
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J A N U A R Y 2 0 2 0 53

RESEARCH FEATURE

Computational
Governance and Violable
Contracts for Blockchain
Applications

Munindar P. Singh, North Carolina State University

Amit K. Chopra, Lancaster University

B lockchain technology has
brought newfound prom-
inence to the challenges
of building decentralized

systems, which we understand quite
literally as systems with no distin-
guished locus of control. As such,
blockchain is a natural fit for build-
ing systems that support interactions
among autonomous parties, each an
independent locus of control. Unsur-
prisingly, blockchain promises sup-
port for multiparty interactions in
domains such as government, health
care, manufacturing, and banking.1

Blockchain applications, which
were conceived to upend conventional business mod-
els, rely upon a smart contract: code placed in and exe-
cuted from a blockchain (see “Blockchain and Smart Con-
tracts, Conceptually”). But smart contracts suffer from
major shortcomings that undermine their usefulness
for decentralized applications. Specif ically, smart
contracts are antithetical to autonomy and compatible
only with endogenous applications: those computed
entirely within a blockchain. Thus, smart contracts are
inadequate for real applications (consider health care,

finance, and the Internet of Things) that typically involve
external components.

ARGUMENT: VIOLABILITY,
VERIFIABILITY, VALIDATION
Decentralized applications presuppose modeling interac-
tions between autonomous parties, which calls for a repre-
sentation of contracts. A crucial property of any contract
is verifiability: It should be possible to determine from a
public record of events whether the contract was satisfied
or violated. Verifiability lies at the heart of public seman-
tics.2 Whereas smart contracts seek to prevent violation,
we embrace violability and make verifiability explicit.

Digital Object Identifier 10.1109/MC.2019.2947372
Date of current version: 15 January 2020

We propose a sociotechnical, yet

computational, approach to building

decentralized applications that

accommodates and exploits blockchain

technology. Our architecture incorporates

the notion of a declarative, violable contract

and enables flexible governance based

on formal organizational structures,

correctness verification without obstructing

autonomy, and a basis for trust.

RESEARCH FEATURE

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

Verifiability requires a formal repre-
sentation of a contract to computation-
ally evaluate a history of attestations.
Validation, ensuring that stakeholder
requirements are correctly captured,
presumes a high-level language that
provides relevant abstractions.

Accordingly, we formulate a per-
spective on sociotechnical systems
whose salient features are 1) an auton-
omy-preserving representation for
violable contracts, 2) guaranteed veri-
fiability through formal semantics in-
terpreted over blockchain, 3) high-level
representation to facilitate validation,

and 4) an architecture of organizations
that balances flexibility and rigor to en-
gender trust.

SCOPE AND CONTRIBUTIONS
We focus on sociotechnical challenges,
deemphasizi ng concer ns such as
confidentiality and performance, and
contribute

 › an analysis of the shortcomings
of smart contracts through the
lens of decentralized applications

 › a formulation of the research
challenges to address those

shortcomings from a sociotech-
nical perspective

 › a description of the key elements
of a possible solution.

SOCIOTECHNICAL
LIMITATIONS OF SMART
CONTRACTS
Let’s consider the hazards of smart con-
tracts. The Decentralized Autonomous
Organization (DAO) fiasco16 is telling.
The DAO, a venture-funding entity cre-
ated as a smart contract on the Ethe-
reum blockchain, was hacked to the
tune of US$50 million by exploiting

BLOCKCHAIN AND SMART CONTRACTS,
CONCEPTUALLY

Notionally, a blockchain is an immutable dis-
tributed ledger, as epitomized by Bitcoin.S1

Blockchain solves the longstanding distributed-
computing problem of achieving immutable
consensus on the state of the system, despite
failures and malice. Here, immutability relies upon
consensus, which depends on a majority of the
computing power on the network remaining in the
hands of benevolent (that is, protocol-following)
parties. Specifically, blockchain determines a con-
sensus order in which events have occurred.

The idea of a smart contractS2 predates
blockchain. A smart contract specifies conditions
programmatically so that it automatically executes
when the input data meet the stated terms. A vend-
ing machine is characterized as a smart contract
that takes in coins and outputs a product. Smart
contracts could potentially be attached to any real-
world object, for example, a house for rent.S3 In
blockchain applications, a smart contract is digitally

signed by its creator and placed on a blockchain.
Since a smart contract is public, the parties wishing
to exercise it can know in advance how it will
function, provided that they can understand the
associated program. Hence, smart contracts can
enable commerce in an open setting. Bitcoin trans-
actions are simple smart contracts. Bitcoin’s limited
language facilitates little more than verifying
signatures. But subsequent approaches, including
Ethereum, ambitiously support Turing-complete
languages for smart contracts that initiate transac-
tions based on observed events.

References
 S1. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system,” Bitcoin. Accessed on: Nov. 6, 2019. [Online]. Avail-
able: https://bitcoin.org/bitcoin.pdf

 S2. Wikipedia, “Smart contract.” Accessed on: June 18, 2018. [On-
line]. Available: https://en.wikipedia.org/wiki/Smart_contract

 S3. Slock.it. Accessed on: Nov. 6, 2019. [Online]. Available:
https://slock.it

 J A N U A R Y 2 0 2 0 55

a flaw in the smart contract and the
underlying Ethereum virtual machine.
The specific f law does not concern
us since it is merely a symptom of an
imperfect architecture that confuses
verifiability with inviolability.

Interestingly, the hack was rem-
edied by causing a fork in the block-
chain. Specifically, several Ethereum
users colluded to extend a prior block to
exclude the undesirable transactions,
which resulted in discarding legitimate
activities, as well. (Naturally, this effort
produced two competing versions
of Ethereum, although the details of
their history don’t concern us here.) Of
course, a fork was possible only because
a large fraction of the active partici-
pants agreed to it. A minority would
not be able to take such remedies.

For something small like the DAO,
it may be appropriate to discard sev-
eral days of legitimate transactions to
avert a loss of US$50 million. But what
would the tradeoffs be in practice?
Would it be fair to discard an hour’s
worth of real commerce at the national
scale to save US$50 million? We sus-
pect not. A patient attacker may suc-
ceed by causing only small amounts
of harm at a time, for which detection
and reversion are infeasible.

The success of the fork, however,
undermines the very point that moti-
vated blockchains, that is, their immu-
tability. The episode reinforces the main
claim of this article: There is necessarily
a social underpinning to any approach
that has pretensions to decentralization.
On permissioned blockchains, such as
Hyperledger,17 where membership is
controlled, the risk is presumably bet-
ter contained. However, errors in smart
contracts are unavoidable, and undesir-
able outcomes can be difficult to reverse.

In essence, our main choice is wheth-
er to 1) keep the social component ad

hoc, hidden, and second class, as exist-
ing approaches do, or 2) make the social
component principled, explicit, and
computational, as we propose to do.
We now discuss three major shortcom-
ings in the current conception of smart
contracts and formulate questions that
guide our investigation.

Lack of control
The independence of the participants
with respect to their beliefs and actions
is a crucial aspect of decentralization.
Blockchain supports independence
with regard to private beliefs, since con-
sensus applies only to shared events,
with such agreement being essential
for achieving interoperation. However,
smart contracts fail in terms of inde-
pendence for actions. They automate
processing, which removes control from
the participants. A smart contract, once
launched, cannot be overridden. Indeed,
we cannot even contemplate overriding
a smart contract because it executes
automatically. How can we reconcile
blockchain with participant autonomy?

Lack of understanding
Since the meaning of a smart con-
tract is hidden in a procedure, which
may or may not be public, one cannot
readily determine whether the agree-
ment meets the stakeholders’ require-
ments and how it may be exercised by
a participant. Since blockchains are
immutable, any mistake in captur-
ing requirements cannot be corrected
without violating the immutability.
Therefore, a powerful language for
smart contracts placed on a blockchain
poses a huge risk, as the DAO incident
illustrates. Instead, we need a language
in which we can capture the essential
stakeholder requirements directly. To
enhance users’ confidence that it would
capture requirements correctly, such a

language would offer constructs close
to the stakeholders’ conception and be
limited in its expressiveness. How can
we develop a contract language with an
appropriate semantics?

Lack of social meaning
Any software application involves con-
tact with the real world. In rare cases,
the real world can be abstracted out. Bit-
coin, being designed for cryptocurrency,
is endogenous—bitcoins exist entirely
within the blockchain, which can, there-
fore, ensure their integrity. Bitcoin is an
atypical blockchain application since
it excludes considerations other than
transactions involving bitcoins.

More commonly, applications such
as health care and commerce are
entwined with the real world, both
social and technical. For example, in
health care, surgical equipment may
fail, or a patient may deny having been
adequately informed when giving
consent. For physical and communica-
tion failures, the possible resolutions
lie in the social sphere, as tradition-
ally handled through contracts and
laws. The DAO hack demonstrated
an integrity violation, indicating a
platform failure. In a decentralized
scenario, any response to an interop-
eration failure, including a platform
breakdown, must be social. Indeed,
the response of forking the Ethereum
blockchain was social; it was an ad
hoc and unverifiable response entirely
outside the computational realm.
How can we enhance blockchain with
abstractions to express and compute
social meaning?

ARCHITECTURE:
COMPACTS, GOVERNANCE,
VERIFICATION, AND TRUST
The aforementioned discussion shows
that smart contracts are inadequate for

RESEARCH FEATURE

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

describing interoperation between
autonomous parties. They take over
control of participant decision mak-
ing, are opaque, and omit social mean-
ing. We now describe our architecture
that avoids these shortcomings and
enables natural interactions between
autonomous parties.

Declarative violable contracts
We introduce the term “compact”19 for
our conception of contracts to avoid
confusion with smart and traditional
contracts. In contrast to a smart con-
tract, a compact is not a program exe-
cuted by the blockchain but a specifi-
cation of correct behavior. Contrary
to a traditional contract, a compact
is a computational artifact; its for-
mal semantics determines which
blockchain instances satisfy the com-
pact and which violate it. A compact
would be stored on the blockchain and
unambiguously computed based on
its semantics. Figure 1 illustrates how
compacts differ from smart contracts.
In both settings, principals (social

entities) own and control devices
(technical entities) such as computers,
sensors, and vehicles. Importantly, the
autonomy rests with social entities
that control the technical entities.

A device may originate an event
or relay an occurrence from another
source, such as a human. The block-
chain records the events it receives
from devices that pass any input checks.
Smart contracts provide two functions
in both architectures, and in both, the
input checker is a smart contract. In the
traditional architecture [Figure 1(a)],
the principals additionally specify their
business agreements as smart con-
tracts that carry out actions and record
events on the blockchain. Thus, a smart
contract, once launched, may perform
immutable (modulo rollback and fork-
ing, as in the DAO incident) changes to
the blockchain.

In our proposed architecture [Fig-
ure 1(b)], the principals specify the
compacts corresponding to their busi-
ness agreements. Given the recorded
events, the evaluator—which is a

smart contract by virtue of being a
program on the blockchain—deter-
mines whether a compact is satisfied,
violated, expired, or neither. It informs
the principals about the states of rel-
evant compacts but does not insert
events into the blockchain. Of the
smart-contract functions in Figure 1(a),
the architecture in Figure 1(b) retains
the ability to check (filter) incoming
events and query the blockchain but
does not make changes to the block-
chain based solely on the compacts.

In general, our sociotechnical archi-
tecture splits the necessary functions
between the social and technical parts
(and models the social part computa-
tionally), whereas the traditional archi-
tecture hides the social part and places
all functions in the technical part.
Through our models of compacts, orga-
nizations, and trust, the rest of this arti-
cle demonstrates how the social and
technical parts coexist. For expository
convenience, we place input checking
as a technical function; in the limit, we
could potentially dispense with input
checking and handle all discrepancies
at the social level, although it would
not be an effective approach for many
practical applications.

A compact helps balance autonomy
and correctness. A party to a compact,
in exercising its autonomy, may violate
the compact. For example, a compact
in health care may specify that a hos-
pital prohibits a nurse from sharing a
patient’s data without consent. Yet a
nurse Bob may share patient Charlie’s
data with cardiologist Alice without
Charlie’s consent. From the seman-
tics, given recorded events on the
blockchain, we can compute whether

the compact was satisfied or violated.
Crucially, violation doesn’t entail mal-
feasance. It could be that Charlie had
a medical emergency and was in no

FIGURE 1. The comparison of compacts and smart contracts in a blockchain architecture.
(a) Smart contracts not only check received events but can also insert additional events
into the blockchain. (b) Compacts provide a declarative standard of correctness but do not
insert events into the blockchain.

Agreement as a
Smart Contract

Input Checker
as a Smart
Contract

Recorded
Events

Blockchain

Principals

Devices

C
on

tr
ol

Agreement
as a Compact

Compact-State
Evaluator as a
Smart Contract

Recorded
Events

Blockchain

Principals

Devices

C
on

tr
ol

(a) (b)

Input Checker
as a Smart
Contract

 J A N U A R Y 2 0 2 0 57

condition to give consent. Bob could be
rewarded for saving Charlie’s life.3

Consider another example: a com-
pact for renting apartments to tour-
ists. Such a compact may stipulate
conditions, for example, that regis-
tered guests may not smoke in the
apartment, invite others except chil-
dren younger than 12 years old to stay
overnight, and leave the windows
open during the day. Such prohibitions
are impossible to impose through the
blockchain since they concern exog-
enous events and would be imprac-
tical or risky to enforce physically.
Guests may violate the stipulations in
the compact. The rental agency may
install monitors (for instance, smoke
detectors, face recognizers, and win-
dow sensors) that enable the detec-
tion of violations. Again, from the
semantics and recorded events, we
can compute whether the compact was
satisfied or violated. As before, viola-
tion doesn’t entail malfeasance. First,
sensors aren’t perfect, and a smoke
detector may falsely report smoking,
for example, due to a deep fryer. Sec-
ond, a compact may be overridden by
other imperatives (don’t leave a child
alone), or a principal may discover that
circumstances make it is sensible to
violate an agreement. For example, if
the adult guests are taken to a hospi-
tal, they may hire a babysitter to stay
overnight with their young children
even though doing so is prohibited by
the compact. The foregoing examples
highlight the importance of compacts
in detecting and resolving conf lict-
ing requirements.4

Specifying compacts via norms
To recover understanding and con-
trol and make the social meaning
explicit, we need a declarative repre-
sentation for compacts that captures

the essence of traditional contracts.
A compact would explicitly state what
each concerned party may expect
from another. To this end, the formal
notion of norms, which resembles but
is not identical to “social norms” in
the vernacular, yields promising con-
structs. As motivated by Georg von
Wright, who invented modern deon-
tic logic during the 1950s, this notion
of the norm carries regulatory force.5
Therefore, we propose to represent
each compact as a set of norms. The
specific norms we adopt are commit-
ment, authorization, prohibition, and
power. The following are key features
of norms:

 › Each norm in our representation
is directed from its accountable
party to its party with stand-
ing.6 Thus, a norm always
makes accountability clear.

 › Each norm arises in the context
of an organization. Thus, a norm
makes its scope and adjudicat-
ing jurisdiction clear.

 › Each norm is conditional and
states the logical conditions
under which it goes into force
(antecedent) and under which
it concludes (consequent). The
antecedent and consequent are
definitively evaluated on a ledger,
thereby ensuring clarity on what
state each norm instance is in.

Let’s introduce our specification
language, based on the Custard lan-
guage,7 via an example. We’ll begin
with a routine business agreement,
which may be described by a compact
that constitutes the following com-
mitment. In it, keywords appear in a
sans-serif font. Words beginning with
an uppercase letter are names of event
schemas unless otherwise specified.

Words beginning with a lowercase let-
ter are attributes of the events.

compact Market
role Seller Buyer Marketplace

commitment DiscountQuote from Seller
 to Buyer within Marketplace
 create Quote
 detach (Order and Payment)

 deadline Quote + 10m
 where paymentAmount >=

 0.90 * quotedPrice * quantity
 discharge Shipment deadline
 Payment + 5d

This listing describes a compact,
Market, consisting of one commit-
ment schema labeled DiscountQuote,
which is directed from a role Seller to a
role Buyer. At runtime, these roles are
played by specific principals, for exam-
ple, individuals Meryl and Custer.

 › An instance of DiscountQuote is
created when an instance of the
Quote event occurs, with Quote
being the event expression given
under create. The attributes of
Quote, such as quoteID, item, and
quotedPrice, are the information
relevant to the creation of this
commitment. Meryl alone can
commit herself.

 › A (created) instance of Dis-
countQuote is detached when
instances of Order and Payment
for a matching quoteID occur
within 10 min of the matching
Quote, and paymentAmount is at
least 90% of the cost of the items
in Order (quotedPrice × quan-
tity). Here, Custer would bring
about those events, although,
in general, a commitment could
be detached through anyone’s
actions.

RESEARCH FEATURE

58 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

 › An instance of DiscountQuote
expires if a matching Order and
Payment do not occur within
10 min of the matching Quote.

 › If Shipment for the matching
quoteID occurs (and, if there is a
matching instance of Payment,
within five days of Payment),
the commitment is discharged.
Presumably, Meryl or one of her
business partners would bring
about this event.

 › If the commitment is detached
but Shipment for the matching
quoteID does not occur within
five days of Payment, the com-
mitment is violated. Now, Custer
can hold Meryl to account.

We illustrate the previous health-
care example. For brevity, we focus on
a prohibition norm and assume the
relevant events: Employment, when a
Nurse is hired by a Hospital; DataAccess,
when a Nurse accesses a Patient’s data;
and CopyData, when a Nurse shares a
Patient’s data with someone. The attri-
butes of these events express relevant
information, including the Patient’s
identity. The compact specifies a prohibi-
tion on a Nurse by a Hospital that is cre-
ated when the Nurse is employed. When
the Nurse accesses a Patient’s data, the
Nurse may not copy that data to anyone
outside of the Patient’s care team.

compact PatientData
role Patient Hospital Nurse
 MedicalSystem CareTeam

 prohibition NoSharing on Nurse by
 Hospital within MedicalSystem
 create Employment /* in Hospital*/
 detach DataAccess /* about Patient*/
 violate CopyData /*to receiver*/
 where receiver not in CareTeam

 of Patient /*receiver is an outsider*/

Computing the norm lifecycle
The declarative specification of com-
pacts yields significant benefits over
smart contracts. First, the language
of norms is geared toward expressing
agreements between autonomous prin-
cipals, and norms can be reliably identi-
fied from real-life natural-language con-
tracts.8 Two, the language is amenable to
formal reasoning since it is simpler than
a traditional programming language.
Three, specifications in the language can
be automatically evaluated, meaning
that the state of any norm can be unam-
biguously determined from the norm’s
expression and the events recorded in
any snapshot of the blockchain.

Specifically, a blockchain is natu-
rally modeled as a sequence of events
with timestamps. From these events,
we can determine what norm instances
have been created and which of them
have transitioned to other relevant
states. For example, we might observe
that Meryl has produced instances
of Quote for 10 prospective buyers, of
whom Custer alone has responded
with matching instances of Order and
Payment. From the matching Shipment
event, we can conclude that Meryl dis-
charged her commitment to Custer.

Alternatively, if Meryl failed to bring
about a matching Shipment event, we
would conclude that Meryl violated her
commitment to Custer. Importantly,
we can compute abstract events, such
as when a norm instance transitions in
its lifecycle. For example, the violation
of a commitment is itself an event that
we can effectively compute. That event
could be referenced from other norms,
which is essential to achieving gover-
nance, as discussed next.

Organizations and governance
Consensus on what has transpired can
support decentralized applications by

averting disputes about the public facts.
But as envisioned here, the principals
may, nevertheless, violate applicable
compacts. Decentralized applications
cannot avoid governance; the choice is
1) leave governance ad hoc and manual
or 2) make it formal and computational,
as we envision. In our conception, every
decentralized application is associated
with an organization, which serves as
the context of its defining compact.
Such organizations are seen on today’s
blockchains, for instance, as channels
on Hyperledger Fabric. However, cur-
rent practice doesn’t model the orga-
nization itself. The ill-fated DAO was
modeled procedurally as a smart con-
tract, but that is not satisfactory since,
even if it were correct, its behavior
would not have been comprehensible
or modifiable.

Today’s approaches lack a compu-
tational model for such organizations.
Consequently, there is no precise char-
acterization of what an organization
can expect from its members and vice
versa. As a result, governance in block-
chain applications remains ad hoc. To
address this limitation, we propose
a three-pronged approach. First, we
model an organization as a principal on
par with any other, for instance, an indi-
vidual. An organization may feature as
a subject or object of another norm. Sec-
ond, an organization provides an orga-
nizational context for each norm that
arises, as described in Singh.9 In the
previous listing, the Marketplace role
provides the context for the Seller and
Buyer’s dealings. The Marketplace role
would be adopted by a concrete orga-
nization, such as the Artsplosure arts
fair in Raleigh, North Carolina, within
whose scope Meryl and Custer would
interact. The context can embody juris-
dictional weight and serve as an adju-
dicating authority for disputes. The

 J A N U A R Y 2 0 2 0 59

context can, thus, help mitigate viola-
tions of the norms in a compact.10

The Marketplace serves as the con-
text for the DiscountQuote commit-
ment and the MedicalSystem as the
context for the NoSharing prohibition.
The organizational context is captured
as a role in its own right. Let us extend
the earlier examples to illustrate how
compacts can handle violations. Mar-
ketplace makes a commitment to Buyer
that if Seller violates the DiscountQuote
commitment, it will step in and provide
a refund within two days.

commitment Compensation Marketplace
 to Buyer within Marketplace
create Quote /* when Seller creates a
 Quote */
detach violated(DiscountQuote)
discharge Refund deadline violated
 (DiscountQuote) + 2d
 where refundAmount =

 paymentAmount

Similarly, MedicalSystem, as the
context of the NoSharing prohibi-
tion norm, commits to Patient that it
will investigate any violations of the
NoSharing prohibition within 30 days.

commitment SanctionC from MedicalSystem
 to Patient within MedicalSystem
create Enroll /* when Patient enrolls */
detach violated(NoSharing)
 /* the Patient ID match is implicit */
discharge Investigation deadline
 violated(NoSharing) + 30d

Now, when Bob reveals Charlie’s
data without consent, the medical
system’s commitment to Charlie is
activated. The medical system can
satisfy its commitment by conduct-
ing its investigation, upon which it
may exonerate and reward Bob or
penalize him.

Third, the organization is specified
through a compact between itself and
its members. This compact stipulates
precisely what expectations an orga-
nization and its members may have of
each other. Membership in the organi-
zation provides identity for all purposes
within that organization. Enrollment as
member may rely upon another organi-
zation that the first one is part of, where
the second provides its identity, and so
on. The nesting would ordinarily termi-
nate at a self-contained organization
(as in Bitcoin) or a real society (as in the
banking industry, where regulations
require a national identification for
each depositor). Certain organizations
(for example, social services for drug
users) may be self-contained to protect
the anonymity of the people they help.

Programming and
verifying interactions
Achieving coordination is nontrivial
in decentralized applications. Existing
approaches hardcode coordination in
software implementations. Doing so
reduces flexibility in interoperation
and hides essential details, thereby
preventing the composition of com-
pacts. Blockchains provide coordina-
tion abstractions. For example, Hyper-
ledger provides the channel construct:
a subnet on which only participants
can access information. A channel sup-
ports confidentiality and helps decou-
ple participants by hiding irrelevant
information. To enable interoperation,
we must formalize how an interaction
proceeds, not just who participates and
what data they exchange. Thus, we
face the challenges of how to specify a
channel and produce software to inter-
act through a channel.

An effective solution would spec-
i f y coord i nat ion decla rat ively i n
conjunction with compacts. Doing

so requires not only formal semantics
for data11 but also models of causality
and integrity constraints on the interac-
tions underlying the data.12 In essence,
we would formally specify an inter-
action protocol for each compact that
would ensure that the compact could
be flexibly enacted, meaning that the
protocol would not foreclose any enact-
ment that remained acceptable with
respect to the pact. Specifically, the pro-
tocol includes a way for each lifecycle
state of each norm (including states of
satisfaction and violation) in the com-
pact to be realized. To capture the intu-
ition that a decentralized application is
specified via a compact, we would need
to generate protocols automatically
from a compact such that each involved
only the relevant principals. The inter-
actions in the protocol would naturally
be endowed with a public semantics,2 a
major benefit of a shared ledger.

The input checker component, real-
ized as a smart contract, in Figure 1,
helps ensure the integrity of the infor-
mation in the blockchain. Thanks to
our approach being based on com-
pacts, we can produce the checker’s
specification from a compact, and
t he speci f icat ion ca n capt u re, for
each principal, the legal actions with
respect to the compacts in which that
principal participates.

Meaningful trust and reputation
The principals’ autonomy in the real
world suggests that they would need
to trust one another to interoperate.
The possibility of a compact’s viola-
tion creates a vulnerability, a state
that constitutes a hallmark of trust.13
Blockchain obviates the need for trust
only to the extent that the gover-
nance structures provide assurance
against malfeasance by another and
the structures themselves are trusted.

RESEARCH FEATURE

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

The compensation example illustrates
how to achieve coherent interactions
without a central authority.6,14,15 Gov-
ernance is a prerequisite for account-
ability and trust, which are means
with which to balance autonomy and
correctness.

Blockchain can serve as a platform for
promoting meaningful trust. First, quite
naturally, the states of relevant compacts
provide an opportunity to make eviden-
tial trust judgments. The violation and
satisfaction of a norm would mean a
lowering and raising, respectively, of the
trust in the concerned party with respect
to similar norms. Second, explicit gov-
ernance engenders trust by assuring
principals that malefactors would be
sanctioned. A party may violate a com-
pact by failing to satisfy its conditions;
but if it does so, its violation would be
determinable from the blockchain. The
aggrieved party19 may file a complaint,
which would also be recorded in the
blockchain, thereby triggering a gov-
ernance compact. Third, governance
provides a basis for capturing the trust
assumptions by formalizing what counts

as evidence for what norm. Consen-
sus on blockchain concerns the events
observed. But armed with a governance
structure, we can encapsulate norm-rel-
evant evidence within an event to reflect
the application meaning. For example, a
norm may rely upon a patient having a
benign tumor. But in medical practice,20
whether a tumor is benign is a fact that
is established by the tumor board of the
hospital. That is, the tumor board’s asser-
tion counts as the tumor being benign.

PROTOTYPE OVER R3 CORDA
Our compacts-based approach is read-
ily realized on existing blockchains. To
illustrate our method, we implemented
a proof-of-concept prototype on R3
Corda.21 The relevant programming
abstractions are as follows: Corda is a
network of nodes, each of which hosts a
relational database. Each party is a busi-
ness entity and runs a node. A workflow
is a program that composes database
transactions and specifies the parties
to whom the agreement is visible. By
invoking a workflow, a party triggers
the transactions in the workflow, which

causes updates to its own database
and those of the other parties to whom
the matter is visible. An RPCclient is a
means by which a party may invoke a
workflow programmatically.

Our prototype maps the principal
and event constructs to Corda’s party
and transaction, respectively. It specifies
a workflow for each event and encodes
agents as RPCclients that invoke the
workflows to insert events into the data-
bases of the appropriate parties. The pro-
totype adapts our norms compiler7 to
generate queries for the lifecycle states
of each norm. These queries execute on
a node database. Additional details are
in the supplementary material.

T he emergence of blockchain
as a platform for decentralized
applications exposes new usage

scenarios that bring sociotechnical con-
siderations into computing, specifically,
in terms of expectations regarding gov-
ernance (organizations, norms, and pri-
vacy) and trust. Table 1 highlights how
our architecture of compacts contrasts
with existing approaches. In the com-
pacts approach, the blockchain declar-
atively represents contractual rela-
tionships; maintains relevant events;
enables a principal to violate a compact
if it so desires; computes whether the
compact is satisfied, violated, expired,
or pending; and activates the applicable
governance compacts, providing a basis
for trust.

In this manner, we envision compu-
tational representation and reasoning
about sociotechnical considerations.
Specifically, we advocate developing app-
roaches for programming interactions
using blockchain that build on and sup-
port effective governance and trust. In
this way, compacts differ from the notion
of Ricardian contracts,22 which associate

TABLE 1. The differences between compacts
and traditional and smart contracts.

Traditional contracts Smart contracts Compacts

Specification Text Procedure Formal, declarative

Automation None Full Compliance checking

Principals’ control Complete None Complete

Venue External Within blockchain Recorded on blockchain

Trust model Hidden Hardcoded Explicit

Social meaning Informal None Formal

Standard of correctness Informal legal Whatever executes Formal legal

Scope Open but ad hoc Closed Sociotechnical

 J A N U A R Y 2 0 2 0 61

a textual description with a computa-
tional one, thereby creating two compet-
ing standards of correctness: one that is
applied computationally and one that
is understood by people. In our approach,
there is only one standard. It is high level
(understandable by people) and computa-
tional (executable by machines).

The compacts-based architecture
yields valuable research opportuni-
ties concerning how principals 1) pre-
serve autonomy through being able
to violate a compact and verify each
other’s compliance, 2) deal with events
in the real business and social worlds
that are external to the blockchain, 3)
maximize flexibility by having their
interactions minimally constrained
to interoperate successfully, and most
importantly, 4) build and realize gov-
ernance structures to deal with auton-
omy and exceptions.

ACKNOWLEDGMENTS
The work of Munindar P. Singh was funded
by an IBM Faculty Award, and the work of
Amit K. Chopra was funded by the Engi-
neering and Physical Sciences Research
Council [under grant EP/N027965/1
(Turtles)]. We thank Alessandra Scafuro
and Samuel Christie for helpful discus-
sions and the anonymous reviewers for
their valuable comments.

REFERENCES
1. D. Magazzeni, P. McBurney, and

W. Nash, “Validation and verification
of smart contracts,” Computer, vol.
50, no. 9, pp. 50–57, 2017. doi: 10.1109/
MC.2017.3571045 .

2. M. Singh, “Agent communica-
tion languages,” Computer, vol.
31, no. 12, pp. 40–47, 1998. doi:
10.1109/2.735849.

3. R. Koppel, S. Smith, J. Blythe, and V.
Kothari, “Workarounds to computer
access in healthcare organizations,”

in Driving Quality in Informatics:
Fulfilling the Promise, K. Courtney,
A. Kuo, and O. Shabestari, Eds.
Amsterdam, The Netherlands: IOS
Press, 2015, pp. 215–220.

4. J. dos Santos, J. de Oliveira-Zahn, E. Sil-
vestre, V. da Silva, and W. Vasconcelos,
“Detection and resolution of norma-
tive conflicts in multi-agent systems,”
Autonom. Agents Multi-Agent Syst.,
vol. 31, no. 6, pp. 1236–1282, 2017. doi:
10.1007/s10458-017-9362-z.

5. G. Von Wright, “Deontic logic,” Ratio
Juris, vol. 12, no. 1, pp. 26–38, 1999.
doi: 10.1111/1467-9337.00106.

6. M. Singh, “Norms as a basis for
governing sociotechnical systems,”
ACM Trans. Intelligent Syst. Technol.,
vol. 5, no. 1, pp. 21:1–21:23, 2013. doi:
10.1145/2542182.2542203

7. A. Chopra and M. Singh, “Custard:
Computing norm states over infor-
mation stores,” in Proc. Int. Conf.
Autonomous Agents and Multiagent
Systems, 2016, pp. 1096–1105.

8. X. Gao and M. Singh, “Extracting
normative relationships from busi-
ness contracts,” in Proc. Int. Conf.
Autonomous Agents and Multiagent
Systems, 2014, pp. 101–108.

9. M. Singh, “An ontology for com-
mitments in multiagent sys-
tems,” Artificial Intell. Law, vol.
7, no. 1, pp. 97–113, 1999. doi:
10.1023/A:1008319631231.

10. M. Singh, A. Chopra, and N. Desai,
“Commitment-based service-ori-
ented architecture,” Computer,
vol. 42, no. 11, pp. 72–79, 2009. doi:
10.1109/MC.2009.347.

11. A. Third and J. Domingue,
“Linked data indexing of dis-
tributed ledgers,” in Proc. World
Wide Web Companion, 2017, pp.
1431–1436.

12. M. Singh, “Semantics and verifica-
tion of information-based protocols,”
in Proc. Int. Conf. Autonomous Agents
and Multiagent Systems, 2012, pp.
1149–1156.

13. C. Castelfranchi and R. Falcone, Trust
Theory. Hoboken, NJ: Wiley, 2010.

14. J. Pitt and A. Artikis, “The open
agent society,” Artificial Intell. Law,
vol. 23, no. 3, pp. 241–270, 2015. doi:
10.1007/s10506-015-9173-y.

15. C. Frantz, M. Purvis, M. Nowost-
awski, and B. Savarimuthu,
“nADICO: A nested grammar of
institutions,” in Proc. Int. Conf.

ABOUT THE AUTHORS
MUNINDAR P. SINGH is a professor of computer science and codirector of
the Science of Security Lablet at North Carolina State University, Raleigh. His
research interests include the engineering and governance of sociotechnical
systems, including blockchain applications in automating financial transac-
tions. Singh received a Ph.D. in computer sciences from The University of Texas
at Austin. He is a former editor-in-chief of IEEE Internet Computing and ACM
Transactions on Internet Technology. He is a Fellow of the IEEE and the Asso-
ciation for the Advancement of Artificial Intelligence. Contact him at singh@
ncsu.edu.

AMIT K. CHOPRA is a senior lecturer in the School of Computing and Com-
munications at Lancaster University, United Kingdom. His research interests
span sociotechnical systems, multiagent systems, and decentralized systems.
Chopra received a Ph.D. in computer science from North Carolina State Univer-
sity, Raleigh. Contact him at amit.chopra@lancaster.ac.uk.

RESEARCH FEATURE

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

Principles and Practice of Multi-agent
Systems, LNCS, vol. 8291. New York:
Springer-Verlag, 2013, pp. 429–436.

 16. V. Buterin, “Critical update re: DAO
vulnerability,” Ethereum, June 17,
2016. [Online]. Available: https://
blog.ethereum.org/2016/06/17/
critical-update-re-dao-vulnerability/

 17. Hyperledger. Accessed on: Nov. 6,
2019. [Online]. Available: http://
hyperledger.org

 18. “Compact” in Longman Dictionary
of Contemporary English. Hoboken,

NJ: Pearson English Language
Teaching. Accessed on: Nov. 26,
2019. [Online]. Available: https://
www.ldoceonline.com/
dictionary/compact

 19. “Aggrieved party,” TheLawDictionary
.org. Accessed on: Nov. 26, 2019.
[Online]. Available: http://thelaw
dictionary.org/aggrieved-party/

 20. Office of the Assistant Secretary for
Planning and Evaluation. (2010). The
importance of radiology and pathology
communication in the diagnosis and

staging of cancer: Mammography as
a case study. U.S. Dept. Health and
Human Services. Washington, D.C.
[Online]. Available: https://aspe.hhs
.gov/system/files/pdf/139361/index.pdf

 21. R3. Accessed on: Nov. 6, 2019. [Online].
Available: https://www.r3.com/

 22. I. Grigg, “The Ricardian contract.”
in Proc. 1st IEEE Int. Workshop Elec-
tronic Contracting, 2004, pp. 25–31.
Accessed on: Nov. 6, 2019. [Online].
Available: https://iang.org/papers/
ricardian_contract.html

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call
 for Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.com
puter.o

rg/perv
asive

Digital Object Identifier 10.1109/MC.2019.2959871

