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Abstract. A social machine is a Web application using which users
interact flexibly and creatively to carry out social processes. Currently,
social machines are realized via procedural technologies such as Web ser-
vices. These approaches do not capture the social semantics at the heart
of a social machine. Capturing the semantics of social processes would
be crucial to enhancing user autonomy, accountability, interoperability,
and decentralization.

We present Fluid, a decentralized multiagent architecture in which the
semantics of a Web application is represented foremost as a social pro-
tocol that captures the applicable norms. Unlike data decentralization
architectures such as Solid, Fluid decentralizes not just the data, but
also the application logic. Our contributions are the following. One, we
demonstrate how Fluid promotes user autonomy and introduces account-
ability as a counterbalance to autonomy. Two, we demonstrate how in-
teresting sociotechnical patterns, e.g., relating to information governance
and sanctions, may be captured in Fluid. Three, we demonstrate how
Fluid applications may be realized using data decentralization technolo-
gies such as Solid.

1 Introduction

Berners-Lee [3] articulates a vision of social machines as open societies in which
humans engage creatively with each other in social processes, leaving adminis-
trative tasks to computers. He envisions the Web (HTTP and supporting tech-
nologies and architectures) as a platform for such machines. Berners-Lee’s vision
has come true in some measure: many Web applications facilitate interactions
among their users. We restrict attention to such Web applications, correspond-
ing to social machines, which cover the domains of social media, e-commerce,
healthcare, and e-government, among others.

Currently, a social machine is realized as a central Web service that medi-
ates interactions between users. A crucial limitation of such an architecture is
that it leaves the social and technical elements of a social machine disconnected.
Specifically, a Web service provides the lowest common denominator functional-
ity such as messaging or photo sharing (e.g., on Facebook and Twitter); however,
social relationships between the users are epiphenomenal to the service: left to
whatever the users make of their interaction.
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User autonomy is essential to creativity and therefore crucial to Berners-
Lee’s vision of a social machine. However, current approaches interfere with
autonomy. Instead of representing the semantics of the social process that a
social machine supports and letting users interact autonomously in light of the
semantics, the Web service (provider) regiments the social process, leaving little
room for autonomous interaction between users—in effect, reflecting a procedural
idealization of work—to adopt Suchman’s criticism of traditional workflows [28].

Not surprisingly, the absence of a semantics of social processes hinders in-
teroperability: users become tied to particular implementations and their APIs.
Just as metadata and semantics are invaluable for linking data and services [6],
so too are they essential for supporting social processes. The desired semantics
should capture social expectations and accountability [13].

The foregoing motivates our research question: How can we model and enact
social machines in a semantics-driven manner that combines social and data
semantics? To answer this question, we take Interaction-Oriented Software En-
gineering (IOSE) [5] as our point of departure. What makes IOSE distinctive is
that it advocates specifying a social machine in terms of a social protocol between
users. A social protocol is framed as a set of social expectations between roles.
Each user adopts a role in a protocol and deploys its agent as an implementation
of that role. In IOSE, there is no central Web service; instead, we obtain loosely
coupled agents that interoperate via a social protocol.

Our main contribution is Fluid, an architecture that instantiates IOSE using
Web technologies. First, we specify a social machine, not as a Web service,
but declaratively as a social protocol. To this end, we adopt Custard [4], a
language that describes a social protocol in terms of norms (elaborated below)
and provides a semantics that maps norms to a user’s datastore. We demonstrate
important norm patterns having to do with data access, privacy, and sanctions.
We show a mapping from Custard specifications to RDF datastores by which
the state of each norm (e.g., whether it is fulfilled or violated) is computed from
facts in a datastore. Second, we show how to realize a user’s agent as a Solid
application [17, 25] to take advantage of Solid’s data decentralization techniques.
Users engage in a social machine by enacting its social protocol with the aid of
their agents. Third, we demonstrate the flexibility Fluid accords users by letting
each user deploy any agent that can participate in the relevant protocol. Thus,
unlike data decentralization infrastructures, Fluid decentralizes not only data
but also the application logic.

Section 2 motivates our approach by comparing prevalent architectures. Sec-
tion 3 describes the language and concepts underlying Fluid. Section 4 describes
the key elements and an implementation of Fluid on top of Solid, and demon-
strates Fluid’s flexibility in supporting multiple agent implementations. Section 5
summarizes our contributions, discusses relevant literature, and lists future di-
rections.
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2 Technical Motivation

We now motivate our choice of IOSE as a foundation for Fluid. We use examples
from an imaginary photosharing social machine PhotoShare. We consider two
requirements: (1) a user may authorize another user to view a photo stream and
(2) a sharing user may prohibit the viewing from forwarding photos to others.

2.1 Centralized Logic and Data

A social machine is traditionally logically centralized on a Web service. This ser-
vice is the locus of the social machine’s definitive application logic and state,
which its persists in a datastore. A significant ramification of this architecture,
which Figure 1 illustrates, is that the service mediates interactions among users.
The users have little control over the data the service stores—the entity that
provides the service can and usually does exploit the data. Such challenges of in-
formation governance [1] and privacy [16, 21] have spurred work on decentralized
data architectures, such as Solid.

User X User Y
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Web service

datastore

Fig. 1: A social machine implemented as a Web service.

In general, implementing an application as a Web service limits a user’s
autonomy to the choices made by the service provider in implementing the social
machine requirements. To see this, let’s assume PhotoShare is implemented as
a Web service by some organization. Let’s assume a user Marcy has authorized
Charlie to view her photos but prohibited him from forwarding them to others.
The Web service could implement this prohibition by disabling the forwarding
feature for Charlie. Now suppose that Marcy is in a rural region of Italy when
an earthquake hits. In this emergency situation, Charlie may wish to forward
Marcy’s latest photos to a rescue and relief agency (also a user of service).
However, the Web service will not allow Charlie to do this.

Imagine that Charlie goes around the service by taking a screenshot of
Marcy’s photo and sharing it with others. Even if we trace this action to Char-
lie, we have no basis for claiming this is a violation of anything. If there is some
textual statement that Charlie shouldn’t share Marcy’s photos, such a statement
cannot be reasoned about computationally since it lacks a formal semantics.
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In contrast, a social protocol specifies the norms (here, Marcy’s prohibition on
Charlie) that directly characterize Charlie’s accountability. If we trace Charlie’s
action to him, we would know he violated the prohibition. Considerations of
whether the violation itself was justified under the circumstances are subsequent
to the determination of the violation and may hinge upon the user’s attitudes
with respect to the social interaction. For simplicity, we exclude such matters
from our present scope.

2.2 Centralized Logic, Decentralized Data

Solid address challenges arising from data centralization. As Figure 2 shows, in
Solid, each user has a personal datastore. Users may grant other users access
certain content in their datastore via a fine-grained authorization and access
control mechanism, which works together with identification and authentication
mechanisms. An application (e.g., Solid social network application Timeline is
implemented as a Web service that takes advantage of this decentralized data
via a standardized data formats.

User X User Y

N /

Web service
(Application logic)

/ N

X's datastore Y'’s datastore

Fig.2: A Solid application is implemented as a Web service. Users have personal
datastores. The application logic comes from the Web service that executes in a
user’s client, and makes HTTP requests to its user’s and others’ datastores.

Solid tackles data decentralization, but adopts a centralized conception of
application logic. Even when the logic is physically distributed across users’
browsers, it is defined by a single Web service that, in effect, mediates user
interactions.

Suppose we implemented PhotoShare as a Solid Web service. Marcy and
Charlie would have their own datastores. Marcy’s prohibition on Charlie for
forwarding would be implemented via access control attributes in Marcy’s data-
store and corresponding logic in the Web service. In other words, the problems
of autonomy and accountability would manifest themselves in Solid applications
just as for vanilla Web services, as discussed in Section 2.1.

Let’s consider how PhotoShare might be implemented following IOSE. The
authorization to view photos and the prohibition on forwarding them would
both be expressed as norms. There would be no central implementation of the
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norms, though. Marcy could implement the authorization for Charlie by sending
photos to Charlie upon request. Alternatively, she could violate the authorization
by not sending Charlie photos upon request. However, if she did violate the
authorization, it would be captured in both their datastores (from the absence
of a message containing the requested photo). Analogously, Charlie may receive
a photo from Marcy and violate the prohibition by forwarding it to the rescue
agency. The violation would be inferred from the prohibition and the event in
Charlie’s datastore that represents communication with the rescue agency.

3 Social Protocols

We show how a social protocol, as a set of norm specifications, may be specified
and realized as abstractions over RDF stores.

3.1 Norms in Custard

We adopt Custard [4] for specifying norms for two reasons. One, Custard is an
expressive (supporting complex events) specification language of social protocols
that covers a wide variety of norm types. Two, Custard provides a computational
semantics for protocols in terms of datastores. Although Custard was developed
for relational datastores, we adapt it to RDF datastores for use in Fluid.

Custard defines four types of norms: commitment, authorization, prohibition,
and power. Each norm type has a specific lifecycle that determines the state of
a norm based on relevant events. We explain a commitment and its lifecycle
as an example. A commitment has a debtor and a creditor, representing who
is committed to, and associated with two events, namely, its antecedent and
consequent. For instance, a commitment in PhotoShare is that if a poster accepts
a subscription request, the poster is committed to authorizing the subscriber to
view her photos. In this commitment, the poster is the debtor and the subscriber
is the creditor. The antecedent is the acceptance of a subscription request and
the consequent is the authorization of the subscriber.

The state of a commitment is determined according to occurrence (or lack
of occurrence) of its antecedent and consequent. A commitment is detached
after its creation when the antecedent occurs. If the antecedent never occurs,
the commitment expires. Although we conceptually say never, occurrence of the
antecedent is usually associated with a deadline. A detached commitment is
discharged when its consequent occurs. If the consequent never occurs (or its
deadline elapses), the commitment becomes violated. Other norm types have
similar lifecycle [4] which we do not present due to lack of space.

Listing 1: A relational event schema for PhotoShare.

SignedUp (pID) key pID

SubscRequested (sID, plD, subsclD) key subsclD
SubscAccepted(sID, pID, subsclD) key subsclD
SubscRejected(sID, pID, subsclD) key subsclD
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ContainerURISent(sID, pID, subscID, contURI) key subsclD
PhRequested (sID, pID, subsclD, reqlD, phlD) key reqlD
PhAccessed (sID, pID, subscIlD, reqlD, phContent) key reqlD
PhForwarded(sID, olD, reqlD, phContent, fID) key fID
SubscCancelled (sID, pID, subsclD) key subsclD

Formally, Custard defines a social protocol as a set of norms over an event
schema, which defines the relevant abstract event types (e.g., antecedent and
consequent of a commitment). We present a relational event schema for Photo-
Share in Listing 1. Each event is specified as a relation (a set of attributes) that
is annotated with a key. Each event also has a timestamp to show when it has
happened, which we omit from Listing 1 for brevity. For instance, a poster signs
up to PhotoShare with a poster ID (pID), which is also the key for the event. A
subscription request has attributes subscriber ID (sID) and poster ID (pID), to
represent who makes the subscription request to whom, and also a subscription
ID (subscID) as a key. Other events are specified similarly.

Two instances of an event (specification) should not have identical values for
their key attributes. However, a key in one event may appear in another event
as a foreign key. For instance, subscID appears in a photo request (PhRequest)
as a foreign key. These foreign keys enable correlation between events. That is,
a request for a photo can be correlated with a subscription. Note that a poster
can send the URI of her photo container (ContainerURISent) only once for each
subscription. Otherwise, different instances of ContainerURISent would share
the same subscID. However, for the same subscID there can be any number of
photo request events (PhRequested), since each request has its own reqID as
key.

Now, we show a simple social protocol for PhotoShare in Custard. For brevity,
we elide the formal syntax of Custard [4]. We start with the commitment from
a poster to a subscriber to authorize the subscriber, if her request is accepted.
Listing 2 shows this commitment, SubscCommr, in Custard. The first line shows
the direction of the norm. That is, the poster is committed to the subscriber. The
commitment is created when the poster signs up (i.e., an instance of SignedUp).
The commitment becomes detached when the poster accepts a subscription re-
quest (i.e., an instance of RequestAccepted). The commitment is discharged when
the poster authorizes the subscriber by creating the authorization, as we show in
Listing 3. Note that the poster must authorize the subscriber within one day of
accepting the request to fulfill the commitment. Otherwise, the poster violates
the commitment. This deadline is defined by the expression within the brackets
in the last line.

Listing 2: Commitment to authorize an approved subscriber.

commit SubscCommr pID to sID

create SignedUp

detach RequestAccepted

discharge created SubscAuth[0, SubscAccepted + 1]

Listing 3 shows SubscAuth, an authorization that states the subscriber is au-
thorized by the poster to access her photos. It is created by the poster by send-
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ing the URI of her photo container to the subscriber (i.e., the ContainerURISent
event). The subscriber detaches the authorization by making a request for a
photo (i.e., PhotoRequested), and the authorization discharges when she accesses
the photo (i.e., PhotoAccessed). The authorization states that access should be
granted to the subscriber at most in one day after her request. The authorization
expires when the subscription is canceled (i.e., SubscCancelled).

Listing 3: Authorization of an approved subscriber.

authorize SubscAuth sID by plID

create ContainerURISent

detach PhotoRequested except SubscCancelled

discharge PhotoAccessed [PhotoRequested, PhotoRequested + 1]

The prohibition in Listing 4 captures the expectation of posters from sub-
scribers about not forwarding their photos to third parties. The name of the
prohibition is ForwardProh. It is created when a subscriber accesses a photo by
using SubscAuth. A prohibition never discharges. However, it becomes violated
if the photo is forwarded by the subscriber (i.e., PhotoForwarded).

Listing 4: Prohibition of subscribers from forwarding photos.

prohibit ForwardProh sID by plID
create discharged SubscAuth
violate PhotoForwarded

Once the event schema and social protocol of a social machine are defined,
users can start to interact according to the social protocol. As the user’s interact,
instances of the events (e.g., subscription requests) occur, which are stored in
users’ datastores, who can observe them. For instance, when Charlie makes his
request to subscribe to Marcy’s photos, the appropriate instance of the subscrip-
tion request event is stored in Charlie’s and Marcy’s datastores.

Each user can determine the states of the applicable norms from his or her
datastore using Custard. For instance, Charlie can use the stored events to infer
whether Marcy is committed to him for authorizing him to access her photos, and
whether she fulfills or violates this commitment. Custard automatically generates
the requisite queries for each state of a norm (e.g., a query for each commitment
state, hence five in total for a commitment) to characterize the instantiation of
a social protocol, as we show in Section 3.2.

3.2 Custard over RDF Stores

Now let us turn our attention to reasoning about norms over RDF stores. The
basic idea is to store event schemas and event instances in RDF stores. The
event instances explicitly represent what has happened. The stores can then be
queried, in our case using SPARQL, based on each norm lifecycle event query
(i.e., to determine if a norm is created, expired, detached, discharged or violated).
Querying an RDF store in this manner allows us to infer the social state.
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An event schema defines event types. RDF supports specifying both event
types along with properties defined on them and event instances along with
associated property instances.

Listing 5 declares some of PhotoShare’s event types. The Custard namespace
(cust) asserts Event as a class and associates a timestamp with each event.
Subscription request (SubscRequested), subscription accepted (SubscAccepted)
and subscription rejected (SubscRejected) are events declared in the PhotoShare
(ps) namespace.

Listing 5: Event types.

cust: Event rdfs:subClassOf rdfs: Class

cust: Event rdfs:Property cust:Timestamp
ps:SubscRequested rdfs:subClassOf cust:Event
ps:SubscAccepted rdfs:subClassOf cust:Event
ps:SubscRejected rdfs:subClassOf cust:Event

Listings 6, 7, and 8 show each event type’s properties. For instance, a sub-
scription request (SubscRequested) has properties to represent who (Subscriber)
makes the request to whom (Poster). RespContURI is an rdfs:Container that the
poster can use to notify the subscriber about its response. A ‘key’ property is
used to refer to a relevant datum, such as a subscription identifier referring to a
specific subscription instance.

Listing 6: Attributes of SubscRequested event.

ps:SubscRequested rdfs:Property ps:SubsclD
ps:SubscRequested rdfs:Property ps:Subscriber
ps:SubscRequested rdfs:Property ps:Poster

Listing 7: Attributes of SubscAccepted event.

ps:SubscAccepted cust:hasKey ps:SubsclD
ps:SubscAccepted rdfs:Property ps:Poster
ps:SubscAccepted rdfs:Property ps:Subscriber
ps:SubscAccepted rdfs:Property ps:RequestURI
ps:SubscAccepted rdfs:Property ps:PhotoContURI

Listing 8: Attributes of SubscRejected event.

ps:SubscRejected cust:hasKey ps:SubsclD
ps:SubscRejected rdfs:Property ps:Poster
ps:SubscRejected rdfs:Property ps:Subscriber
ps:SubscRejected rdfs:Property ps:RequestURI

Listing 9 shows an event instance (ps:001) of type ‘subscription requested’
stored as RDF triples. Charlie makes a request to subscribe to Marcy’s photo
store stream at the time indicated by the timestamp.

Listing 9: An instance of SubscRequested event.

ps:001 rdfs:Type ps:SubscRequested
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ps:001 ps:SubsclD " Subscrl”

ps:001 ps:Subscriber " Charlie”

ps:001 ps:Poster " Marcy”

ps:001 cust:Timestamp "1477222062829"

We now turn our attention to normative reasoning in the proposed Cus-
tard layer. Each query is generated according to Custard’s semantics. However,
instead of detailed semantic definitions, we demonstrate these queries via exam-
ples. The original Custard semantics is based on the relational calculus queries
[4], whereas here we consider SPARQL queries. Social state inferences (e.g., that
a norm is violated) are made based on SPARQL query results for event instances
stored as RDF resources.

Listing 10 shows a SPARQL query for inferring whether the SubscAuth au-
thorization, specified earlier in Listing 3, is created. All we need to check is
whether the create event, ContainerURISent, has occurred and consequently we
are able to infer who the authorization is by (e.g., the provider ?PID) for the
benefit of whom (e.g., the subscriber ?SID) based on user variable bindings and
other relevant details (e.g., the subscription identifier ?SubscID).

Listing 10: A SPARQL query generated in order to determine creation of the
SubscAuth norm.

SELECT ?PID ?SID ?SubsclD ?Timel
WHERE {
?7ID1 type ContainerURISent.
?71D1 sID ?SID
?1D1 pID ?PID
?ID1 subsclD ?SubsclD
?7ID1 containerlD ?ContainerlD
?ID1 timestamp ?Timel

The preceding query is simple. It can be written based on the relevant event
type’s properties such that the ?SubsclD variable is bound to the ‘container URI
sent’ event instance’s subscriber ID property subsclD and so on. The only care
that needs to be taken is ensuring that variables being bound to the timestamp
property value (i.e., when the event occurs) of different events have unique names
in case multiple events are being queried for (i.e., we do not wish to over-constrain
a query to only returning simultaneously occurring events).

The SPARQL query in Listing 11 is more complicated. It tests whether the
same authorization is discharged. Relying on nested clauses, it first tests whether
the discharged condition has occurred, conditional on the detach having occurred
previously (the first nested statement), which is conditional on the create event
having occurred before the detach event (the third nested statement). By gener-
ating SPARQL queries based on norms, complex queries in application logic do
not have to be handwritten, rather we can automate inferring social abstractions.

Listing 11: A SPARQL query generated in order to determine creation of the
SubscAuth norm.



10 Chopra et al.

SELECT ?SID ?PID ?SubsclD ?ReqlD ?PhContent ?Timeb
WHERE {

?71D4 Type PhotoRequested.

?71D4 timestamp ?7Time4.

?7ID4 sID 7?SID.

?7ID4 pID ?PID.

?7ID4 subsclD ?SubsclD

?1D4 reqlD ?ReqlD

?71D4 photolD ?PhotolD

FILTER(? Time5 >= ?Time4. ?Timeb <= ?Time4 + 1.)

SELECT 7SID ?PID 7?SubsclD ?ReqlD ?PhID ?Time3
WHERE {
?7ID3 Type PhotoRequested.
?7ID3 timestamp ?Time4.
?ID3 sID ?SID.
?7ID3 pID ?PID.
?7ID3 subsclD ?SubsclID.
7ID3 reqlD ?ReqlD.
?71D3 phID ?PhID.
MINUS { ?ID2 Type SubscCancelled.
?ID2 SID 7?sID.
71D2 PID ?pID.
?ID2 SubsclD ?subsclD.}
FILTER(? Time2 >= ?Timel.)

SELECT ?SID ?PID ?SubsclD ?Timel
WHERE {
?7ID1 Type ContainerURISent.
?7ID1 sID ?SID.
?ID1 pID ?PID.
?ID1 subsclD ?SubsclID.
?ID1 containerlD 7?ContainerlD .
?ID1 timestamp ?Timel.

Such generated SPARQL queries are submitted to Solid datastores in order
to infer the social state based on event instances. Algorithm 1 provides a pseu-
docode for submitting such queries, based on the communication methodology
implemented by the Solid application Dokieli. The approach is quite simple: (1)
create a promise as an asynchronous data object that initially contains no data
but promises to notify the user when it is assigned data (or notify of a failure);
and (2) update the promise object based on SPARQL query results for inferring
whether there is a violation.
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These SPARQL queries are submitted using the Solid methodology: (1) web
credentials are set as being required, meaning the browser will prompt or auto-

matically supply a certificate in order to access the Solid datastore; and (2) the
SPARQL query is submitted using HTTP Post.

Algorithm 1 Sample code for posing SPARQL queries generated by Custard
in order to infer the social state from Solid datastores.

1: function GETVIOLATIONS(normName)
2: return new Promise(

3: function FUNCTION(resolve, reject)

4: httpRequest < new httpRequest()

5: httpRequest.open(‘POST’, userStoreURL)

6: httpRequest.withCredentials = true

T > Additional http request parameters should be specified.
8: [..]

9: httpRequest.onreadystatechange <

10: function FUNCTION(resolve, reject)

11: [..]

12: > A function that calls the resolve and reject
call back functions based on the respective
success or failure of the http request.

13: query < custard.violationQuery(normName)

14: httpRequest.send(query)

4 Instantiating IOSE as Fluid

Now we present our architecture Fluid that instantiates IOSE for social ma-
chines. We first present the elements of Fluid, and then explain the implemen-
tation of agents in some detail.

4.1 Key Elements of Fluid

In Fluid, the social protocol is a refinement of a social machine’s requirements.
A social protocol in Fluid is specified as we explain in Section 3 using Custard
syntax for norms and RDF serialization for the event schema. The protocol
specification itself is a resource that can be accessed by all the users from a
public protocol repository.

In Fluid, users of the social machine (X and Y in Figure 3) may play one or
more roles in a social machine according to their interaction with other users.
For instance, in PhotoShare, Charlie plays the subscriber role when interacting
with Marcy to accesses her pictures, and the poster role when interacting with
users (including Marcy) who are subscribed to view his photos.
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Fig. 3: Fluid decentralized social application architecture.

Users are represented by their (computational) agents. User agents are imple-
mented on top of Solid and Custard. Solid provides the interface and middleware
to access the datastores of the users. Custard provides the practical tool to reason
about the social state of the social machine, which assists the agents to decide on
the course of their actions and interaction with other agents. In practice, third
parties would provide agent implementations that are compatible with specific
roles in specific protocols.

In Fluid, each user has a personal datastore that complies with the Solid
specification [17]. The schema of a datastore is determined by the user, who
owns the datastore. Fluid does not enforce any constraint on the schema of
a user’s datastore. In the implementation level, agents communicate with the
datastores through HTTP protocol, which is encapsulated by the Solid API.
Authentication and access rights on resources in datastores are also handled by
Solid. Although Custard provides its own API to agents to infer the social state,
in the background, Custard uses the Solid API to communicate with the user’s
datastore. Importantly, Custard retrieves data (through GET requests) to infer
the social state, but does not modify any resources on a user’s datastore.

An agent may access resources in datastores of other users if they permit. In
the social level, these access rights are specified in the social protocol in terms
of norms. For example, when Marcy accepts Charlie’s subscription request, she
authorizes him to access her photos. Solid specifies how it manages access rights
on physical resources using Web Access Control.

While the social aspects of interaction are specified by the social protocol, the
implementation of interaction in Fluid is by creating and updating resources in
datastores that correspond to event instances. For example, in PhotoShare, each
party’s datastore includes a designated location—a publicly writable container
as specified by the Linked Data Platform. To make his subscription request,
Charlie creates a new resource in Marcy’s container that corresponds to the
SubscRequested event. Marcy can browse her container as she wishes. Once
she observes the new resource, she can interpret the event that the resource
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represents to reason about the event’s social meaning according to the social
protocol. Then she responds to Charlie in a similar way by creating a resource
that corresponds to an event (e.g., accept request) in a designated container in
Charlie’s datastore.

4.2 Implementing Agents

Now let us look at implementing user agents. A Fluid agent is generally crafted
to meet interaction requirements for a given social protocol. Moreover, a Fluid
agent, both in terms of functionality and graphical interface, is implemented
according to a user’s role, requirements, and preferences in the social machine.
For instance, when acting as a subscriber, Charlie’s agent may provide function-
ality, such as face recognition, to identify and tag the photos that involve him.
However, Marcy may not require such functionality, and can use a simple agent
that shows every photo from users whose photo streams she has subscribed to.

Furthermore, the implementations of the agents are decoupled from each
other: neither depends upon the internal details of the other. Instead, interoper-
ability is achieved by defining the semantics of interaction using a social protocol.
For instance, to make his subscription request to Marcy’s agent, Charlie’s agent
does not need to know which algorithms or data structures are used by Marcy’s
agent. The only necessity for interoperability is the ability to initiate the event
of subscription request as it is specified by the social protocol. As a result of this
decoupling, Fluid achieves both application and data decentralization.

We consider two agents Charlie uses to share and subscribe to photo streams,
a flexible agent (Algorithm 2) and a rigid agent (Algorithm 3), based on different
requirements. Charlie’s flexible agent meets the following two requirements for
automatically subverting the social protocol in extraordinary cases (i.e., emer-
gencies) and supporting Charlie’s autonomy in other cases. 1. A member of a
search and rescue team may request a photo to assist in an emergency, such as
to identify a person’s whereabouts. In this case, Charlie wishes the photo to be
forwarded automatically, even though it would violate a prohibition on forward-
ing. 2. Charlie would generally like to send all requested photos to a confirmed
subscriber, in accordance with the authorization norm. However, he may wish
to edit photos before they are sent. Hence, photos are not sent automatically,
instead Charlie is prompted to send them.

The pseudocode for Charlie’s flexible agent is given in Algorithm 2 (for clarity
we assume norms and event schemas have corresponding types in an imperative
language).

Charlie’s rigid agent pseudocode is given in Algorithm 3 according to dif-
ferent user requirements. 1. Charlie does not wish photos to be automatically
forwarded should doing so violate a prohibition. Accordingly, the agent should
verify whether photo forwarding would violate a norm before actually forward-
ing the photo. 2. Charlie wishes to automatically send all requested photos that
are authorized to be sent.

It must be emphasized that social semantics are central to the agent logic
presented. An authorization dialog is not presented to the user in Algorithm 2
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Algorithm 2 Charlie’s flexible agent implementing the PhotoShare social pro-

tocol.
1: function ONRECEIVEPHOTOFORWARDREQUEST (request)
2: if request.requester € authorities and
request.circumstance = emergency then
3: ForwardPhoto(request.photo, request.requester)
4: function UPDATEDSOCIALSTATE(subscAuth, photoRequested)
5: if SubscAuth.newstate == “detach”
and subscAuth.complEv is PhotoAccessed then
6: AccessDialog(photoRequested.photolD,

photoRequested.subscID)

Algorithm 3 Charlie’s rigid agent implementing the PhotoShare social protocol.

1: function FORWARDPHOTO(photo, request)
2: photoForwardedEvent <+
new forwardedEvent(photo.subscriberID,
request.otherPartyID, request.requestID,
photo.content)
if not custard.violation(photoForwardedEvent) then
> Low-level photo forwarding.
: function UPDATEDSOCIALSTATE (subscAuth, photoRequested)
if SubscAuth.newstate == “detach”
and subscAuth.complEv is PhotoAccessed then
7: ProvidePhoto(photoRequested.photolD,
photoRequested.subscID)

D gk w
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(Line 6) based on low-level data changes. Instead, UI elements are created and
agent actions performed based on updates to the social state. Agent logic is
written in terms of high—level social abstractions, aiding in understandability
and providing a clear correspondence with the social protocol the agent is im-
plemented against.

5 Discussion

Table 1 identifies Fluid’s distinctive features.

Approach  Social semantics Decentralization

Web Service Epiphenomenal None
Solid Epiphenomenal Data
Fluid Norms Logic and data

Table 1: Web architectures and their characteristics.

Fluid captures the semantics of social processes via norms that apply to
users. Fluid norms are not merely documentation (as contracts in natural lan-
guage are); they are first-class computational abstractions that agents can reason
about. Fluid norms are not rules that are executed in a rule engine; they are
elements of the social state of a social machine. Crucially, users may not comply
with the norms that apply to them; such a conception of norms is fundamental
to autonomy and creativity. As we demonstrated in Section 4.2, users are free
to implement their agents as they please. Charlie could if he wanted deploy an
agent that violates the forwarding prohibition. However, although norms can
be violated, they provide an implementation-independent notion of accountabil-
ity, which can be applied as a standard of correct behavior in the given social
machine. For example, Charlie is accountable to Marcy for not violating her
prohibition regarding her photos.

In general, balancing autonomy and accountability is crucial for ensuring
that a social machine would not devolve into the extremes of chaos or tyranny.
In Fluid, accountability derives fundamentally from social protocols. The above
notion echoes well-known intuitions from studies in political theory [12]. This
is in contrast to approaches that treat deterrence (via negative sanctions) as
accountability [10, 9]. Sanctioning (whether positive or negative) an accountable
party is a process that is conceptually subsequent to accountability, not incor-
porated in its definition.

REST [11] is an architectural style for Web applications. Ciortea et al. [7, 8]
advocate REST as a style suited to multiagent systems since agents must deal
with resources in the environment. Moreover, those resources could come with
interesting semantic descriptions. Extensions of Fluid to fully exploit the Web
technology ecosystem would be a productive research direction.
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Seneviratne [26] proposes HTTP Accountability (HTTPA) as a mechanism
by providers may annotate resources with usage norms that consumers should
ideally abide by but are not forced to. HT'TPA supports tracking and auditing of
compliance. Although the specific architectures are different, HTTPA and Fluid
share similarities. It would be interesting to investigate the use of Custard in
the HTTPA architecture.

Decentralized infrastructure has been a theme of growing interest in com-
puting but much of it has focused on data, just as Solid does. This includes
landmark peer-to-peer infrastructures such as Chord [27] and blockchains [29]
that can be deployed to support social machines. However, these infrastructures
do not address the decentralization of the social machine’s application logic, as
Fluid does. The logical decentralization of a social machine requires thinking in
terms of a social protocol that captures the meanings of the social machine’s con-
stituent interactions. Fluid, as an instantiation of IOSE, demonstrates how social
protocols may be concretely realized over the Web. Analogous instantiations can
be developed over other decentralized data infrastructures. Idelberger et al. [14]
report initial work on encoding blockchain applications (smart contracts) in a
language that supports normative abstractions.

In security policy languages such as [19], a computer system is either obliged
or prohibited from taking certain actions. These policies are programs—not so-
cial norms—that are executed by the policy engine, a distinction echoed by
Polleres [22]. Fluid can be applied to specifying norms in light of which secu-
rity policies are specified and thus bring sociotechnical aspects to bear. Indeed,
we demonstrated how social protocols could be connected with security policies
in agent implementations. Similarly, authorization framework implementations,
e.g., OAuth [15], could be checked for correctness with respect to norms. Support-
ing sophisticated role ontologies in Fluid, as Belchior et al. [2] do for role-based
access control, would be an interesting extension.

The current excitement around social machines is rooted in the potential of
applying data analytics on user-generated content for solving social problems,
such as earthquake prediction [24], traffic routing [20], understanding group dy-
namics [23], and understanding urban geographies [18]. Data analytics could
benefit from Fluid’s explicit representation of social norms. In particular, in-
ference algorithms could be run on norm stores instead of lower-level data. An
exciting application of such analytics would be as part of a governance feedback
loop that leads to revisions of the social protocol for a social machine. In some
applications, the state of a norm may be fuzzy because the underlying facts
themselves are fuzzy. Approaches for fuzzy annotations for data and associated
queries [30] should be valuable in extending Fluid.

Fluid supports common normative relationships such as commitment, pro-
hibition, power, and so on. From experience though, we know that there are
many more kinds of social relationships. For example, recommends, likes, trusts
may also be seen as social relationships between users. An important direction
of future work is to understand how Fluid could support idiosyncratic social
relationships.
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