
COVER FEATURE INTELLIGENT AUTONOMOUS SYSTEMS

60 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 0 © 2 0 2 0 I E E E

Samuel H. Christie V, North Carolina State University and Lancaster University

Daria Smirnova and Amit K. Chopra, Lancaster University

Munindar P. Singh, North Carolina State University

Current programming models for developing Internet

of Things (IoT) applications are logically centralized

and ill-suited for most IoT applications. We contribute

Protocols over Things, a decentralized programming

model that represents an IoT application via a protocol

between the parties involved and provides improved

performance over network-level delivery guarantees.

The Internet of Things (IoT) enables new applica-
tions that leverage the capabilities of things—
Internet-accessible devices that sense or con-
trol their environment. Many such applications

involve autonomous parties who share information from

and exercise control over things to effectively cooperate
in achieving their respective goals. For example, a patient
could share information with a health care provider to
receive automatically dispensed medication. Patients
should have control over their health information and
doctors over how they prescribe medications. More mun-
dane IoT applications exhibit multiple parties too. For
example, a smart home could involve an owner, one or

Digital Object Identifier 10.1109/MC.2020.3023887
Date of current version: 19 November 2020

Protocols Over Things:
A Decentralized
Programming Model for
the Internet of Things

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

 D E C E M B E R 2 0 2 0 61

more tenants, a power utility, and a
security service. Likewise, in an enter-
prise, different suborganizations have
different responsibilities and powers.
That is, real-life applications involve
multiple logical loci of control.

However, current programming
models are geared toward a single locus
of control: they violate the autonomy
of all but one of the parties and don’t
jibe with things often being small
and numerous. For instance, popular
frameworks such as Node-RED (https://
nodered.org/) and Eclipse Kura (https://
www.eclipse.org/kura/) model an IoT
application as an orchestration5 that
receives information from sensors,
processes it in a workflow, and effects
actions in the environment.

In contrast, we advocate a pro-
gramming model called Protocols over
Things (PoT) that is not only distributed
physically but also decentralized.11
PoT reflects everyone’s autonomy and
decouples their reasoning through
asynchronous communication. Spe-
cifically, PoT captures a decentralized
application via a protocol that speci-
fies the communication constraints
between the parties, abstracted as
roles. PoT can employ IoT communica-
tion standards such as MQTT,4 the Con-
strained Application Protocol,8 and the
User Datagram Protocol (UDP).6

Using a logistics scenario that we
implement in Node-RED according
to PoT, in this article we demonstrate
how a protocol specification enables
the use of code generation tools and
a generic communication adapter to
simplify development. We focus spe-
cifically on how the adapter correlates
messages according to the protocol and
compare PoT to existing approaches
for message correlation in Node-RED.
We further demonstrate how PoT em -
bodies the end-to-end principle7 by

supporting deployment over unreli-
able asynchronous communication
mechanisms instead of relying on
transport-layer delivery guarantees.
Finally, we experimentally demon-
strate that a PoT implementation
over UDP with application-level retry

 strategies compares favorably with
the same implementation over MQTT.

EXAMPLE IoT SCENARIO:
LOGISTICS
We adopted a warehouse logistics
scenario,9 simplified to focus on the
aspects relevant to decentralization:
the parties, their communications, and
their decision making.

Figure 1 illustrates this scenario con-
ceptually. Here, Merchant, Wrapper,
Labeler, and Packer are autonomous
parties; the arrows indicate infor-
mation flows. Merchant receives a

purchase order (PO)—imagine an exter-
nal customer. Each PO includes one
or more items and a shipping address.
Merchant sends the address to Labeler,
which generates the appropriate ship-
ment label to be affixed to the shipping
box. Labeler sends the generated label

to Packer. Merchant sends informa-
tion about the items to the Wrapper,
which wraps the items appropriately for
shipping (for example, paper for dura-
ble items and bubble wrap for fragile
ones) and notifies Packer they are ready.
Packer affixes the shipment label to a
box and notifies Merchant for each item
(in the PO) that it packs in the box.

Each party applies its decision mak-
ing in deciding when and what infor-
mation to communicate. For example,
Wrapper may select a wrapping based
on current inventory and cost, and
Labeler may select a shipping label

FIGURE 1. A conceptual model of the logistics scenario relative to a single
 purchase order.

Merchant

Labeler Wrapper

Packer

Address Items

Shipping Label Items Wrapped

Items Packed

CURRENT PROGRAMMING MODELS
ARE GEARED TOWARD A SINGLE LOCUS

OF CONTROL.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

62 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

INTELLIGENT AUTONOMOUS SYSTEMS

based on the speed and cost of the ship-
per. A party may choose to delay or not
send a message; for example, Wrap-
per may hold on to an item until it has
the appropriate wrapping, and Labeler
may discard invalid addresses. In gen-
eral, the parties work concurrently and
asynchronously based on information
available to them.

CHALLENGES IN
PROGRAMMING IoT
APPLICATIONS AS
ORCHESTRATIONS
Node-RED (see “Node-RED”) epitomizes
the orchestration approach to pro-
g ra m m i ng IoT appl icat ion s. How
might one implement a decentral-
ized IoT application using flows? Each

party’s computations may be captured
in a separate flow called the party’s
endpoint that communicates with the
endpoints of other parties via mes-
sages over, for example, MQTT.

Figure 2 illustrates the resulting
architecture schematically. Notably,
there is no representation of the appli-
cation that captures its decentralized

NODE-RED

Node-RED is
an interactive

programming and
execution envi-
ronment for IoT
applications. A web
interface presents a
palette of function
blocks called nodes.
A user can construct
a flow—technically,
an orchestration—by
connecting nodes via
virtual wires that run
from an output port of one node to the input
port of another. A flow typically starts with one
or more nodes that sense information from the
environment and ends with some action in the
environment.

Figure S1 illustrates a flow. The type of each
node is indicated by its color and icon. Each node
has an informal name.

In Figure S1, the nodes named Labeled and
Wrapped are MQTT subscriptions to the topics
Labeled and Wrapped, respectively. The output
ports of both Labeled and Wrapped are connected
to the input port of the Join node, meaning that

received messages are passed onto the Join
node. This node aggregates multiple messages
together (in this example, one message from each
of the MQTT topics). Pack is a function node that
applies custom JavaScript code to the aggre-
gates produced by Join. The output port of Pack
is connected to two other nodes, which means
that each of its outputs is copied and passed to
those nodes separately. The node named Sent by
Packer logs its inputs to the developer console to
facilitate debugging. The node named Packed is
an MQTT node that publishes any input it receives
to the Packed topic.

FIGURE S1. A simple Node-RED flow using Join to combine messages.

Labeled

Connected

Connected Connected

Sent by Packer

Join Pack

Wrapped Packed

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

 D E C E M B E R 2 0 2 0 63

nature except as endpoints implemented
in Node-RED.

There is another shortcoming i n
the architecture in Figure 2. To inter-
operate, the parties need a specifica-
tion of the structures of the messages
they communicate. Such a specifica-
tion lies strictly outside Node-RED
but is cr ucial to decentralization.
Lacking such a specification, the end-
points would become tightly coupled.

Suppose such a specification is avail-
able, as is common in practice. For
example, Listing 1 specifies the struc-
tures of the messages alluded to in Fig-
ure 1. Sadly, the message structures in
Listing 1 are inadequate for capturing
the scenario, particularly its correla-
tion requirements. Packer needs appli-
cation-level knowledge to correlate the
items and shipping label for the same
PO and pack them correctly, since it
receives them separately.

Since Node-RED, as a general pur-
pose platform, provides only low-level
programming facilities unaware of
the application semantics, an imple-
mentation of correlation using stan-
dard Node-RED features will, at best,
be ad hoc and difficult to maintain.
Below, we describe three increasingly
sophisticated approaches for imple-
menting the correlation necessary for
Packer using standard Node-RED facil-
ities, to explain their advantages and
limitations. Working Node-RED flows
implementing the logistics scenario
with each of the approaches are avail-
able along with the rest of our code at
https://gitlab.com/masr.

Join based
Figure S1, in fact, depicts an endpoint
for Packer. Recall that Join in the fig-
ure produces an aggregate consisting
of one message from each of the labeled
and wrapped MQTT subscriptions.

Unfor tunately, Join aggregates
the messages solely based on their
sequence in each topic—and ignores
their content—producing incorrect
aggregations if the label and item do
not actually correlate. For example, if
Packer receives Labeled with orderID
O1 and Wrapped with orderID O2, Join
would aggregate them and misdirect
the wrapped item to the address from
O1 instead of O2.

Further, Join “consumes” each in -
coming message so it can appear in at
most one output. Hence, only a single
item can be associated correctly with
a label. If any PO contains multiple
items, Join matches the remaining
items with labels from subsequent
POs, causing all subsequent items to
correlate with the wrong label.

Wait-paths based
Unlike Join, wait-paths (a community
plugin node) supports a correlation field,
here orderID. An explicit correlation
field provides some support for cor-
rect matching.

However, a wait-paths node also
“consumes” what it correlates and
associates at most one item in a PO
with t he PO’s label. Thus, excess
items are silently held (and eventu-
ally dropped) waiting for another
matching label.

Custom
The Node-RED function node enables
custom implementations. There are no
limitations on the correctness or effi-
ciency of a custom implementation,
but such implementations would be
low level and complex.

Shortcomings identified
First, although integrity constraints
on correlation are explicit in the infor-
mal description of the scenario in the
“Example IoT Scenario: Logistics” sec-
tion, Listing 1 omits them. Represent-
ing constraints would enable reason-
ing about them computationally.

Second , t rad it ion a l i mplemen-
tations entangle decision making
internal to an endpoint (for example,

FIGURE 2. An endpoint-oriented architecture for IoT applications.

Asynchronous Communication Infrastructure

Node-RED Endpoint Node-RED Endpoint

LISTING 1. STRUCTURES OF MESSAGES EXCHANGED BETWEEN THE
ENDPOINTS IN THE LOGISTICS SCENARIO.
Merchant to Labeler: RequestLabel(orderID, address)

Merchant to Wrapper: RequestWrapping(orderID, itemID, item)

Wrapper to Packer: Wrapped(orderID, itemID, item, wrapping)

Labeler to Packer: Labeled(orderID, address, label)

Packer to Merchant: Packed(orderID, itemID, wrapping, label, status)

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

64 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

INTELLIGENT AUTONOMOUS SYSTEMS

Packer deciding whether, when, and
what item to pack) with public com-
munication constraints (for exam-
ple, to correlate items and labels).

Third, the endpoints may become
inadvertently coupled by accounting
for each other’s implementation idio-
syncrasies, for example, by accommo-
dating one box per order but failing
when the order is split.

THE PoT PROGRAMMING
MODEL
The foregoing shortcomings moti-
vate a new programming model.

Whereas traditional approaches focus
on endpoints (as the “Challenges in
Programming IoT Applications as
Orchestrations” section indicates),
PoT begins with a protocol: a specifi-
cation that captures the interactions
in an application via constraints on
communications between the appli-
cation’s endpoints.

Figure 3 illustrates our protocol-
based IoT application architecture. Here,
an agent is an endpoint that adopts a
role in a protocol and sends and receives
messages to and from other agents in
accordance with the protocol.

The Decision Making component
implements an agent’s private rea-
soning and relies on the Protocol
Adapter to handle incoming and out-
going messages. The Adapter verifies
whether messages respect the relevant
causality and integrity constraints
and discards any noncompliant mes-
sages—an outgoing message may not
be emitted and an incoming message
may not be made available to Deci-
sion Making. Notably, the Adapter is
generic and need only be supplied with
the protocol specification.

Specifying protocols
PoT adopts the Blindingly Simple
Protocol Language (BSPL).10 Listing 2
specifies our logistics scenario in
BSPL. Here, a protocol is a bag of mes-
sage schemas. A protocol involves
two or more roles; Logistics involves
Mercha nt, Labeler, Wrapper, a nd
Packer. A protocol has parameters;
the idea is that when agents enact a
protocol (by sending and receiving
messages), they compute tuples of
bindings for its parameters. Logis-
tics’ parameters are orderID, itemID,
item, and status; enacting Logistics
computes <orderID, item ID, item,
status> tuples.

One or more protocol parameters
are key parameters and jointly spec-
ify the key of the protocol; parameters
orderID and itemID constitute the key
in Logistics. A protocol’s key specifies
the integrity of the tuples computed by
the protocol: at most, one tuple exists
for a key binding. Integrity implies
that a parameter may be bound only
once relative to its key. Each distinct
binding for a protocol’s key corre-
sponds to a distinct enactment of the
protocol. A full tuple of bindings for
the protocol’s parameters corresponds
to a complete enactment.

LISTING 2. THE LOGISTICS PROTOCOL.
Logistics {

role Merchant, Wrapper, Labeler, Packer

parameter out orderID key, out itemID key, out item, out status

Merchant -> Labeler: RequestLabel[out orderID key, out address]

Merchant -> Wrapper: RequestWrapping[in orderID key, out itemID

 key, out item]

Wrapper -> Packer: Wrapped[in orderID key, in itemID key, in item,

 out wrapping]

Labeler -> Packer: Labeled[in orderID key, in address, out label]

Packer -> Merchant: Packed[in orderID key, in itemID key,

 in wrapping, in label, out status]

}

FIGURE 3. The PoT architecture for IoT applications.

Asynchronous Communication Infrastructure

Decision Making
(Node-RED)

Protocol Adapter
(Node-RED)

Decision Making
(Node-RED)

Protocol Adapter
(Node-RED)

Protocol
Specification

Agent (Endpoint) Agent (Endpoint)

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

 D E C E M B E R 2 0 2 0 65

To capture causality constraints, a
protocol’s parameter is adorned ⎡in⎤
if the protocol depends on another pro-
tocol (via composition) for the param-
eter’s binding; a protocol’s parameter
is adorned ⎡out⎤ if the protocol itself
generates its binding. Logistics’ param-
eters are all adorned ⎡out⎤, meaning
that enacting Logistics generates bind-
ings for them all.

A message schema is an elemen-
tary protocol. Every message schema
has a sender and a receiver role. Each
message schema has parameters that
a re ador ned eit her ⎡i n⎤ or ⎡out⎤,
some of which constitute a key. The
sender may send a message (instance)
of the (message) schema if it knows
(from prior interactions) the bindings
of all parameters adorned ⎡in⎤ in the
schema and does not know the bind-
ings of any parameter adorned ⎡out⎤
in the schema. In sending the message,
the sender can generate any bind-
ing for an ⎡out⎤ parameter. Thus, for
example, Wrapper must know the bind-
ings of orderID, itemID, and item before
sending a Wrapped message but may
generate a binding of wrapping.

In keeping with asynchrony, there
are no constraints on when a message
may be received; no ordering guaran-
tees are required from the communica-
tion infrastructure. Parameter bindings
become known to agents only through

message emissions and receptions; there
is no shared storage.

Formalizing protocols yields three
benefits. First, protocols separate deci-
sion making from interaction. Second,
with BSPL specifically, integrity con-
straints capture correlation require-
ments declaratively. For example, the
bindings of wrapping and label in a
Packed message must be consistent
with the bindings of orderID and itemID
(Packed’s key). Finally, as we discuss
further in the next section, a clear spec-
ification of the communication con-
straints supports the implementation of
agents by enabling the automatic gen-
eration of agent skeletons that enforce
those constraints with the help of a
generic protocol adapter.

IMPLEMENTING PoT AGENTS
Figure 4 depicts the implementation of
a Packer agent according to the PoT
model. The flow is separated into four
layers: Incoming, Message Reason-
ing, Retry Policy, and Outgoing. The
Incoming and Outgoing layers jointly
constitute the protocol adapter compo-
nent of the architecture but are sepa-
rated because of the one-way flow pro-
gramming style of Node-RED. Message
Reasoning and Retry Policy together
constitute the decision-making com-
ponent; they handle new messages and
duplicate messages, respectively.

Given a protocol, our tooling gener-
ates a skeleton consisting of the Incom-
ing and Outgoing layers for every role
in it. For every agent playing a role, the
Message Reasoning and Retry Policy
parts are added by the agent developer.
We describe each layer below.

Incoming
The Incoming layer implements the
reception half of an agent’s protocol
adapter. Nodes incoming UDP and json
receive messages over UDP and decode
them from JSON, respectively. Node
check Packer incoming has access to
the agent’s history, which is a collec-
tion of messages that the agent has
already observed. If an incoming mes-
sage is not a duplicate and satisfies
integrity, check Packer incoming adds
it to the history and outputs it via the
top output port. If the message is a
duplicate, the node outputs it via the
bottom output port without adding it
to the history again. Integrity checking
on reception is a defense against agents
who may send messages in violation
of integrity. Node log Packer incom-
ing optionally logs received messages
to the developer console.

Message Reasoning
The Message Reasoning layer captures
an agent’s reasoning, as the devel-
oper deems fit, as it reacts to received

FIGURE 4. The PoT version of Packer flow depicting the architectural layers.

incoming UDP json check packer incoming log packer incoming

Pack Items

Resend

check Packer outgoing json outgoing UDP

Incoming

Message
Reasoning

Retry Policy

Outgoing

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

66 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

INTELLIGENT AUTONOMOUS SYSTEMS

messages and potentially generates
outgoing messages. In Figure 4, the
Packer implementation uses a sin-
gle-function node Pack Items to send
Packed messages in reaction to recei -
ved RequestLabel and RequestWrap-
ping messages. Outgoing messages
may also be produced in response to
other events; for example, Merchant
could initiate Logistics based on POs
in a database.

Retry Policy
PoT also enables support for agent-spe-
cific retry policies for handling failure
cases such as lost messages and reacting
to duplicate incoming messages. If an
agent expects to receive a future mes-
sage in response to one that it sends, such
as Merchant expecting a Packed mes-
sage for each item, it can detect possible
message loss when those expectations

are not met within a specified time. Our
Merchant implementation repeatedly
resends the RequestLabel and Request-
Wrapping messages for an item every
second until the corresponding Packed
message is received.

However, resending a message only
addresses the loss of that message; the loss
of Wrapped, Labeled, or Packed would
also prevent Merchant from receiving
Packed. To further support recovery, the

other agents can resend relevant mes-
sages when they receive a duplicate. Our
Node-RED implementation supports this
pattern by providing a second output port
on the reception checking node for han-
dling duplicate messages. In our imple-
mentation of Packer, the Resend node
handles duplicate Labeled or Wrapped
messages and resends the correspond-
ing Packed message if available. PoT’s

support for agent retry policies reflects
the end-to-end principle,7 providing
application-specific assurance of cor-
rectness, without the overhead of re -
dundant protections in lower layers of
the infrastructure.

Outgoing
The Outgoing layer implements the
emission half of an agent’s protocol
adapter. The layer checks every outgoing
message, adding to the agent’s history
and sending over the network those that
satisfy the relevant causality and integ-
rity constraints, and dropping those
that do not. In Figure 5, the check Packer
outgoing node performs the checking. To
support retry policies, the node allows
sending duplicates; however, they are
not added to the agent’s history. Node
json encodes the message in JSON and
outgoing UDP sends it via UDP to the
specified recipient.

EVALUATION
To demonstrate the advantages of PoT
and its support for application-level
retry policies, we evaluated four varia-
tions of our PoT-based implementation
of the Logistics scenario:

 › Plain UDP: PoT over UDP, without
retries

 › UDP+Retry: PoT over UDP, with
the above-mentioned retry
policies

 › MQTT0: PoT over MQTT at
quality-of-service (QoS) level 0

 › MQTT2: PoT over MQTT at QoS
level 2.

MQTT runs over TCP. QoS levels 0
and 2 mean that MQTT guarantees a
message will be delivered at most once
and exactly once, respectively.

We set up our experiment to com-
pare the variations by their average

FIGURE 5. A comparison of different retry policies under different packet loss rates with
respect to transaction completion.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

Packet Loss (%)

A
ve

ra
ge

 It
em

s
P

ac
ke

d
(s

)

Plain UDP UDP + Retry MQTT0 MQTT2

THE PoT REPRESENTATION IS
UNIQUELY COMPATIBLE WITH

ASYNCHRONY AND NATURALLY
ADDRESSES CORRELATION PROBLEMS.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

 D E C E M B E R 2 0 2 0 67

throughput, defined as the rate at
which enactments complete. We ran
the experiment on a single Linux com-
puter, using tc-netem to simulate ran-
dom packet loss. For each variation
and each level of packet loss, we ran
10 iterations of 1 min each. In each iter-
ation, Merchant generates a new PO
every 5 ms (simulating external cus-
tomers), with the POs having a uni-
formly distributed number of items
between one and four. E n ac t ment
timeouts were disabled, and the mer-
chant’s retry policy was configured
to resend its messages every second
until it received the corresponding
Packed message.

Hypothesis. Under random packet loss,
UDP+Retr y completes more enact-
ments over a given duration than both
MQTT variations and Plain UDP.

Figure 5 provides the results of our
experiment as a graph of the average
throughput (enactments completed
per second) over packet loss probabil-
ity. Each plot represents the mean of
10 iterations, with error bars showing
the sample standard deviation.

The results support our hypothesis.
Plain UDP drops rapidly and consis-
tently in throughput since any mes-
sage loss prevents an enactment from
completing. In contrast, UDP+Retry
has a consistently higher throughput
under packet loss. Since Plain UDP has
less overhead and both initiate enact-
ments at the same rate, the differ-
ence is in their reliability: UDP+Retry
recovers some enactments that would
otherwise be lost.

Both MQTT variations suffer an ini-
tial drop in throughput at low packet
loss, possibly due to TCP backoff. Their
throughput changes very little up to
20% loss, demonstrating reliability
superior to Plain UDP and the benefits

of TCP’s ability to batch multiple mes-
sages in one packet. However, both
MQTT variations drop precipitously
in throughput starting at 20% and fail
to complete any enactments after 50%
loss. At every packet loss rate, UDP+Re-
try has a higher throughput than either
MQTT variation. Since TCP on Linux
defaults to retrying packet transmis-
sions for longer than the 1-min sample
duration and UDP+Retry never gives
up, the difference in throughput is not
due to lost enactments but efficiency.
UDP+Retry is more efficient than
MQTT’s infrastructure-level retry

solutions because it can detect losses
without requiring message acknowl-
edgments and no enact ment block s
t he progress of another.

PoT differs from existing work on
protocol languages and deriv-
ing endpoint representations1,3

in its use of an information-based
representation for protocols. The PoT
representation is uniquely compat-
ible with asynchrony and naturally
addresses correlation problems. PoT is
also of practical value as it enables the

ABOUT THE AUTHORS
SAMUEL H. CHRISTIE V is a Ph.D. student at North Carolina State University
and a research associate at the School of Computing and Communications,
Lancaster University. His research interests include decentralized and distrib-
uted systems and programming language design. Christie received his M.S. in
computer science at North Carolina State University Contact him at schrist@
ncsu.edu.

DARIA SMIRNOVA was a research associate at the School of Computing and
Communications, Lancaster University. Smirnova received her B.Sc. (with honors)
in computer science from Lancaster University.

AMIT K. CHOPRA is a senior lecturer in the School of Computing and Com-
munications, Lancaster University. His research interests include addressing
challenges arising from autonomy and decentralization. Chopra received
his Ph.D. from North Carolina State University. Contact him at amit.chopra@
lancaster.ac.uk.

MUNINDAR P. SINGH is a professor of computer science and codirec-
tor of the Science of Security Lablet, North Carolina State University. His
research interests include computational models of sociotechnical sys-
tems, including ways to reason about and program decentralized systems
of autonomous agents. Singh received his Ph.D. in computer sciences from
the University of Texas at Austin. He is a Fellow of IEEE and the Associa-
tion for the Advancement of Artificial Intelligence. Contact him at singh@
ncsu.edu.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

68 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

INTELLIGENT AUTONOMOUS SYSTEMS

generation of agent (endpoint) skeletons
in Node-RED and, through them, the
enforcement of protocol constraints.

PoT accommodates heterogeneity;
an application may involve both PoT
agents (implemented as described
in the “Implementing PoT Agents” sec-
tion) and non-PoT agents. PoT agents are
guaranteed to be compliant with the
protocol, but non-PoT agents can also
be compliant. If a non-PoT agent is not
compliant, however, the PoT agent’s
adapter provides some protection by
recognizing and rejecting incoming
messages that fail integrity.

PoT’s basis in information proto-
cols supports application-level retrans-
mission of messages—a fault tolerance
mechanism. PoT could be extended
to support a wider and more sophis-
ticated variety of such mechanisms.
For example, retransmission could be
adaptive: an agent could learn expected
arrival times for messages from other
agents relative to other messages and
use that knowledge to determine when
to resend a message. Future extensions
should improve ease of use, flexibility,
and robustness against various faults or
malicious behavior until decentralized
programming is no longer considered
difficult but properly understood as the
best way to improve fault tolerance
and create scalable dynamic systems.

PoT opens up the possibility of ex -
pressing deeper expectations between
parties, such as norms.2 Just as PoT
tackles expectations about the infor-
mation exchanged, norms would cap-
ture the meaning of that information,
such as whether one party commit-
ted to doing something for another
or prohibited the other party from
doing something. We could evaluate
whether such a commitment or pro-
hibition was satisfied or violated and

whom to hold to account for it. Such
models can enable greater social intel-
ligence, paving the path to superior
programming models for autonomy,
flexibility, and reusability.

ACKNOWLEDGMENTS
We thank the anonymous reviewers
for helpf ul comments. Samuel H.
Christie V, Daria Smirnova, and Amit
K. Chopra were supported by the
Engineering and Physical Sciences Re -
search Council (grant EP/N027965/1).
Samuel H. Christie V and Munindar P.
Singh were partially supported by the
National Science Foundation (grant IIS
-1908374).

REFERENCES
1. M. Baldoni, C. Baroglio, and F.

Capuzzimati, “A commitment-based
infrastructure for programming
socio-technical systems,” ACM Trans.
Internet Technol., vol. 14, no. 4,
pp. 23:1–23:23, Dec. 2014. doi:
10.1145/2677206.

2. A. K. Chopra and M. P. Singh, “Cus-
tard: Computing norm states over
information stores,” in Proc. Int.
Conf. Auton. Agents Multiagent Syst.
IFAAMAS, 2016, pp. 1096–1105.

3. A. Ferrando, M. Winikoff, S.
Cranefield, F. Dignum, and V.
Mascardi, “On enactability of
agent interaction protocols:
Towards a unified approach,” in
Proc. Eng. Multi-Agent Syst., 7th
Int. Workshop, 2019, pp. 43–63. doi:
10.1007/978-3-030-51417-4_3.

4. OASIS, “MQTT Version 3.1.1: OASIS
Standard,” Burlington, MA, Oct. 2014.
[Online]. Available: http://docs
.oasis-open.org/mqtt/mqtt/v3.1.1/os/
mqtt-v3.1.1-os.pdf

5. C. Peltz, “Web service orchestration
and choreography,” Computer, vol.

36, no. 10, pp. 46–52, Oct. 2003. doi:
10.1109/MC.2003.1236471.

6. J. Postel, “User Datagram Protocol,”
Internet Engineering Task Force, RFC
768, pp. 1–3, Aug. 28, 1980. [Online].
Available: https://tools.ietf.org/
html/rfc768

7. J. H. Saltzer, D. P. Reed, and D. D.
Clark, “End-to-end arguments in
system design,” ACM Trans. Comput.
Syst., vol. 2, no. 4, pp. 277–288,
Nov. 1984. doi: 10.1145/357401
.357402.

8. Z. Shelby, K. Hartke, and C. Bor-
mann, “The Constrained Applica-
tion Protocol (CoAP): Proposed stan-
dard,” Internet Engineering Task
Force, RFC 7252, June 2014. [Online].
Available: https://tools.ietf.org/
html/rfc7252

9. S. Sicari, A. Rizzardi, and A. Coen
-Porisini, “Smart transport and logis-
tics: A Node-RED implementation,”
Internet Technol. Lett., vol. 2,
no. 2, p. e88, 2019. doi: 10.1002/itl2.88.

10. M. P. Singh, “Information-driven
interaction-oriented programming:
BSPL, the blindingly simple protocol
language,” in Proc. 10th Int. Conf.
Auton. Agents Multiagent Syst., 2011,
pp. 491–498.

11. M. P. Singh and A. K. Chopra, “The
Internet of Things and multiagent
systems: Decentralized intelligence
in distributed computing,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput.
Syst., June 2017, pp. 1738–1747. doi:
10.1109/ICDCS.2017.304.

Access all your IEEE Computer Society
subscriptions at

computer.org
/mysubscriptions

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on December 04,2020 at 14:49:00 UTC from IEEE Xplore. Restrictions apply.

