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Current programming models for developing Internet 

of Things (IoT) applications are logically centralized 

and ill-suited for most IoT applications. We contribute 

Protocols over Things, a decentralized programming 

model that represents an IoT application via a protocol 

between the parties involved and provides improved 

performance over network-level delivery guarantees. 

The Internet of Things (IoT) enables new applica-
tions that leverage the capabilities of things—
Internet-accessible devices that sense or con-
trol their environment. Many such applications 

involve autonomous parties who share information from 

and exercise control over things to effectively cooperate 
in achieving their respective goals. For example, a patient 
could share information with a health care provider to 
receive automatically dispensed medication. Patients 
should have control over their health information and 
doctors over how they prescribe medications. More mun-
dane IoT applications exhibit multiple parties too. For 
example, a smart home could involve an owner, one or 
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more tenants, a power utility, and a 
security service. Likewise, in an enter-
prise, different suborganizations have 
different responsibilities and powers. 
That is, real-life applications involve 
multiple logical loci of control.

However, current programming 
models are geared toward a single locus 
of control: they violate the autonomy 
of all but one of the parties and don’t 
jibe with things often being small 
and numerous. For instance, popular 
frameworks such as Node-RED (https://
nodered.org/) and Eclipse Kura (https://
www.eclipse.org/kura/) model an IoT 
application as an orchestration5 that 
receives information from sensors, 
processes it in a workflow, and effects 
actions in the environment.

In contrast, we advocate a pro-
gramming model called Protocols over 
Things (PoT) that is not only distributed 
physically but also decentralized.11 
PoT reflects everyone’s autonomy and 
decouples their reasoning through 
asynchronous communication. Spe-
cifically, PoT captures a decentralized 
application via a protocol that speci-
fies the communication constraints 
between the parties, abstracted as 
roles. PoT can employ IoT communica-
tion standards such as MQTT,4 the Con-
strained Application Protocol,8 and the 
User Datagram Protocol (UDP).6

Using a logistics scenario that we 
implement in Node-RED according 
to PoT, in this article we demonstrate 
how a protocol specification enables 
the use of code generation tools and 
a generic communication adapter to 
simplify development. We focus spe-
cifically on how the adapter correlates 
messages according to the protocol and 
compare PoT to existing approaches 
for message correlation in Node-RED. 
We further demonstrate how PoT em -
bodies the end-to-end principle7 by 

supporting deployment over unreli-
able asynchronous communication 
mechanisms instead of relying on 
transport-layer delivery guarantees. 
Finally, we experimentally demon-
strate that a PoT implementation 
over UDP with application-level retry 

 strategies compares favorably with 
the same implementation over MQTT.

EXAMPLE IoT SCENARIO: 
LOGISTICS
We adopted a warehouse logistics 
scenario,9 simplified to focus on the 
aspects relevant to decentralization: 
the parties, their communications, and 
their decision making.

Figure 1 illustrates this scenario con-
ceptually. Here, Merchant,  Wrapper, 
Labeler, and Packer are autonomous 
parties; the arrows indicate infor-
mation flows. Merchant receives a 

purchase order (PO)—imagine an exter-
nal customer. Each PO includes one 
or more items and a shipping address. 
Merchant sends the address to Labeler, 
which generates the appropriate ship-
ment label to be affixed to the shipping 
box. Labeler sends the generated label 

to Packer. Merchant sends informa-
tion about the items to the Wrapper, 
which wraps the items appropriately for 
shipping (for example, paper for dura-
ble items and bubble wrap for fragile 
ones) and notifies Packer they are ready. 
Packer affixes the shipment label to a 
box and notifies Merchant for each item 
(in the PO) that it packs in the box.

Each party applies its decision mak-
ing in deciding when and what infor-
mation to communicate. For example, 
Wrapper may select a wrapping based 
on current inventory and cost, and 
Labeler may select a shipping label 

FIGURE 1. A conceptual model of the logistics scenario relative to a single 
 purchase order.
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CURRENT PROGRAMMING MODELS  
ARE GEARED TOWARD A SINGLE LOCUS 

OF CONTROL.
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based on the speed and cost of the ship-
per. A party may choose to delay or not 
send a message; for example, Wrap-
per may hold on to an item until it has 
the appropriate wrapping, and Labeler 
may discard invalid addresses. In gen-
eral, the parties work concurrently and 
asynchronously based on information 
available to them.

CHALLENGES IN 
PROGRAMMING IoT 
APPLICATIONS AS 
ORCHESTRATIONS
Node-RED (see “Node-RED”)  epitomizes 
the orchestration approach to pro-
g ra m m i ng IoT appl icat ion s. How 
might one implement a decentral-
ized IoT application using flows? Each 

party’s computations may be captured 
in a separate flow called the party’s 
endpoint that communicates with the 
endpoints of other parties via mes-
sages over, for example, MQTT.

Figure 2 illustrates the resulting 
architecture schematically. Notably, 
there is no representation of the appli-
cation that captures its decentralized 

NODE-RED 

Node-RED is 
an interactive 

programming and 
execution envi-
ronment for IoT 
applications. A web 
interface presents a 
palette of function 
blocks called nodes. 
A user can construct 
a flow—technically, 
an orchestration—by 
connecting nodes via 
virtual wires that run 
from an output port of one node to the input 
port of another. A flow typically starts with one 
or more nodes that sense information from the 
environment and ends with some action in the 
environment.

Figure S1 illustrates a flow. The type of each 
node is indicated by its color and icon. Each node 
has an informal name.

In Figure S1, the nodes named Labeled and 
Wrapped are MQTT subscriptions to the topics 
Labeled and Wrapped, respectively. The output 
ports of both Labeled and Wrapped are connected 
to the input port of the Join node, meaning that 

received messages are passed onto the Join 
node. This node aggregates multiple messages 
together (in this example, one message from each 
of the MQTT topics). Pack is a function node that 
applies custom JavaScript code to the aggre-
gates produced by Join. The output port of Pack 
is connected to two other nodes, which means 
that each of its outputs is copied and passed to 
those nodes separately. The node named Sent by 
Packer logs its inputs to the developer console to 
facilitate debugging. The node named Packed is 
an MQTT node that publishes any input it receives 
to the Packed topic.

FIGURE S1. A simple Node-RED flow using Join to combine messages.
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nature except as endpoints implemented 
in Node-RED.

There is another shortcoming i n 
the architecture in Figure 2. To inter-  
operate, the parties need a specifica-
tion of the structures of the messages 
they communicate. Such a specifica-
tion lies strictly outside Node-RED 
but is cr ucial to decentralization. 
Lacking such a specification, the end-
points would become tightly coupled.

Suppose such a specification is avail-
able, as is common in practice. For 
example, Listing 1 specifies the struc-
tures of the messages alluded to in Fig-
ure 1. Sadly, the message structures in 
Listing 1 are inadequate for capturing 
the scenario, particularly its correla-
tion requirements. Packer needs appli-
cation-level knowledge to correlate the 
items and shipping label for the same 
PO and pack them correctly, since it 
receives them separately.

Since Node-RED, as a general pur-
pose platform, provides only low-level 
programming facilities unaware of 
the application semantics, an imple-
mentation of correlation using stan-
dard Node-RED features will, at best, 
be ad hoc and difficult to maintain. 
Below, we describe three increasingly 
sophisticated approaches for imple-
menting the correlation necessary for 
Packer using standard Node-RED facil-
ities, to explain their advantages and 
limitations. Working Node-RED flows 
implementing the logistics scenario 
with each of the approaches are avail-
able along with the rest of our code at 
https://gitlab.com/masr.

Join based
Figure S1, in fact, depicts an endpoint 
for Packer. Recall that Join in the fig-
ure produces an aggregate consisting 
of one message from each of the labeled 
and wrapped MQTT subscriptions.

Unfor tunately, Join aggregates 
the messages solely based on their 
sequence in each topic—and ignores 
their content—producing incorrect 
aggregations if the label and item do 
not actually correlate. For example, if 
Packer receives Labeled with orderID 
O1 and Wrapped with orderID O2, Join 
would aggregate them and misdirect 
the wrapped item to the address from 
O1 instead of O2.

Further, Join “consumes” each in -
coming message so it can appear in at 
most one output. Hence, only a single 
item can be associated correctly with 
a label. If any PO contains multiple 
items, Join matches the remaining 
items with labels from subsequent 
POs, causing all subsequent items to 
correlate with the wrong label.

Wait-paths based
Unlike Join, wait-paths (a community 
plugin node) supports a correlation field, 
here orderID. An explicit correlation 
field provides some support for cor-
rect matching.

However, a wait-paths node also 
“consumes” what it correlates and 
associates at most one item in a PO 
with t he PO’s label. Thus, excess 
items are silently held (and eventu-
ally dropped) waiting for another 
matching label.

Custom
The Node-RED function node enables 
custom implementations. There are no 
limitations on the correctness or effi-
ciency of a custom implementation, 
but such implementations would be 
low level and complex.

Shortcomings identified
First, although integrity constraints 
on correlation are explicit in the infor-
mal description of the scenario in the 
“Example IoT Scenario: Logistics” sec-
tion, Listing 1 omits them. Represent-
ing constraints would enable reason-
ing about them computationally.

Second , t rad it ion a l i mplemen-
tations entangle decision making 
internal to an endpoint (for example, 

FIGURE 2. An endpoint-oriented architecture for IoT applications.
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LISTING 1. STRUCTURES OF MESSAGES EXCHANGED BETWEEN THE 
ENDPOINTS IN THE LOGISTICS SCENARIO.
Merchant to Labeler: RequestLabel(orderID, address)

Merchant to Wrapper: RequestWrapping(orderID, itemID, item)

Wrapper to Packer: Wrapped(orderID, itemID, item, wrapping)

Labeler to Packer: Labeled(orderID, address, label)

Packer to Merchant: Packed(orderID, itemID, wrapping, label, status)
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Packer deciding whether, when, and 
what item to pack) with public com-
munication constraints (for exam-
ple, to correlate items and labels).

Third, the endpoints may become 
inadvertently coupled by accounting 
for each other’s implementation idio-
syncrasies, for example, by accommo-
dating one box per order but failing 
when the order is split.

THE PoT PROGRAMMING 
MODEL
The foregoing shortcomings moti-
vate a new programming model. 

Whereas traditional approaches focus 
on endpoints (as the “Challenges in 
Programming IoT Applications as 
Orchestrations” section indicates), 
PoT begins with a protocol: a specifi-
cation that captures the interactions 
in an application via constraints on 
communications between the appli-
cation’s endpoints.

Figure 3 illustrates our protocol- 
based IoT application architecture. Here, 
an agent is an endpoint that adopts a 
role in a protocol and sends and receives 
messages to and from other agents in 
accordance with the protocol.

The Decision Making component 
implements an agent’s private rea-
soning and relies on the Protocol 
Adapter to handle incoming and out-
going messages. The Adapter verifies 
whether messages respect the relevant 
causality and integrity constraints 
and discards any noncompliant mes-
sages—an outgoing message may not 
be emitted and an incoming message 
may not be made available to Deci-
sion Making. Notably, the Adapter is 
generic and need only be supplied with 
the protocol specification.

Specifying protocols
PoT adopts the Blindingly Simple 
Protocol Language (BSPL).10 Listing 2 
specifies our logistics scenario in 
BSPL. Here, a protocol is a bag of mes-
sage schemas. A protocol involves 
two or more roles; Logistics involves 
Mercha nt, Labeler, Wrapper, a nd 
Packer. A protocol has parameters; 
the idea is that when agents enact a 
protocol (by sending and receiving 
messages), they compute tuples of 
bindings for its parameters. Logis-
tics’ parameters are orderID, itemID, 
item, and status; enacting Logistics 
computes <orderID, item ID, item, 
status> tuples.

One or more protocol parameters 
are key parameters and jointly spec-
ify the key of the protocol; parameters 
orderID and itemID constitute the key 
in Logistics. A protocol’s key specifies 
the integrity of the tuples computed by 
the protocol: at most, one tuple exists 
for a key binding. Integrity implies 
that a parameter may be bound only 
once relative to its key. Each distinct 
binding for a protocol’s key corre-
sponds to a distinct enactment of the 
protocol. A full tuple of bindings for 
the protocol’s parameters corresponds 
to a complete enactment.

LISTING 2. THE LOGISTICS PROTOCOL.
Logistics {

role Merchant, Wrapper, Labeler, Packer

parameter out orderID key, out itemID key, out item, out status

Merchant -> Labeler: RequestLabel[out orderID key, out address]

Merchant -> Wrapper: RequestWrapping[in orderID key, out itemID  

 key, out item]

Wrapper -> Packer: Wrapped[in orderID key, in itemID key, in item, 

 out wrapping]

Labeler -> Packer: Labeled[in orderID key, in address, out label]

Packer -> Merchant: Packed[in orderID key, in itemID key,  

 in wrapping, in label, out status]

}

FIGURE 3. The PoT architecture for IoT applications.
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To capture causality constraints, a 
protocol’s parameter is adorned ⎡in⎤ 
if the protocol depends on another pro-
tocol (via composition) for the param-
eter’s binding; a protocol’s parameter 
is adorned ⎡out⎤ if the protocol itself 
generates its binding. Logistics’ param-
eters are all adorned ⎡out⎤, meaning 
that enacting Logistics generates bind-
ings for them all.

A message schema is an elemen-
tary protocol. Every message schema 
has a sender and a receiver role. Each 
message schema has parameters that 
a re ador ned eit her ⎡i n⎤ or ⎡out⎤, 
some of which constitute a key. The 
sender may send a message (instance) 
of the (message) schema if it knows 
(from prior interactions) the bindings 
of all parameters adorned ⎡in⎤ in the 
schema and does not know the bind-
ings of any parameter adorned ⎡out⎤ 
in the schema. In sending the message, 
the sender can generate any bind-
ing for an ⎡out⎤ parameter. Thus, for 
example, Wrapper must know the bind-
ings of orderID, itemID, and item before 
sending a Wrapped message but may 
generate a binding of wrapping.

In keeping with asynchrony, there 
are no constraints on when a message 
may be received; no ordering guaran-
tees are required from the communica-
tion infrastructure. Parameter bindings 
become known to agents only through 

message emissions and receptions; there 
is no shared storage.

Formalizing protocols yields three 
benefits. First, protocols separate deci-
sion making from interaction. Second, 
with BSPL specifically, integrity con-
straints capture correlation require-
ments declaratively. For example, the 
bindings of wrapping and label in a 
Packed message must be consistent 
with the bindings of orderID and itemID 
(Packed’s key). Finally, as we discuss 
further in the next section, a clear spec-
ification of the communication con-
straints supports the implementation of 
agents by enabling the automatic gen-
eration of agent skeletons that enforce 
those constraints with the help of a 
generic protocol adapter.

IMPLEMENTING PoT AGENTS
Figure 4 depicts the implementation of 
a Packer agent according to the PoT 
model. The flow is separated into four 
layers: Incoming, Message Reason-
ing, Retry Policy, and Outgoing. The 
Incoming and Outgoing layers jointly 
constitute the protocol adapter compo-
nent of the architecture but are sepa-
rated because of the one-way flow pro-
gramming style of Node-RED. Message 
Reasoning and Retry Policy together 
constitute the decision-making com-
ponent; they handle new messages and 
duplicate messages, respectively.

Given a protocol, our tooling gener-
ates a skeleton consisting of the Incom-
ing and Outgoing layers for every role 
in it. For every agent playing a role, the 
Message Reasoning and Retry Policy 
parts are added by the agent developer. 
We describe each layer below.

Incoming
The Incoming layer implements the 
reception half of an agent’s protocol 
adapter. Nodes incoming UDP and json 
receive messages over UDP and decode 
them from JSON, respectively. Node 
check Packer incoming has access to 
the agent’s history, which is a collec-
tion of messages that the agent has 
already observed. If an incoming mes-
sage is not a duplicate and satisfies 
integrity, check Packer incoming adds 
it to the history and outputs it via the 
top output port. If the message is a 
duplicate, the node outputs it via the 
bottom output port without adding it 
to the history again. Integrity checking 
on reception is a defense against agents 
who may send messages in violation 
of integrity. Node log Packer incom-
ing optionally logs received messages 
to the developer console.

Message Reasoning
The Message Reasoning layer captures 
an agent’s reasoning, as the devel-
oper deems fit, as it reacts to received 

FIGURE 4. The PoT version of Packer flow depicting the architectural layers.
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messages and potentially  generates 
outgoing messages. In Figure 4, the  
Packer implementation uses a sin-
gle-function node Pack Items to send  
Packed messages in reaction to recei -
ved RequestLabel and RequestWrap-
ping messages. Outgoing messages 
may also be produced in response to 
other events; for example, Merchant 
could initiate Logistics based on POs 
in a database.

Retry Policy
PoT also enables support for agent-spe-
cific retry policies for handling failure 
cases such as lost messages and reacting 
to duplicate incoming messages. If an 
agent expects to receive a future mes-
sage in response to one that it sends, such 
as Merchant expecting a Packed mes-
sage for each item, it can detect possible 
message loss when those expectations 

are not met within a specified time. Our 
Merchant implementation repeatedly 
resends the RequestLabel and Request-
Wrapping messages for an item every 
second until the corresponding Packed 
message is received.

However, resending a message only 
addresses the loss of that message; the loss 
of Wrapped, Labeled, or Packed would 
also prevent Merchant from receiving 
Packed. To further support recovery, the 

other agents can resend relevant mes-
sages when they receive a duplicate. Our 
Node-RED implementation supports this 
pattern by providing a second output port 
on the reception checking node for han-
dling duplicate messages. In our imple-
mentation of Packer, the Resend node 
handles duplicate Labeled or Wrapped 
messages and resends the correspond-
ing Packed message if available. PoT’s 

support for agent retry policies reflects 
the end-to-end principle,7 providing 
application-specific assurance of cor-
rectness, without the overhead of re -
dundant protections in lower layers of 
the infrastructure.

Outgoing
The Outgoing layer implements the 
emission half of an agent’s protocol 
adapter. The layer checks every outgoing 
message, adding to the agent’s history 
and sending over the network those that 
satisfy the relevant causality and integ-
rity constraints, and dropping those 
that do not. In Figure 5, the check Packer 
outgoing node performs the checking. To 
support retry policies, the node allows 
sending duplicates; however, they are 
not added to the agent’s history. Node 
json encodes the message in JSON and 
outgoing UDP sends it via UDP to the 
specified recipient.

EVALUATION
To demonstrate the advantages of PoT 
and its support for application-level 
retry policies, we evaluated four varia-
tions of our PoT-based implementation 
of the Logistics scenario:

 › Plain UDP: PoT over UDP, without 
retries

 › UDP+Retry: PoT over UDP, with 
the above-mentioned retry 
policies

 › MQTT0: PoT over MQTT at 
quality-of-service (QoS) level 0

 › MQTT2: PoT over MQTT at QoS 
level 2.

MQTT runs over TCP. QoS levels 0 
and 2 mean that MQTT guarantees a 
message will be delivered at most once 
and exactly once, respectively.

We set up our experiment to com-
pare the variations by their average 

FIGURE 5. A comparison of different retry policies under different packet loss rates with 
respect to transaction completion.
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throughput, defined as the rate at 
which enactments complete. We ran 
the experiment on a single Linux com-
puter, using tc-netem to simulate ran-
dom packet loss. For each variation 
and each level of packet loss, we ran  
10 iterations of 1 min each. In each iter-
ation, Merchant generates a new PO 
every 5 ms (simulating external cus-
tomers), with the POs having a uni-
formly distributed number of items 
between one and four. E n ac t ment 
timeouts were disabled, and the mer-
chant’s retry policy was configured 
to resend its messages every second 
until it received the corresponding 
Packed message.

Hypothesis. Under random packet loss, 
UDP+Retr y completes more enact-
ments over a given duration than both 
MQTT variations and Plain UDP.

Figure 5 provides the results of our 
experiment as a graph of the average 
throughput (enactments completed 
per second) over packet loss probabil-
ity. Each plot represents the mean of  
10 iterations, with error bars showing 
the sample standard deviation.

The results support our hypothesis. 
Plain UDP drops rapidly and consis-
tently in throughput since any mes-
sage loss prevents an enactment from 
completing. In contrast, UDP+Retry 
has a consistently higher throughput 
under packet loss. Since Plain UDP has 
less overhead and both initiate enact-
ments at the same rate, the differ-
ence is in their reliability: UDP+Retry 
recovers some enactments that would 
otherwise be lost.

Both MQTT variations suffer an ini-
tial drop in throughput at low packet 
loss, possibly due to TCP backoff. Their 
throughput changes very little up to 
20% loss, demonstrating reliability 
superior to Plain UDP and the benefits 

of TCP’s ability to batch multiple mes-
sages in one packet. However, both 
MQTT variations drop precipitously 
in throughput starting at 20% and fail 
to complete any enactments after 50% 
loss. At every packet loss rate, UDP+Re-
try has a higher throughput than either 
MQTT variation. Since TCP on Linux 
defaults to retrying packet transmis-
sions for longer than the 1-min sample 
duration and UDP+Retry never gives 
up, the difference in throughput is not 
due to lost enactments but efficiency. 
UDP+Retry is more efficient than 
MQTT’s infrastructure-level retry 

solutions because it can detect losses 
without requiring message acknowl-
edgments and no enact ment block s 
t he progress of another.

PoT differs from existing work on 
protocol languages and deriv-
ing endpoint representations1,3  

in its use of an information-based 
representation for protocols. The PoT 
representation is uniquely compat-
ible with asynchrony and naturally 
addresses correlation problems. PoT is 
also of practical value as it enables the 
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generation of agent (endpoint) skeletons 
in Node-RED and, through them, the 
enforcement of protocol constraints.

PoT accommodates  heterogeneity; 
an application may involve both PoT 
agents (implemented as described 
in the “Implementing PoT Agents” sec-
tion) and non-PoT agents. PoT agents are 
guaranteed to be compliant with the 
protocol, but non-PoT agents can also 
be compliant. If a non-PoT agent is not 
compliant, however, the PoT agent’s 
adapter provides some protection by 
recognizing and rejecting incoming 
messages that fail integrity.

PoT’s basis in information proto-
cols supports application-level retrans-
mission of messages—a fault tolerance 
mechanism. PoT could be extended 
to support a wider and more sophis-
ticated variety of such mechanisms. 
For example, retransmission could be 
adaptive: an agent could learn expected 
arrival times for messages from other 
agents relative to other messages and 
use that knowledge to determine when 
to resend a message. Future extensions 
should improve ease of use, flexibility, 
and robustness against various faults or 
malicious behavior until decentralized 
programming is no longer considered 
difficult but properly understood as the 
best way to improve fault tolerance 
and create scalable dynamic systems.

PoT opens up the possibility of ex -
pressing deeper expectations between 
parties, such as norms.2 Just as PoT 
tackles expectations about the infor-
mation exchanged, norms would cap-
ture the meaning of that information, 
such as whether one party commit-
ted to doing something for another 
or prohibited the other party from 
doing something. We could evaluate 
whether such a commitment or pro-
hibition was satisfied or violated and 

whom to hold to account for it. Such 
models can enable greater social intel-
ligence, paving the path to superior 
programming models for autonomy, 
flexibility, and reusability. 
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