parts: detecting event pat-
terns and applying rules to respond to them.

Our event representation and reasoning is
based on temporal logic,6 which naturally ex-
presses complex events involving temporal se-
quencing, conjunctions, and disjunctions. Typical
business rule languages (such as Jess7) support
only conjunctions, so mapping an event pattern
into a rule language would cause a blow up in
the number of rules (for disjunction) and inter-
mediate conditions (for sequencing), and would
make the resulting rules difficult to maintain.

Methodology
Our EDA requires three information sources for
each agent: a knowledge base, a rule base, and an
event pattern store. The knowledge base contains
domain models (not in our scope) as well as facts
(true conditions) that change as the enactment
proceeds. Agent rules are based on the skeletons
of the roles an agent plays and on its policies.

Although our approach leaves the policy
specification open, it provides a simple struc-
ture for policies based on the protocol enacted
and a systematic examination of normal and
exceptional events. Of course, what a par-

Agent

Complex event

Action

Simple event

Simple event Simple event

Rule engine Event reasoner

Rule base Knowledge
base

Event
patterns

Sensor Application

Message bus

Figure 2. Our event-driven architecture. An agent representing a
business partner enacts its part of a process; it receives events
from sensors and applications; its actions are physical actions or
communications to other agents.

MARCH/APRIL 2008 51

Web-Scale Workflow Track

ticipant considers normal or exceptional de-
pends on its business goals. Table 1 outlines
a methodology by which to specify normal
and exception patterns and the concomitant
policies.

Coming up with exceptions is often difficult
for humans. Our event-based approach provides
a natural way to overcome this challenge. A de-
signer can specify various exception patterns to
be monitored directly, but we provide a way to
reduce the designer’s effort. Some event patterns
might be useless for monitoring because they’re
prevented through some system property — a
designer with such knowledge can specify the
irrelevant event patterns. Not specifying the ir-
relevant patterns is harmless, but work is wasted
by monitoring events that won’t produce useful
information. As a simple example, the pattern
in which two precedes one would be impossible,
assuming reliable sensing and fast communica-
tions. Alternatively, the designer might assume
that if two does occur before one, then it isn’t an
exception because it tells us where the shipment
is. Similarly, we might consider ack preceding
two or ack preceding one as impossible.

We refine normal and exceptional patterns
by conjoining them with the complement of
each irrelevant pattern, thus eliminating irrel-
evant possibilities from consideration. Because
refined patterns don’t consider executions that
can’t occur, they resolve more quickly at run-
time. The event pattern generator helps de-
signers build such refined patterns, which are

often complex and thus difficult to build by
hand.

Application and Evaluation
In Web-scale processes, business partners can
view the “same” business occurrences different-
ly — for example, the shipper and receiver focus
on a shipment’s initial and final time points,
respectively. Events can help reconcile these
perspectives during process enactment. A ship-
per that tracks a shipment through delivery can
thus incorporate the receiver’s perspective and
thereby offer improved value to its customers.

Because our contribution is in terms of the
naturalness of configuring business processes
for robust enactment, we focused our evalua-
tion on some specific cases.

Responding to an Exception
Let’s start by applying our methodology on a
variant of our running example. Here, the ship-
ment’s temperature must be controlled within a
specified range (as for food or medicine).

Identify protocol and role. In this case, the pro-
tocol specifies the shipping protocol. Let’s as-
sume our agent is the shipper.

Examine commitments. The shipper’s commit-
ments include delivering the goods in a manner
that meets the stated temperature requirements.

Identify events of interest. Specifically, we’re

Table 1. The main steps for incorporating events into business process models.
Description Output artifacts Approach
1 Jointly with business partners, identify a protocol to be

enacted and the role each partner’s agent plays
A protocol specified in terms
of roles, message meanings, and
constraints on messages

Selected from a repository or
composed2

2 Model business entity as an agent playing a role in the
protocol and examine the commitments in which it
participates as debtor or creditor

A set of commitments Assisted by our tool

3 Identify simple events; describe normal, exceptional, and
irrelevant events informally

A set of simple events and
descriptions of normal, excep-
tional, and irrelevant events

Based on domain knowledge
and runtime configuration

4 Specify normal, exceptional, and irrelevant events;
generate refined normal and exceptional patterns

Patterns that formalize normal
and exceptional events, refined
with respect to irrelevant
patterns

Assisted by our event pattern
generator tool

5 Write a policy for each skeletal rule derived from the
protocol and any exceptions

Policy specifications in
pseudocode that capture agent’s
decisions in response to normal
and exceptional events

Based on business goals

Web-Scale Workflow Track

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

interested in simple events, normal events, ex-
ceptions, and irrelevant patterns:

Sensors placed in two containers tell us a
series of simple events of three types: ti =
temperature of container i falls outside al-
lowed range; fi = freezer of container i fails
self-test; and ci = the package is in con-
tainer i.
For a normal event, each container’s temper-
ature remains within range and doesn’t fail
the self-test.
Exceptions include the following: the ship-
ment container’s temperature falling outside
the allowed range (call this “too hot”), and
the container’s refrigeration unit failing be-
fore use (call this “dead fridge”).
An irrelevant pattern would place the pack-
age in the second container before the tem-
perature of the first container is out of range
or the first container fails the self-test before
its temperature goes out of range.

Next, we need to drill down even further.

•

•

•

•

Specify normal events, exceptions, and irrel-
evant patterns. We then determine that

In the normal pattern, neither t1 nor t2 occur;
that is, the container’s temperature doesn’t
go out of range.
Exceptions include the following: for “too
hot,” at least one container’s temperature go-
ing out of range, and for “dead fridge,” the
first container’s freezer failing before the
package is in the container.
In the irrelevant pattern, c2 occurs before t1
or f1 before t1.
I, the complement of the irrelevant pattern,
is complicated and not of expository value.
For the refined normal pattern, the normal
pattern is conjoined with I.
Refined exceptions include all the patterns
conjoined with I.

Notice that such formulas can be unwieldy
if expanded. In general, it would be quite dif-
ficult for a designer to produce accurate formu-
las directly, but our methodology simplifies this

•

•

•

•

•

•

Related Work in Exception Handling

The benefits of separating exceptions from normal busi-
ness logic are well known,1 but doing so with interactions

is novel to our approach. Holger Brocks and his colleagues2
propose a rule-based approach for exception handling, but
their setting isn’t open: their exceptions aren’t based on
events arising during interaction among business partners. By
contrast, we incorporate complex events, formalized in tem-
poral logic, into event-condition-action rules. We also show
how to reuse business logic across configurations.

Existing agent-based approaches for business process and
workflow management consider coordination at a messaging
(lower) level of abstraction3 or negotiation about business
goals at a deeper reasoning (higher) level of abstraction.4 John
Thangarajah and his colleagues5 develop inference rules in
which an agent can soundly abort tasks and drop intentions:
such rules can potentially underlie the policies described in the
main text. Business protocols occupy the trade-off space in the
middle, where richer meanings are encoded but the reasoning
about them is performed by designers (equipped with tools)
not automated agents. By separating commitments from inter-
nal decision making, business protocols facilitate composition-
ality and reuse.

Chris Dellarocas and Mark Klein6 classify exceptions in
terms of process types: such knowledge could potentially
be used to inform the exception patterns formulated in
our approach.

Our tools and enactment engine are implemented in Java
Platform, Enterprise Edition — specifically, we use Jess for the
rule engine, rule base, and knowledge base; Java Message Ser-
vice for messaging; and Java Regular Expressions for event rea-
soning. Our architecture and methodology would apply even if
another event language was used.

References
L. Zeng et al., “Policy-Driven Exception-Management for Composite Web

Services,” Proc. 7th IEEE Int’l Conf. E-Commerce Technology, IEEE CS Press,

2005, pp. 355–363.

H. Brocks et al., “Flexible Exception Handling in a Multi-Agent Enactment

Model for Knowledge-Intensive Processes,” Proc. IEEE/WIC/ACM Int’l Conf.

Intelligent Agent Technology, IEEE CS Press, 2005, pp. 479–482.

M.B. Blake, “Coordinating Multiple Agents for Workflow-Oriented Process

Orchestration,” Information Systems & E-Business Management, vol. 1, no. 4,

2003, pp. 387–405.

J. Dang and M.N. Huhns, “Concurrent Multiple-Issue Negotiation for In-

ternet-Based Services,” IEEE Internet Computing, vol. 10, no. 6, 2006, pp.

42–49.

J. Thangarajah et al., “Aborting Goals and Plans in BDI Agents,” Proc. 6th

Int’l Joint Conf. Autonomous Agents and Multiagent Systems, ACM Press, 2007,

pp. 8–15.

C. Dellarocas and M. Klein, “A Knowledge-Based Approach for Handling

Exceptions in Business Processes,” Information Technology & Management,

vol. 1, no. 2, 2000, pp. 155–169.

1.

2.

3.

4.

5.

6.

MARCH/APRIL 2008 53

Web-Scale Workflow Track

specification by helping factor out the problem’s
key aspects.

Write a policy for each event and exception.
The “too hot” exception corresponds to detect-
ing a violation of a commitment, but only after
that violation has already occurred; a corrective
response could be to resend the goods to ensure
discharging the commitment. A response to
the “dead fridge” exception might be to replan
the shipping, even if it delays the shipment but
doesn’t spoil the goods. Of course, a container’s
refrigeration unit appearing to work prior to
shipping doesn’t guarantee that it would con-
tinue to work during shipping. Thus, the “too
hot” exception might occur anyway and would
remain to be handled as appropriate.

Exploiting an Opportunity:
Combining Shipments
Monitoring business events helps facilitate the
correct response to opportunities. Consider a
case in which a shipper receives multiple orders
for shipments to the same receiver and wants
to combine them over a certain period of, say,
one day or a half-day. Here, each of the one or
more protocol instances enacted between the
same parties creates a commitment on the ship-
per to deliver the goods. From the interaction’s
standpoint, there is no change to the business
logic, but the shipper can reduce its costs by
consolidating shipments (and still continue to
discharge its commitments).

The normal event here is that zero or one or-
der of a certain service level and for a given des-
tination has been received at a designated time
point. The “exception” in this case is really an
opportunity: the shipper receives two or more
orders of a certain service level and for a given
destination at the designated time point. Be-
cause no irrelevant patterns exist, there’s no
need to refine the patterns. A possible policy is
expressed via a rule that causes all the shipping
orders (for one destination and of one quality
of service) pending at the designated time point
to ship out together in one shot. Sending a con-
solidated shipment thus discharges the commit-
ments corresponding to each shipment.

O ur agent-based EDA provides the key as-
pect of enactment to our research program

of modeling and managing business processes

in terms of interactions.2 Separating a process’s
core business logic from events in a particular
instantiation enables each participant’s local
policies to be much more naturally authored and
applied. Importantly, complex events can differ
across instantiations, even if the core business
logic stays the same. An important challenge,
which we defer to future work, is how to specify
policies for an agent in a manner that provides
guaranteed coverage to the commitments of the
business partner it represents.

Acknowledgments
This research was partially supported by the US National

Science Foundation under grant IIS-0139037. We substan-

tially revised and extended this article from a previous

version that appears in Proc. 6th Int’l Joint Conf. Autono-

mous Agents and Multiagent Systems, ACM Press, 2007,

pp. 1261–1263. We thank Brian Blake, Mike Huhns, James

Lester, Xiaosong Ma, and Ashok Mallya for comments on

previous versions, and Rob Kremer, James Harland, and

John Thangarajah for helpful discussions.

References
D.C. Luckham, The Power of Events, Addison-Wesley,

2002.

N. Desai et al., “Interaction Protocols as Design Ab-

stractions for Business Processes,” IEEE Trans. Soft-

ware Eng., vol. 31, no. 12, 2005, pp. 1015–1027.

M. Winikoff, W. Liu, and J. Harland, “Enhancing Com-

mitment Machines,” Proc. 2nd Int’l Workshop De-

clarative Agent Languages & Technologies, LNAI 3476,

Springer, 2005, pp. 198–220.

N. Desai et al., “Representing and Reasoning about

Commitments in Business Processes,” Proc. 22nd AAAI

Conf. Artificial Intelligence, AAAI Press, 2007, pp. 1328–

1333.

A.K. Elmagarmid, ed., Database Transaction Models for

Advanced Applications, Morgan Kaufmann, 1992.

M.P. Singh, “Distributed Enactment of Multiagent

Workflows: Temporal Logic for Service Composition,”

Proc. 2nd Int’l Joint Conf. Autonomous Agents and

Multiagent Systems, ACM Press, 2003, pp. 907–914.

E.J. Friedman-Hill, Jess in Action, Manning, 2003.

Payal Chakravarty is a software engineer with IBM Tivoli.

Her interests include event processing. Contact her at

chakravp@us.ibm.com.

Munindar P. Singh is a professor of computer science at

North Carolina State University. His interests include

interaction-oriented abstractions for business process

management. Contact him at singh@ncsu.edu.

1.

2.

3.

4.

5.

6.

7.

