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B lockchain technology has 
brought newfound prom-
inence to the challenges 
of building decentralized 

systems, which we understand quite 
literally as systems with no distin-
guished locus of control. As such, 
blockchain is a natural fit for build-
ing systems that support interactions 
among autonomous parties, each an 
independent locus of control. Unsur-
prisingly, blockchain promises sup-
port for multiparty interactions in 
domains such as government, health 
care, manufacturing, and banking.1

Blockchain applications, which 
were conceived to upend conventional business mod-
els, rely upon a smart contract: code placed in and exe-
cuted from a blockchain (see “Blockchain and Smart Con-
tracts, Conceptually”). But smart contracts suffer from 
major shortcomings that undermine their usefulness 
for decentralized applications. Specif ically, smart 
contracts are antithetical to autonomy and compatible 
only with endogenous applications: those computed 
entirely within a blockchain. Thus, smart contracts are 
inadequate for real applications (consider health care, 

finance, and the Internet of Things) that typically involve 
external components.

ARGUMENT: VIOLABILITY,  
VERIFIABILITY, VALIDATION
Decentralized applications presuppose modeling interac-
tions between autonomous parties, which calls for a repre-
sentation of contracts. A crucial property of any contract 
is verifiability: It should be possible to determine from a 
public record of events whether the contract was satisfied 
or violated. Verifiability lies at the heart of public seman-
tics.2 Whereas smart contracts seek to prevent violation, 
we embrace violability and make verifiability explicit. 
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We propose a sociotechnical, yet 

computational, approach to building 

decentralized applications that 

accommodates and exploits blockchain 

technology. Our architecture incorporates 

the notion of a declarative, violable contract 

and enables flexible governance based 

on formal organizational structures, 

correctness verification without obstructing 

autonomy, and a basis for trust.
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Verifiability requires a formal repre-
sentation of a contract to computation-
ally evaluate a history of attestations. 
Validation, ensuring that stakeholder 
requirements are correctly captured, 
presumes a high-level language that 
provides relevant abstractions.

Accordingly, we formulate a per-
spective on sociotechnical systems 
whose salient features are 1) an auton-
omy-preserving representation for 
violable contracts, 2) guaranteed veri-
fiability through formal semantics in-
terpreted over blockchain, 3) high-level 
representation to facilitate validation, 

and 4) an architecture of organizations 
that balances flexibility and rigor to en-
gender trust.

SCOPE AND CONTRIBUTIONS
We focus on sociotechnical challenges, 
deemphasizi ng concer ns such as 
confidentiality and performance, and 
contribute

 › an analysis of the shortcomings 
of smart contracts through the 
lens of decentralized applications

 › a formulation of the research 
challenges to address those 

shortcomings from a sociotech-
nical perspective

 › a description of the key elements 
of a possible solution.

SOCIOTECHNICAL 
LIMITATIONS OF SMART 
CONTRACTS
Let’s consider the hazards of smart con-
tracts. The Decentralized Autonomous 
Organization (DAO) fiasco16 is telling. 
The DAO, a venture-funding entity cre-
ated as a smart contract on the Ethe-
reum blockchain, was hacked to the 
tune of US$50 million by exploiting 

BLOCKCHAIN AND SMART CONTRACTS, 
CONCEPTUALLY

Notionally, a blockchain is an immutable dis-
tributed ledger, as epitomized by Bitcoin.S1 

Blockchain solves the longstanding distributed- 
computing problem of achieving immutable 
consensus on the state of the system, despite 
failures and malice. Here, immutability relies upon 
consensus, which depends on a majority of the 
computing power on the network remaining in the 
hands of benevolent (that is, protocol-following) 
parties. Specifically, blockchain determines a con-
sensus order in which events have occurred.

The idea of a smart contractS2 predates 
blockchain. A smart contract specifies conditions 
programmatically so that it automatically executes 
when the input data meet the stated terms. A vend-
ing machine is characterized as a smart contract 
that takes in coins and outputs a product. Smart 
contracts could potentially be attached to any real- 
world object, for example, a house for rent.S3 In 
blockchain applications, a smart contract is digitally 

signed by its creator and placed on a blockchain. 
Since a smart contract is public, the parties wishing 
to exercise it can know in advance how it will 
function, provided that they can understand the 
associated program. Hence, smart contracts can 
enable commerce in an open setting. Bitcoin trans-
actions are simple smart contracts. Bitcoin’s limited 
language facilitates little more than verifying 
signatures. But subsequent approaches, including 
Ethereum, ambitiously support Turing-complete 
languages for smart contracts that initiate transac-
tions based on observed events.
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a flaw in the smart contract and the 
underlying Ethereum virtual machine. 
The specific f law does not concern 
us since it is merely a symptom of an 
imperfect architecture that confuses 
verifiability with inviolability.

Interestingly, the hack was rem-
edied by causing a fork in the block-
chain. Specifically, several Ethereum 
users colluded to extend a prior block to 
exclude the undesirable transactions, 
which resulted in discarding legitimate 
activities, as well. (Naturally, this effort 
produced two competing versions 
of Ethereum, although the details of 
their history don’t concern us here.) Of 
course, a fork was possible only because 
a large fraction of the active partici-
pants agreed to it. A minority would 
not be able to take such remedies.

For something small like the DAO, 
it may be appropriate to discard sev-
eral days of legitimate transactions to 
avert a loss of US$50 million. But what 
would the tradeoffs be in practice? 
Would it be fair to discard an hour’s 
worth of real commerce at the national 
scale to save US$50 million? We sus-
pect not. A patient attacker may suc-
ceed by causing only small amounts 
of harm at a time, for which detection 
and reversion are infeasible.

The success of the fork, however, 
undermines the very point that moti-
vated blockchains, that is, their immu-
tability. The episode reinforces the main 
claim of this article: There is necessarily 
a social underpinning to any approach 
that has pretensions to decentralization. 
On permissioned blockchains, such as 
Hyperledger,17 where membership is 
controlled, the risk is presumably bet-
ter contained. However, errors in smart 
contracts are unavoidable, and undesir-
able outcomes can be difficult to reverse.

In essence, our main choice is wheth-
er to 1) keep the social component ad 

hoc, hidden, and second class, as exist-
ing approaches do, or 2) make the social 
component principled, explicit, and 
computational, as we propose to do. 
We now discuss three major shortcom-
ings in the current conception of smart 
contracts and formulate questions that 
guide our investigation.

Lack of control
The independence of the participants 
with respect to their beliefs and actions 
is a crucial aspect of decentralization. 
Blockchain supports independence 
with regard to private beliefs, since con-
sensus applies only to shared events, 
with such agreement being essential 
for achieving interoperation. However, 
smart contracts fail in terms of inde-
pendence for actions. They automate 
processing, which removes control from 
the participants. A smart contract, once 
launched, cannot be overridden. Indeed, 
we cannot even contemplate overriding 
a smart contract because it executes 
automatically. How can we reconcile 
blockchain with participant autonomy?

Lack of understanding
Since the meaning of a smart con-
tract is hidden in a procedure, which 
may or may not be public, one cannot 
readily determine whether the agree-
ment meets the stakeholders’ require-
ments and how it may be exercised by 
a participant. Since blockchains are 
immutable, any mistake in captur-
ing requirements cannot be corrected 
without violating the immutability. 
Therefore, a powerful language for 
smart contracts placed on a blockchain 
poses a huge risk, as the DAO incident 
illustrates. Instead, we need a language 
in which we can capture the essential 
stakeholder requirements directly. To 
enhance users’ confidence that it would 
capture requirements correctly, such a 

language would offer constructs close 
to the stakeholders’ conception and be 
limited in its expressiveness. How can 
we develop a contract language with an 
appropriate semantics?

Lack of social meaning
Any software application involves con-
tact with the real world. In rare cases, 
the real world can be abstracted out. Bit-
coin, being designed for cryptocurrency, 
is endogenous—bitcoins exist entirely 
within the blockchain, which can, there-
fore, ensure their integrity. Bitcoin is an 
atypical blockchain application since 
it excludes considerations other than 
transactions involving bitcoins.

More commonly, applications such 
as health care and commerce are 
entwined with the real world, both 
social and technical. For example, in 
health care, surgical equipment may 
fail, or a patient may deny having been 
adequately informed when giving 
consent. For physical and communica-
tion failures, the possible resolutions 
lie in the social sphere, as tradition-
ally handled through contracts and 
laws. The DAO hack demonstrated 
an integrity violation, indicating a 
platform failure. In a decentralized 
scenario, any response to an interop-
eration failure, including a platform 
breakdown, must be social. Indeed, 
the response of forking the Ethereum 
blockchain was social; it was an ad 
hoc and unverifiable response entirely 
outside the computational realm. 
How can we enhance blockchain with 
abstractions to express and compute 
social meaning?

ARCHITECTURE: 
COMPACTS, GOVERNANCE, 
VERIFICATION, AND TRUST
The aforementioned discussion shows 
that smart contracts are inadequate for 
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describing interoperation between 
autonomous parties. They take over 
control of participant decision mak-
ing, are opaque, and omit social mean-
ing. We now describe our architecture 
that avoids these shortcomings and 
enables natural interactions between 
autonomous parties.

Declarative violable contracts
We introduce the term “compact”19 for 
our conception of contracts to avoid 
confusion with smart and traditional 
contracts. In contrast to a smart con-
tract, a compact is not a program exe-
cuted by the blockchain but a specifi-
cation of correct behavior. Contrary 
to a traditional contract, a compact 
is a computational artifact; its for-
mal semantics determines which 
blockchain instances satisfy the com-
pact and which violate it. A compact 
would be stored on the blockchain and 
unambiguously computed based on 
its semantics. Figure 1 illustrates how 
compacts differ from smart contracts. 
In both settings, principals (social 

entities) own and control devices 
(technical entities) such as computers, 
sensors, and vehicles. Importantly, the 
autonomy rests with social entities 
that control the technical entities.

A device may originate an event 
or relay an occurrence from another 
source, such as a human. The block-
chain records the events it receives 
from devices that pass any input checks. 
Smart contracts provide two functions 
in both architectures, and in both, the 
input checker is a smart contract. In the 
traditional architecture [Figure 1(a)], 
the principals additionally specify their 
business agreements as smart con-
tracts that carry out actions and record 
events on the blockchain. Thus, a smart 
contract, once launched, may perform 
immutable (modulo rollback and fork-
ing, as in the DAO incident) changes to 
the blockchain.

In our proposed architecture [Fig-
ure 1(b)], the principals specify the 
compacts corresponding to their busi-
ness agreements. Given the recorded 
events, the evaluator—which is a 

smart contract by virtue of being a 
program on the blockchain—deter-
mines whether a compact is satisfied, 
violated, expired, or neither. It informs 
the principals about the states of rel-
evant compacts but does not insert 
events into the blockchain. Of the 
smart-contract functions in Figure 1(a), 
the architecture in Figure  1(b) retains 
the ability to check (filter) incoming 
events and query the blockchain but 
does not make changes to the block-
chain based solely on the compacts.

In general, our sociotechnical archi-
tecture splits the necessary functions 
between the social and technical parts 
(and models the social part computa-
tionally), whereas the traditional archi-
tecture hides the social part and places 
all functions in the technical part. 
Through our models of compacts, orga-
nizations, and trust, the rest of this arti-
cle demonstrates how the social and 
technical parts coexist. For expository 
convenience, we place input checking 
as a technical function; in the limit, we 
could potentially dispense with input 
checking and handle all discrepancies 
at the social level, although it would 
not be an effective approach for many 
practical applications.

A compact helps balance autonomy 
and correctness. A party to a compact, 
in exercising its autonomy, may violate 
the compact. For example, a compact 
in health care may specify that a hos-
pital prohibits a nurse from sharing a 
patient’s data without consent. Yet a 
nurse Bob may share patient Charlie’s 
data with cardiologist Alice without 
Charlie’s consent. From the seman-
tics, given recorded events on the 
blockchain, we can compute whether 

the compact was satisfied or violated. 
Crucially, violation doesn’t entail mal-
feasance. It could be that Charlie had 
a medical emergency and was in no 

FIGURE 1. The comparison of compacts and smart contracts in a blockchain architecture. 
(a) Smart contracts not only check received events but can also insert additional events 
into the blockchain. (b) Compacts provide a declarative standard of correctness but do not 
insert events into the blockchain.
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condition to give consent. Bob could be 
rewarded for saving Charlie’s life.3

Consider another example: a com-
pact for renting apartments to tour-
ists. Such a compact may stipulate 
conditions, for example, that regis-
tered guests may not smoke in the 
apartment, invite others except chil-
dren younger than 12 years old to stay 
overnight, and leave the windows 
open during the day. Such prohibitions 
are impossible to impose through the 
blockchain since they concern exog-
enous events and would be imprac-
tical or risky to enforce physically. 
Guests may violate the stipulations in 
the compact. The rental agency may 
install monitors (for instance, smoke 
detectors, face recognizers, and win-
dow sensors) that enable the detec-
tion of violations. Again, from the 
semantics and recorded events, we 
can compute whether the compact was 
satisfied or violated. As before, viola-
tion doesn’t entail malfeasance. First, 
sensors aren’t perfect, and a smoke 
detector may falsely report smoking, 
for example, due to a deep fryer. Sec-
ond, a compact may be overridden by 
other imperatives (don’t leave a child 
alone), or a principal may discover that 
circumstances make it is sensible to 
violate an agreement. For example, if 
the adult guests are taken to a hospi-
tal, they may hire a babysitter to stay 
overnight with their young children 
even though doing so is prohibited by 
the compact. The foregoing examples 
highlight the importance of compacts 
in detecting and resolving conf lict-
ing requirements.4

Specifying compacts via norms
To recover understanding and con-
trol and make the social meaning 
explicit, we need a declarative repre-
sentation for compacts that captures 

the essence of traditional contracts. 
A compact would explicitly state what 
each concerned party may expect 
from another. To this end, the formal 
notion of norms, which resembles but 
is not identical to “social norms” in 
the vernacular, yields promising con-
structs. As motivated by Georg von 
Wright, who invented modern deon-
tic logic during the 1950s, this notion 
of the norm carries regulatory force.5 
Therefore, we propose to represent 
each compact as a set of norms. The 
specific norms we adopt are commit-
ment, authorization, prohibition, and 
power. The following are key features 
of norms:

 › Each norm in our representation 
is directed from its accountable 
party to its party with stand-
ing.6 Thus, a norm always 
makes accountability clear.

 › Each norm arises in the context 
of an organization. Thus, a norm 
makes its scope and adjudicat-
ing jurisdiction clear.

 › Each norm is conditional and 
states the logical conditions 
under which it goes into force 
(antecedent) and under which 
it concludes (consequent). The 
antecedent and consequent are 
definitively evaluated on a ledger, 
thereby ensuring clarity on what 
state each norm instance is in.

Let’s introduce our specification 
language, based on the Custard lan-
guage,7 via an example. We’ll begin 
with a routine business agreement, 
which may be described by a compact 
that constitutes the following com-
mitment. In it, keywords appear in a 
sans-serif font. Words beginning with 
an uppercase letter are names of event 
schemas unless otherwise specified. 

Words beginning with a lowercase let-
ter are attributes of the events.

compact Market
role Seller Buyer Marketplace

commitment DiscountQuote from Seller  
     to Buyer within Marketplace
 create Quote
  detach (Order and Payment)  

  deadline Quote + 10m
    where paymentAmount >=   

 0.90 *  quotedPrice * quantity
  discharge Shipment deadline  
    Payment + 5d

This listing describes a compact, 
Market, consisting of one commit-
ment schema labeled DiscountQuote, 
which is directed from a role Seller to a 
role Buyer. At runtime, these roles are 
played by specific principals, for exam-
ple, individuals Meryl and Custer.

 › An instance of DiscountQuote is 
created when an instance of the 
Quote event occurs, with Quote 
being the event expression given 
under create. The attributes of 
Quote, such as quoteID, item, and 
quotedPrice, are the information 
relevant to the creation of this 
commitment. Meryl alone can 
commit herself.

 › A (created) instance of Dis-
countQuote is detached when 
instances of Order and Payment 
for a matching quoteID occur 
within 10 min of the matching 
Quote, and paymentAmount is at 
least 90% of the cost of the items 
in Order (quotedPrice × quan-
tity). Here, Custer would bring 
about those events, although, 
in general, a commitment could 
be detached through anyone’s 
actions.
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 › An instance of DiscountQuote 
expires if a matching Order and 
Payment do not occur within 
10 min of the matching Quote.

 › If Shipment for the matching 
quoteID occurs (and, if there is a 
matching instance of Payment, 
within five days of Payment), 
the commitment is discharged. 
Presumably, Meryl or one of her 
business partners would bring 
about this event.

 › If the commitment is detached 
but Shipment for the matching 
quoteID does not occur within 
five days of Payment, the com-
mitment is violated. Now, Custer 
can hold Meryl to account.

We illustrate the previous health-
care example. For brevity, we focus on 
a prohibition norm and assume the 
relevant events: Employment, when a 
Nurse is hired by a Hospital; DataAccess, 
when a Nurse accesses a Patient’s data; 
and CopyData, when a Nurse shares a 
Patient’s data with someone. The attri-
butes of these events express relevant 
information, including the Patient’s 
identity. The compact specifies a prohibi-
tion on a Nurse by a Hospital that is cre-
ated when the Nurse is employed. When 
the Nurse accesses a Patient’s data, the 
Nurse may not copy that data to anyone 
outside of the Patient’s care team.

compact PatientData
role Patient Hospital Nurse  
   MedicalSystem CareTeam

 prohibition NoSharing on Nurse by  
   Hospital within MedicalSystem
 create Employment /* in Hospital*/
 detach DataAccess /* about Patient*/
 violate CopyData   /*to receiver*/
   where receiver not in CareTeam  

   of Patient /*receiver is an outsider*/

Computing the norm lifecycle
The declarative specification of com-
pacts yields significant benefits over 
smart contracts. First, the language 
of norms is geared toward expressing 
agreements between autonomous prin-
cipals, and norms can be reliably identi-
fied from real-life natural-language con-
tracts.8 Two, the language is amenable to 
formal reasoning since it is simpler than 
a traditional programming language. 
Three, specifications in the language can 
be automatically evaluated, meaning 
that the state of any norm can be unam-
biguously determined from the norm’s 
expression and the events recorded in 
any snapshot of the blockchain.

Specifically, a blockchain is natu-
rally modeled as a sequence of events 
with timestamps. From these events, 
we can determine what norm instances 
have been created and which of them 
have transitioned to other relevant 
states. For example, we might observe 
that Meryl has produced instances 
of Quote for 10 prospective buyers, of 
whom Custer alone has responded 
with matching instances of Order and 
Payment. From the matching Shipment 
event, we can conclude that Meryl dis-
charged her commitment to Custer.

Alternatively, if Meryl failed to bring 
about a matching Shipment event, we 
would conclude that Meryl violated her 
commitment to Custer. Importantly, 
we can compute abstract events, such 
as when a norm instance transitions in 
its lifecycle. For example, the violation 
of a commitment is itself an event that 
we can effectively compute. That event 
could be referenced from other norms, 
which is essential to achieving gover-
nance, as discussed next.

Organizations and governance
Consensus on what has transpired can 
support decentralized applications by 

averting disputes about the public facts. 
But as envisioned here, the principals 
may, nevertheless, violate applicable 
compacts. Decentralized applications 
cannot avoid governance; the choice is 
1) leave governance ad hoc and manual 
or 2) make it formal and computational, 
as we envision. In our conception, every 
decentralized application is associated 
with an organization, which serves as 
the context of its defining compact. 
Such organizations are seen on today’s 
blockchains, for instance, as channels 
on Hyperledger Fabric. However, cur-
rent practice doesn’t model the orga-
nization itself. The ill-fated DAO was 
modeled procedurally as a smart con-
tract, but that is not satisfactory since, 
even if it were correct, its behavior 
would not have been comprehensible 
or modifiable.

Today’s approaches lack a compu-
tational model for such organizations. 
Consequently, there is no precise char-
acterization of what an organization 
can expect from its members and vice 
versa. As a result, governance in block-
chain applications remains ad hoc. To 
address this limitation, we propose 
a three-pronged approach. First, we 
model an organization as a principal on 
par with any other, for instance, an indi-
vidual. An organization may feature as 
a subject or object of another norm. Sec-
ond, an organization provides an orga-
nizational context for each norm that 
arises, as described in Singh.9 In the 
previous listing, the Marketplace role 
provides the context for the Seller and 
Buyer’s dealings. The Marketplace role 
would be adopted by a concrete orga-
nization, such as the Artsplosure arts 
fair in Raleigh, North Carolina, within 
whose scope Meryl and Custer would 
interact. The context can embody juris-
dictional weight and serve as an adju-
dicating authority for disputes. The 
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context can, thus, help mitigate viola-
tions of the norms in a compact.10

The Marketplace serves as the con-
text for the DiscountQuote commit-
ment and the MedicalSystem as the 
context for the NoSharing prohibition. 
The organizational context is captured 
as a role in its own right. Let us extend 
the earlier examples to illustrate how 
compacts can handle violations. Mar-
ketplace makes a commitment to Buyer 
that if Seller violates the DiscountQuote 
commitment, it will step in and provide 
a refund within two days.

commitment Compensation Marketplace  
  to Buyer within Marketplace
create Quote /* when Seller creates a  
         Quote */
detach violated(DiscountQuote)
discharge Refund deadline violated 
   (DiscountQuote) + 2d
  where refundAmount =  

 paymentAmount

Similarly, MedicalSystem, as the 
context of the NoSharing prohibi-
tion norm, commits to Patient that it 
will investigate any violations of the 
NoSharing prohibition within 30 days.

commitment SanctionC from MedicalSystem  
  to Patient within MedicalSystem
create Enroll /* when Patient enrolls */
detach violated(NoSharing) 
  /* the Patient ID match is implicit */
discharge Investigation deadline  
   violated(NoSharing) + 30d

Now, when Bob reveals Charlie’s 
data without consent, the medical 
system’s commitment to Charlie is 
activated. The medical system can 
satisfy its commitment by conduct-
ing its investigation, upon which it  
may exonerate and reward Bob or 
penalize him.

Third, the organization is specified 
through a compact between itself and 
its members. This compact stipulates 
precisely what expectations an orga-
nization and its members may have of 
each other. Membership in the organi-
zation provides identity for all purposes 
within that organization. Enrollment as 
member may rely upon another organi-
zation that the first one is part of, where 
the second provides its identity, and so 
on. The nesting would ordinarily termi-
nate at a self-contained organization 
(as in Bitcoin) or a real society (as in the 
banking industry, where regulations 
require a national identification for 
each depositor). Certain organizations 
(for example, social services for drug 
users) may be self-contained to protect 
the anonymity of the people they help.

Programming and 
verifying interactions
Achieving coordination is nontrivial 
in decentralized applications. Existing 
approaches hardcode coordination in 
software implementations. Doing so 
reduces flexibility in interoperation 
and hides essential details, thereby 
preventing the composition of com-
pacts. Blockchains provide coordina-
tion abstractions. For example, Hyper-
ledger provides the channel construct: 
a subnet on which only participants 
can access information. A channel sup-
ports confidentiality and helps decou-
ple participants by hiding irrelevant 
information. To enable interoperation, 
we must formalize how an interaction 
proceeds, not just who participates and 
what data they exchange. Thus, we 
face the challenges of how to specify a 
channel and produce software to inter-
act through a channel.

An effective solution would spec-
i f y coord i nat ion decla rat ively i n 
conjunction with compacts. Doing 

so requires not only formal semantics 
for data11 but also models of causality 
and integrity constraints on the interac-
tions underlying the data.12 In essence, 
we would formally specify an inter-
action protocol for each compact that 
would ensure that the compact could 
be flexibly enacted, meaning that the 
protocol would not foreclose any enact-
ment that remained acceptable with 
respect to the pact. Specifically, the pro-
tocol includes a way for each lifecycle 
state of each norm (including states of 
satisfaction and violation) in the com-
pact to be realized. To capture the intu-
ition that a decentralized application is 
specified via a compact, we would need 
to generate protocols automatically 
from a compact such that each involved 
only the relevant principals. The inter-
actions in the protocol would naturally 
be endowed with a public semantics,2 a 
major benefit of a shared ledger.

The input checker component, real-
ized as a smart contract, in Figure 1, 
helps ensure the integrity of the infor-
mation in the blockchain. Thanks to 
our approach being based on com-
pacts, we can produce the checker’s 
specification from a compact, and 
t he speci f icat ion ca n capt u re, for 
each principal, the legal actions with 
respect to the compacts in which that 
principal participates.

Meaningful trust and reputation
The principals’ autonomy in the real 
world suggests that they would need 
to trust one another to interoperate. 
The possibility of a compact’s viola-
tion creates a vulnerability, a state 
that constitutes a hallmark of trust.13 
Blockchain obviates the need for trust 
only to the extent that the gover-
nance structures provide assurance 
against malfeasance by another and 
the structures themselves are trusted. 
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The compensation example illustrates 
how to achieve coherent interactions 
without a central authority.6,14,15 Gov-
ernance is a prerequisite for account-
ability and trust, which are means 
with which to balance autonomy and 
correctness.

Blockchain can serve as a platform for 
promoting meaningful trust. First, quite 
naturally, the states of relevant compacts 
provide an opportunity to make eviden-
tial trust judgments. The violation and 
satisfaction of a norm would mean a 
lowering and raising, respectively, of the 
trust in the concerned party with respect 
to similar norms. Second, explicit gov-
ernance engenders trust by assuring 
principals that malefactors would be 
sanctioned. A party may violate a com-
pact by failing to satisfy its conditions; 
but if it does so, its violation would be 
determinable from the blockchain. The 
aggrieved party19 may file a complaint, 
which would also be recorded in the 
blockchain, thereby triggering a gov-
ernance compact. Third, governance 
provides a basis for capturing the trust 
assumptions by formalizing what counts 

as evidence for what norm. Consen-
sus on blockchain concerns the events 
observed. But armed with a governance 
structure, we can encapsulate norm-rel-
evant evidence within an event to reflect 
the application meaning. For example, a 
norm may rely upon a patient having a 
benign tumor. But in medical practice,20 
whether a tumor is benign is a fact that 
is established by the tumor board of the 
hospital. That is, the tumor board’s asser-
tion counts as the tumor being benign.

PROTOTYPE OVER R3 CORDA
Our compacts-based approach is read-
ily realized on existing blockchains. To 
illustrate our method, we implemented 
a proof-of-concept prototype on R3 
Corda.21 The relevant programming 
abstractions are as follows: Corda is a 
network of nodes, each of which hosts a 
relational database. Each party is a busi-
ness entity and runs a node. A workflow 
is a program that composes database 
transactions and specifies the parties 
to whom the agreement is visible. By 
invoking a workflow, a party triggers 
the transactions in the workflow, which 

causes updates to its own database 
and those of the other parties to whom 
the matter is visible. An RPCclient is a 
means by which a party may invoke a 
workflow programmatically.

Our prototype maps the principal 
and event constructs to Corda’s party 
and transaction, respectively. It specifies 
a workflow for each event and encodes 
agents as RPCclients that invoke the 
workflows to insert events into the data-
bases of the appropriate parties. The pro-
totype adapts our norms compiler7 to 
generate queries for the lifecycle states 
of each norm. These queries execute on 
a node database. Additional details are 
in the supplementary material.

T he emergence of blockchain 
as a platform for decentralized 
applications exposes new usage 

scenarios that bring sociotechnical con-
siderations into computing, specifically, 
in terms of expectations regarding gov-
ernance (organizations, norms, and pri-
vacy) and trust. Table  1 highlights how 
our architecture of compacts contrasts 
with existing approaches. In the com-
pacts approach, the blockchain declar-
atively represents contractual rela-
tionships; maintains relevant events; 
enables a principal to violate a compact 
if it so desires; computes whether the 
compact is satisfied, violated, expired, 
or pending; and activates the applicable 
governance compacts, providing a basis 
for trust.

In this manner, we envision compu-
tational representation and reasoning 
about sociotechnical considerations. 
Specifically, we advocate developing app-
roaches for programming interactions 
using blockchain that build on and sup-
port effective governance and trust. In 
this way, compacts differ from the notion 
of Ricardian contracts,22 which associate 

TABLE 1. The differences between compacts 
and traditional and smart contracts.

Traditional contracts Smart contracts Compacts

Specification Text Procedure Formal, declarative

Automation None Full Compliance checking

Principals’ control Complete None Complete

Venue External Within blockchain Recorded on blockchain

Trust model Hidden Hardcoded Explicit

Social meaning Informal None Formal

Standard of correctness Informal legal Whatever executes Formal legal

Scope Open but ad hoc Closed Sociotechnical
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a textual description with a computa-
tional one, thereby creating two compet-
ing standards of correctness: one that is  
applied computationally and one that  
is understood by people. In our approach, 
there is only one standard. It is high level 
(understandable by people) and computa-
tional (executable by machines).

The compacts-based architecture 
yields valuable research opportuni-
ties concerning how principals 1) pre-
serve autonomy through being able 
to violate a compact and verify each 
other’s compliance, 2) deal with events 
in the real business and social worlds 
that are external to the blockchain, 3) 
maximize flexibility by having their 
interactions minimally constrained 
to interoperate successfully, and most 
importantly, 4) build and realize gov-
ernance structures to deal with auton-
omy and exceptions. 
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