MIT Press, 2011

Contents

3 Agent Communication 1
Amit K. Chopra and Munindar P. Singh
1 Introduction 1
1.1 Autonomy and its Implications 2
1.2 Criteria for Evaluation 6
2 Conceptual Foundations of Communicationin MAS 6
2.1 Communicative Acts 6
2.2 Agent Communication Primitives 8
3 Traditional Software Engineering Approaches 9
3.1 Choreographies 10
3.2 SequenceDiagramso 11
3.3 State Machines L. 12
3.4 Evaluation with RespecttoMAS 15
4 Traditional Al Approaches 15
4.1 KQML 16
4.2 FIPAACL e 17
4.3 Evaluation with RespecttoMAS 18
5 Commitment-Based Multiagent Approaches 19
5.1 Commitments.. 19
5.2 Commitment Protocol Specification 21
5.3 Evaluation with RespecttoMAS 21
6 Engineering with Agent Communication 24
6.1 Programming with Communications 25
6.2 Modeling Communications. 25
6.2.1 Business Patterns 26
6.2.2 EnactmentPatterns 27

6.2.3 Semantic Antipatterns 27

CONTENTS CONTENTS

©

6.3 Communication-Based Methodologies 28
Advanced Topicsand Challenges 29
7.1 Primacyof Meaning 29
7.2 Verifying Compliance 30
7.3 Protocol Refinement and Aggregation 31
7.4 Role Conformance 31
Conclusions 32
EXercises 34
References 39

List of Figures

3.1 Updatinganoffer.

3.2 FIPA Request Interaction Protocol 3
3.3 A protocol specified as a state machine. 4.
3.4 An alternative, more flexible state machine. 14

3.5 Distinguishing message syntax and meaning: two wevxtinenf
sameenactment.

3.6 Flexibleenactment.

3.7 Example operational patterns

List of Tables

3.1 Acommitmentprotocol.
3.2 Comparison of agent communication approaches.23

Chapter 3

Agent Communication

Amit K. Chopra and Munindar P. Singh

1 Introduction

Multiagent systems are distributed systems. Engineeringuliagent system
means rigorously specifying the communications among fents by way of
interaction protocols. What makes specifying the protedol agent interaction
especially interesting and challenging is that agentaarenomousndheteroge-
neousentities. These properties of agents have profound intpicaon the na-
ture of protocol specifications. As we shall see, protocoisriultiagent systems
turn out to be fundamentally different from those for othards of distributed
systems such as computer networks and distributed database

We conceptualize all distributed systems in architectigrahs—as consisting
of components and connectors between the components. Tigooents of the
Internet are all nodes with IP addresses. The main connisctoe Internet Pro-
tocol, which routes packets between the nodes. The comgoaoethe Web are
the clients (such as browsers) and servers and the conned¢te HTTP proto-
col. The components in a distributed database are the demabases and the
coordinator and a connector is the two-phase commit pratd¥e can discern a
pattern here: the connectors are nothing but the interagtiotocols among the
components. Further, we can associate protocols with thlecapion it facilitates.
For example, the Internet Protocol facilitates routing;THPTfacilitates access to

1

Chapter 3

a distributed database of resources; and the two-phase itpratocol facilitates
distributed transactions.

The same applies for multiagent systems except that the @oemps are au-
tonomous and heterogeneous agents, and applicationgpéaralty higher-level—
for example, auctions, banking, shipping, and so on. Eaphcgion would have
its own set of requirements and therefore we would normaily diifferent proto-
cols for each application. Below, the tetraditional distributed system®fers to
non-multiagent distributed systems such as the Interfnet\Meb, and so on.

The importance of protocols is not lost upon industry. Comities of prac-
tice are increasingly interested in specifying standaotiqmols for their respective
domains. RosettaNet [40] (e-business), TWIST [53] (faneggzchange transac-
tions), GDSN [33] (supply chains), and HITSP [34] and HL7][81ealth care)
are just a few examples.

Our objectives in this chapter are to help the reader deweldear sense of
the conceptual underpinnings of agent communication ahdlpthe reader learn
to apply the concepts to the extent possible using avaikditerare. The chapter
is broadly structured according to the following subohjes.

Requirements for protocol specificationsThe inherently open nature of multi-
agent systems places certain requirements on protocafispgons. Meet-
ing these requirements is the key to designing good pragocol

Protocol specification approachesThere are many diverse approaches for spec-
ifying protocols. We evaluate some approaches widely jredtin soft-
ware engineering and some historically significant onesfeatificial in-
telligence. We also study an approach that is particulaxynising.

Directions in agent communication researchThe last fifteen years have seen
some exciting developments in agent communication. Hovyeveny prac-
tical concerns remain to be addressed. We discuss thedlg.brie

1.1 Autonomy and its Implications

Protocols are modular, potentially reusable specificatafrinteractions between
two or more components. The interactions are specified mgesf themes-
sagesthe components exchange. To promote reusability, a prbitsapecified
abstractly with reference to thielesthat the interacting components may adopt.
A protocol is designed with a certaapplicationin mind. Anenactmentefers to

an execution of the protocol by the components.

Chapter 3

In distributed systems, the chief concerrhsw can distributed components
work together effectivelyh other words, how can we ensure thateroperatior?

In engineering terms, protocols are the key to interopematihe idea is that as
long as components are individuattpnformant that is, follow their respective
roles in the protocol, they will be able to work together notterahow they are
implemented. Interoperation makes great engineeringedsssause it means that
the components are loosely coupled with each other; thataszan potentially
replace a component by another conformant one and the nobdifstem would
continue to function. You would have noticed that Web brawsed servers often
advertise the versions of the HTTP standard with which thieycanformant.

The same concepts and concerns apply to multiagent systétosever,
agents are not ordinary components. They are componerttarthautonomous
and heterogeneous. Below, we discuss exactly what we metrebg terms, and
how autonomy and heterogeneity naturally lead to requirésfer agent interac-
tion protocols that go beyond protocols for traditionakudimited systems.

Each agent is an autonomous entity in the sense that it itsalidomain of
control: other agents have no direct control over its asti@mcluding its commu-
nications). For instance, consider online auctions as #neyconducted on web
sites such as eBay. Sellers, bidders, and auctioneersl| agealts, and none of
them exercises any control over the others. If an auctiomaeicontrol over bid-
ders, then (if it chose to) it could force any of the bidderdith any amount by
simply invoking the appropriate method. Such a setting ddatk any resem-
blance to real life.

There is a subtle tension between the idea of a protocol atahawny. With
protocols, we seek to somehow constrain the interactionngnagents so that
they would be interoperable. Autonomy means that the ageatfee to interact
as they please (more precisely, each agent acts accordmtiig rationale of its
principal). From this observations follows our first reguirent.\WWe must design
protocols so that they do not overconstrain an agent’s axt@ons.

In traditional distributed systems, interoperation isiaeéd via low-level co-
ordination. The protocols there would specify the flow of sseges between the
participants. In the case of the two-phase commit protaiba, controller co-
ordinates the commit outcome of a distributed transactionthe first phase, a
controller component collects votes from individual daisés about whether they
are each ready to commit their respective subtransactifihey unanimously re-
spond positively, the controller, in the second phaseruott each to commit its
respective subtransaction; otherwise, it instructs eaeort its subtransaction.

The above discussion of autonomy implies the following.

Chapter 3

The irrelevance of intelligence Contrast the notion of agent autonomy discussed
above with the one where autonomy is interpreted as theyabflan agent
to perform high-level reasoning (intelligent agents) aiteesdegree to which
an agent can operate without the supervision of its primdigatonomic
agents). Consider that you want to automate your purchaséseo\Web.
On the one hand, you can design a simple bidding agent thes fakut
from you about the things you want, the maximum prices yowalleng
to pay, and the reputation thresholds of the sellers andomeeirs you are
willing to deal with. On the other hand, you can design a ssiatated
bidding agent that mines your communications to discoveritiims you
desire and what you are willing to pay for them and can figureoouits
own which auctions to bid in on your behalf. From the agentmamication
perspective, however, the latter's sophistication dog¢swaiter—they are
both autonomous agents.

Logical versus physical distribution Because of their autonomy, agents are the
logical units of distribution: they can neither be aggregator decomposed
into processes. Whenever an application involves two oeragents, there
simply is no recourse but to consider their interactions.ngbaicts such
as processes, by contrast, are physical units of distabuflhe choice of
whether an application is implemented as a single processitiiple ones
is often driven by physical considerations such as geoggapthistribution,
throughput, redundancy, number of available processatsares, and so
on. An agent itself may be implemented via multiple physigats of dis-
tribution; that choice, however, is immaterial from a madgent systems
perspective.

Heterogeneity refers to the diversity of agent implemeoitest The software
engineering approach for accommodating heterogeneitynsake public the in-
terdependencies among the components. A component cabeligrplemented
based on what it depends on other components for (what itreesguand what
others depend on it for (what it guarantees) without conéarmow the others
are implemented. The same approach applies to agents. €bificgtion of the
interdependencies is essentially a protocol.

In traditional distributed systems, to accommodate hetameity, it is enough
that protocols specify the schemas of the messages exahasgeell as their
legal flows, that is, their ordering and occurrence. Howestgeh a specification is
inadequate for multiagent systems, wherein accommodh&teyogeneity entails

Chapter 3

also specifying the semantics of the interaction. As an glanconsider the finite
state machine in Figure 3.1. It specifies the part of a puechastocol that deals
with making offers. This protocol involves two roles: buyky and seller (s). The
transitions are labeled with the messages. First, thersdieds an offer to the
buyer. The buyer may then accept or reject the offer. Aftertinyer accepts, the
seller may send an updated offer.

VOffer(s, b) Update(s,b)
4

Reject(b,s) Accept(b,s)

Figure 3.1: Updating an offer.

There is, however, an important element of the specificatian is missing
from this protocol. That element is what the messages meémeimeal world.
Making an offer in many settings would count as making a it other words,
social commitmenf{more on social commitments later). Thus when the seller
offers some book to the buyer for some price, it would meanhkas socially
committed to the buyer for the offer. Consequently, updgdim offer, for instance,
by raising the price of the book, counts as updating the camarit. Specifically,
it means that the old commitment is canceled and in its pla@eone is created.
Clearly, a protocol that specifies only the flow of messagesh @s the one in
Figure 3.1 does not capture such subtleties of meaning.

If the meanings of messages are not public, that would patgnmake the
agent noninteroperable. For example, this would happedmeifouyer interprets
the seller’s offer as a commitment, but the seller does nairinteraction would
potentially break down. Accommodating semantic hetereggpresupposes that
we make the meanings of messages public as part of the preadfication.

In practice, many multiagent protocols are specified as fleitveout reference
to the message meanings. And, they seem to work fairly welsuch cases, the
designers of the agents agree offline on how to interpret evakps the messages

Chapter 3

and build this interpretation into the agents, therebytljotoupling the agents.

1.2 Criteria for Evaluation

Communication has been studied in software engineerirgftilolited systems,

and distributed artificial intelligence. Consequentherthare many approaches
for specifying protocols. Later in the chapter, we discihesrhajor classes of ap-
proaches. Let us now motivate broad criteria by which toweata each approach.

Software engineering Ideally, protocols should be specified in terms of high-
level abstractions that appeal to their stakeholders.Harowords, protocol
specifications should not be far removed from the expressistakeholder
requirements. Protocol specifications should be modifjaddsily under-
standable, and composable. Further, they should promoge looupling
among agents.

Flexibility Agents should be able to enact protocols flexibly. Flexipik espe-
cially important in dynamic settings where agents may conuegm, and ex-
ceptions and opportunities may arise. Ideally, protocet#ations should
constrain agents no more than is necessary to ensure c@ssctvhere cor-
rectness is understood in connection with the applicatoonaln of interest.

Compliance checking An important standard of correctness is compliance.
Checking an agent’s compliance with a protocol means détarqnif the
agent is following the protocol. To make such a determimapiesupposes
both that a protocol be precise and that its standard of cimiess be based
on information that is accessible to the agents involved.

2 Conceptual Foundations of Communication in
MAS

2.1 Communicative Acts

An important theme in the study of communicatiorsggeech act theorybetter
calledcommunicative act theoyrgince it has little specific connection with spoken
communication. The main insight behind communicative hebty, due to the
philosopher of language, John Austin, is that communioasa form of action.
Specifically, we can think of communicative acts as thosere/fgaying makes it

Chapter 3

so0.” For example, when a judge declares a couple marriegidge is not merely
reporting on some privately or publicly known fact; instetige judge is bringing
the fact into existence. The same may be said for a soccerremio ejects
a player from the game. The umpire is not merely stating thaflayer is not
allowed on the field for the duration of the game, the umpioaissing the player’s
permission to enter the field during the current game to bledsgtwn. The judge
and the umpire rely upon lower level means to carry out therosanicative acts.
The judge may merely speak in public or sigh a marriage aeatdiand affix his
seal on it. The umpire may flash a red card at the player and speghe player’s
jersey number. The physical means exist and informatioraissterred but what
makes the communication a true communication is the coiemt place in the
given setting. Informally, we can think of the judge as sagyirdeclare this couple
man and wife” and the umpire as saying “I declare this plagezjacted from the
game.”

Austin argued that all communications could be phrasederatbove declar-
ative form through the use of approprigterformativeverbs. Thus a simpli-
formativesuch as “the shipment will arrive on Wednesday” can be tceasaf it
were “l inform you that the shipment will arrive on Wednesday directivesuch
as “send me the goods” can be treated as if it were “l requestythu send me
the goods” or “I demand that you send me the goods.” or other gariations. A
commissivesuch as “I'll pay you $5” can be treated as if it were “I promibat
I'll pay you $5.”

The above stylized construction has an important ramiboatdr us as stu-
dents of multiagent systems. It emphasizes that althougtt lbeing informed,
requested, or promised may or may not be within the contréh@informer, re-
quester, or promiser, the fact that the agent chooses tomnfequest, or promise
another agent is entirely within its control. The above ¢artdion thus coheres
with our multiagent systems thinking about autonomy anecgdlthe essence of
the autonomous nature of communication as we explainedeabov

The above stylized construction has another more pracet@ghbrguably more
nefarious ramification. Specifically, this is the idea that gan use the perfor-
mative verb in the above to identify the main purposellocutionary pointof
a communication separately from the propositional contérthe communica-
tion. The underlying intuition is that the same proposiiboontent could be
coupled with different illocutionary points to instangadiistinct communicative
acts. In computer science terms, the illocutionary poingp It message types,
and may be thought of as being the value of a message head@wikg the
shipment example above, we would associate the proposthershipment will

Chapter 3

arrive on Wednesday” with different message types, for @ptapnform, request
andquery

2.2 Agent Communication Primitives

As a result of the naturalness of the above mapping fromutiooary points to
message types, it has been customary in agent communitatiguages to spec-
ify a small number of specialized message types as primsitittaving message
types appears reasonable, but a pitfall lurks in this timgkBecause the literature
describes a few broad-brush illocutionary points, exgsapproaches reflect the
assumption that only a small number of primitives is adeguahey account for
the meaning of each of these primitives. The above assumptaves erroneous
because the applications of multiagent systems are menifokach application,
the meanings that we need can be potentially distinct fraothers. Thus the of-
ficial meaning supplied by the agent communication langisgesufficient, and
developers end up adopting additional ad hoc meanings,imthiey hard-code
into their agents. As a result, the agents become tightlpleouwith each other.
Such coupling makes it difficult to change a multiagent systiynamically, by
swapping out one agent for another as it were. Thus the paltéenefit of using
an agent communication language is lost.

In response to the above challenges, the newer approacteEnde with a
fixed set of primitives based on illocutionary points. I&tethey provide an
underlying set of abstractions that can be used to providemad semantics for
any domain-specific primitives that a multiagent system messd. In other words,
each domain is different but there is an underlying logisdubrepresentation in
which the meanings of the terms used in the domain may be ssgule

For business applications, today, commitments are the kseyactions em-
ployed in the underlying representation. For example, & dtock-trading do-
main, we would see primitives such asquest stock quotand provide stock
guote And, in the electronic commerce domain, we would see prestsuch
as quote price quote delivery chargesand so on. The semantics of the primi-
tives would be expressed in commitments. Notice that evgargntly similar
primitives may end up with completely different meanings]acting the needs
and practices of the applicable domains. For example, ilcaypractice, a price
quote is an offer to sell, meaning that the seller becomesxitied to providing
the specified item at the quoted price. In contrast, in tygicactice, a stock quote
carries no such connotation of an offer to sell—all it meartkat the quoted price
is the price at which the previous transaction was completetie specified stock

Chapter 3

symbol, not that the brokerage who provided the quote igioffeo sell you the
stock for the quoted price. As you can well imagine, the megsican easily
be made more subtle and involved to capture the nuancesafgaleapplication
scenarios.

Therefore, in a nutshell, it appears misguided to have a &wt a dozen
or so) primitives with their unique definitions, hoping thaey would cover all
practical variations. For the above reason, we suggesythatead the literature
on the primitives motivated from the illocutionary pointserely as showing il-
lustrative examples—possibly even as important patteuhsiéfinitely not as an
adequate basis for building a multiagent system for anraryiapplication.

3 Traditional Software Engineering Approaches

We referred above to low-level distributed computing pcols as a way to ex-
plain architectures in general. We argued that we need tsidenmultiagent
systems and high-level protocols as a way to specify ariites that yield in-
teroperability at a level closer to application needs. Hmvetraditional software
engineering arguably addresses the challenges of intetoipty too. Would it

be possible to adopt software engineering techniques asis foa dealing with
agent communication?

The above view has received a significant amount of attentidhe litera-
ture. Partly because of the apparent simplicity of tradaidechniques and largely
because of their familiarity to researchers and practtisralike, the traditional
techniques continue to garner much interest in the agemsemity.

The traditional techniques leave the formulation of thesage syntax open—
a message could be any document and in common practice is andgbiment.
And, they disregard the application meaning of the messiyes/ed. Instead,
these techniques focus on the operational details of conmation, mostly con-
centrating on the occurrence and ordering of messages.

Thus a protocol may be specified in terms of a finite state mactiat de-
scribes its states and legal transitions from a centralpardpective. Formally,
this may be done in a variety of ways, including state machjB8, 8], Petri Nets
[18], statecharts [24], UML sequence diagrams [35], pre@dgebras such as the
pi-calculus [9], and logic-based or declarative approaddé&, 54]. All of these
approaches specify a set of message occurrences and geddwd are deemed to
capture the protocol being specified. We discuss a few oéthew.

The above-mentioned traditional representations havadkantage of there

10

Chapter 3

being a number of formal tools for verifying and even validgtspecifications

written in those representations. Thus a protocol desigoeitd be able to deter-
mine if a protocol in question would satisfy useful propestsuch as termination.
Implementing the endpoints or agents to satisfy such spatidns is generally

quite straightforward. Checking compliance with the sfieaiion is also concep-
tually straightforward. As long as the messages obsensmbot the ordering and
occurrence constraints given by a protocol, the enactnsertrrect with respect
to the protocol; otherwise, an enactment is not correct.

However, the value of such tools is diminished by the fadtiththe traditional
representations there is no clear way to describe the mgsoirthe interactions.
In other words, these approaches lack an independent apipliecentric standard
of correctness. For example, let us suppose that a protappldms to specify that
a merchant ships the goods to the customer and then the cersparys. Here, if
the customer happens to pay first, that would be a violatioth@fprotocol. In
informal terms, we should not care. It should be the custenrgernal decision
whether to pay first. If the customer does (taking the riskayfipg first or losing
bank interest on the money paid), that is the customer'sogegive. However,
given the traditional, operational specification, any sdewiation from the stated
protocol is equally unacceptable. Notice that it may in faetin the customer’s
interest to pay first, for example, to include the expens@éncurrent year’s tax
deductions. But we have no way of knowing that.

Instead, if the protocol could be specified in terms of the mregs of the
communications involved, we would naturally express theition that all we
expect is that the customer eventually pays or that the mestpays no later than
some other crucial event. If the customer fails to pay, thatld be a violation.
But if the customer pays early, so much the better.

3.1 Choreographies

The service-oriented computing literature includes stsddf the notion of a
choreography A choreography is a specification of the message flow amang th
participants. Typically, a choreography is specified im®of rolesrather than
the participants themselves. Involving roles promotesability of the chore-
ography specification. Participarasloptroles, that is, bind to the roles, in the
choreography.

A choreography is a description of an interaction from aetiar, more prop-
erly, aneutralperspective. In this manner, a choreography is distingaisiom a
specification of avorkflow wherein one party drives all of the other parties. The

Chapter 3 11

latter approach is called anchestrationn the services literature.

An advantage of adopting a neutral perspective, as in a ocgoaphy, is that
it better applies in settings where the participants reta@ir autonomy: thus
it is important to state what each might expect from the attasrd what each
might offer to the others. Doing so promotes loose couplifntpe components:
centralized approaches could in principle be equally Iyoseupled but there
is a tendency associated with the power wielded by the depérdy to make
the other partners fit its mold. Also, the existence of thetreéparty and the
resulting regimentation of interactions leads to impla#&pendencies and thus
tight coupling among the parties.

A neutral perspective yields a further advantage that tlegadvcomputation
becomes naturally distributed and a single party is notluaebin mediating all
information flows. A choreography is thus a way of specifyamgl building dis-
tributed systems that among the conventional approachssalosely agrees with
the multiagent systems way of thinking. But important aistions remain, which
we discuss below.

WS-CDL [57] and ebBP [25] are the leading industry suppocteareography
standardization efforts. WS-CDL specifies choreographsasessage exchanges
among partners. WS-CDL is based on the pi-calculus, so iaHasmal oper-
ational semantics. However, WS-CDL does not satisfy ingyurtriteria for an
agent communication formalism. First, WS-CDL lacks a tlyeof the mean-
ings of the message exchanges. Second, when two or moregessa& per-
formed within a given WS-CDL choreography, they are handleguentially by
default, as in an MSC. Third, WS-CDL places into a choreolgyagctions that
would be private to an agent, such as what it should do up@imieg a message.
Fourth, for nested choreographies, WS-CDL relies uporl ib@eision-making by
an agent, such as whether to forward a request received iclamreography to
another [50].

3.2 Sequence Diagrams

The most natural way to specify a protocol is through a messaguence chart
(MSC), formalized as part of UML as Sequence Diagrams [28]e oles of a
protocol correspond to the lifelines of an MSC; each edgeeoting two life-
lines indicates a message from a sender to a receiver. Time ownward by
convention and the ordering of the messages is apparenttirerohart. MSCs
support primitives for grouping messages into blocks. Addal primitives in-
clude alternatives, parallel blocks, or iterative blocikdthough we do not use

12

Chapter 3

MSCs extensively, they provide a simple way to specify ag@mimunication
protocols.

FIPA (the Foundation of Intelligent Physical Agents) is a stadd&ody, now
part of the IEEE Computer Society, that has formulated agentmunication
standards. FIPA defines a number of interaction protocolese& protocols in-
volve messages of the standard types in FIPA. Each FIPA @obipecifies the
possible ordering and occurrence constraints on messagedJdIL Sequence
Diagram supplemented with some informal documentation.

Figure 3.2 shows the FIPA Request Interaction Protocol PABIvariant of
the UML Sequence Diagram notation [26]. This protocol inesl two roles, an
INITIATOR and aPARTICIPANT. TheINITIATOR sends aequestto the PARTIC-
IPANT, who either responds with i@efuseor anagree In the latter case, it fol-
lows up with a detailed response, which could baitire, aninform-done or an
inform-result The PARTICIPANT may omit theagreemessage unless theITIA -
TOR asked for a notification.

The FIPA Request protocol deals with the operational detdilvhen certain
messages may or must be sent. It does not address the meahihgsnessages
themselves. Thus it is perfectly conventional in this redgawhere it deviates
from traditional distributed computing is in the semaniicassigns to the mes-
sages themselves, which we return to below. However, thefiveri having a
protocol is apparent even in this simple example: it ideggtithe roles and their
mutual expectations and thus decouples the implemensatbthe associated
agents from one another.

3.3 State Machines

Figure 3.3 shows a state machine between two roles, merghafjand customer
(cus) as a state machine. The transitions are labeled with messtug prefixner,
cus indicates a message from the merchant to the customeepander indicates
a message from the customer to the merchant. This state meastpports two
executions. One execution represents the scenario whepaigiomer rejects the
merchant’s offer. The other execution represents the sicewhere the customer
accepts the offer, following which the merchant and the @ust exchange the
item and the payment for the item. In the spirit of a state rmeghFigure 3.3 does
not reflect the internal policies based upon which the cust@uocepts an offer.
Consider the state machine in Figure 3.4. The dotted pathsate two addi-
tional executions that are not supported by the state machifigure 3.3. The
executions depict the scenarios where the customer seagsyment upon re-

Chapter 3

13

Participant

I Request

Alt

Refuse
[REFUSEQ

Agree

[AGREED andNOTIFICATION]

Alt

Inform-result

Figure 3.2: FIPA Request Interaction Protocol, from theApecification [26],
expressed as a UML Sequence Diagram.

ceiving an offer and after sending an accept, respectiVélgse additional execu-
tions are just as sensible as the original ones. Howevdrgicantext of the state
machine in Figure 3.3, these executions are trivialtywcompliant The reason

is that checking compliance with choreographies is purghjactical—the mes-
sages have to flow between the participants exactly as gredcrClearly, this

curbs the participants’ autonomy and flexibility.

We can attempt to ameliorate the situation by producing kewger FSMs that
include more and more paths. However, doing so complichtesplementation

14 Chapter 3

fror :
fe :
Mprice jg,, m)
Cy,
Reje.> Mer
cus: ‘.\ce,\\e 4 Ct(pl‘lce it
poceP? em~((S))
er, c

Figure 3.3: A protocol specified as a state machine.

of agents and the task of comprehending and maintaininggotst, while not
supporting any real runtime flexibility. Further, any seiea of paths will remain

arbitrary.
@ Off, ’r"}er Cus:
Price item)
mer Re/e
cU m)

e \\e C‘ ,O IC

((\e’“ Mme (

0\)%\9“\08\ D //vr cus:
é?"” e’(”ern)
~N ol . - -
O@/.b@f, 0 @) e, O
//l/@/-{ . /s [® N B o N\eﬂ\\

Figure 3.4: An alternative, more flexible state machine.

Chapter 3 15

3.4 Evaluation with Respect to MAS

Traditional software engineering approaches for spewjfyirotocols are opera-
tional in nature. Instead of specifying the meaning of a camication, they spec-
ify the flow of information among agents. The lack of meaniegds to the fol-
lowing observations about protocols produced followiraglitional approaches.

Software engineering Because the protocols specify the set of possible enact-
ments at a low level of abstraction, any but the most trivial difficult
to design and maintain. It is difficult to map the businessim@ments of
stakeholders to the protocols produced.

Flexibility Agents have little flexibility at runtime; the protocols essially dic-
tate agent skeletons. Any deviation from a protocol by amage matter
how sensible from a business perspective, is a violationthEy to enable
interoperation, the protocols are specified so that thedywe lock-step
synchronization among agents, which also limits flexiailit

Compliance Checking an agent’s compliance with the protocol is easynpo
tationally, it is akin to verifying whether a string is acteg by an FSM.
However, that ease comes at the expense of flexibility.

4 Traditional Al Approaches

The traditional Al approaches to agent communication bégim the opposite
extreme. These approaches presume that the agents ameictatsbased on cog-
nitive concepts, especially, beliefs, goals, and interg#ioThen they specify the
communication of such agents in terms of how the commuminaglates to their
cognitive representations.

The Al approaches came from two related starting pointsclvhias greatly
affected how they were shaped. The first starting point wdsuaian-computer
interaction broadly and natural language understandiegispally. The latter
includes the themes of discourse understanding from tegpeech, and speech
understanding. What these approaches had in common wakéelgavere geared
toward developing a tool that would assist a user in obtgimformation from
a database or performing simple transactions such as kgakirain ticket. A
key functionality of such tools was to infer what task therusseded to perform
and to help the user accordingly. These tools maintaineg¢amedel and were

16

Chapter 3

configured with a domain model upon which they reasoned wagisiecs to de-
termine how best to respond to their user’s request, andthpallg to anticipate
the user’s request.

Such a tool was obviously cooperative: its raison d’étre weassist its user
and failure to be cooperative would be simply unacceptablather, it was an
appropriate engineering assumption that the user was catofgeas well. That is,
the tool could be based on the idea that the user was not mighgamisleading
it, because a user would gain nothing in normal circumst&bgdying about his
needs and obtaining useless responses in return.

As the tools became more proactive they began to be thougis afjents.
Further, in some cases the agents of different users coutdncmicate with one
another, not only with their users. The agents would maintleir models of
their users and others based on the communications exahahigey could make
strong inferences regarding the beliefs and intentionsiefanother, and act and
communicate accordingly. These approaches worked for tiugjet setting. To
Al researchers, the approaches these agents used for coocatmgn with users
and other agents appeared to be applicable for agent coroatiomi in general.

The second body of work in Al that related to agent commuroocatame
from the idea of building distributed knowledge-based eyst (really just ex-
pert systems with an ability to communicate with each oth&he idea was that
each agent would include a reasoner and a knowledge repaiiearand com-
munication was merely a means to share such knowledge. tderewe see the
same two assumptions as for the human interaction workt, Enat the member
agents were constructed with the same knowledge repréismstaSecond, that
the agents were largely cooperative with each other.

4.1 KQML

Agent communication languages began to emerge in the 198@se were usu-
ally specific to the projects in which they arose, and typyaalied on the specific
internal representations used within the agents in thagegis.

Somewhat along the same lines, but with some improved giéyeaaose the
Knowledge Query and Manipulation Language or KQML. KQML wasated
by the DARPA Knowledge Sharing Effort, and was meant to bedamret to the
other work on knowledge representation technologies, as@ntologies. KQML
sought to take advantage of a knowledge representatiod bagee construct of a
knowledge base, such as had become prevalent in the 198@sadirof a specific
internal representation, KQML assumes that each agenttaimasna knowledge

Chapter 3 17

base described in terms of knowledge (more accuratelgfpassertions.

KQML proposed a small number of important primitives, sustgaeryand
tell. The idea was that each primitive could be given a semanéisedon the
effect it had on the knowledge bases of the communicatingtagé&pecifically,
an agent would sendtall for some content only if it believed the content, that is,
the content belonged in its knowledge base. And, an agentedsived aell for
some content would insert that content into its knowledgeebthat is, it would
begin believing what it was told.

Even though KQML uses knowledge as a layer of abstractiontbeedetailed
data structures of the internal implementation of ageritjrits out to be overly
restricted in several ways. The main assumption of KQML & the commu-
nicating agents are cooperative and designed by the sangnées Thus the
designers would make sure that an agent sent a messagessateffi,anly under
the correct circumstances and an agent who received suchsageecould imme-
diately accept its contents. When the agents are autonqrti@ysmay generate
spurious messages—and not necessarily due to malice.

KQML did not provide a clear basis for agent designers to skawhich of the
message types to use and how to specify their contents. Asuli,r@esigners all
too often resolved to using a single message type, typitallywith all meanings
encoded (usually in some ad hoc manner) in the contents ohédssages. That
is, the approach is to use differeel/ messages with arbitrary expressions placed
within the contents of the messages.

The above challenges complicated interoperability so ithags in general
difficult if not impossible for agents developed by differéeams to be able to
successfully communicate with one another.

4.2 FIPAACL

We discussed the FIPA interaction protocols in Section BIPA has also pro-
duced the FIPA ACL, one of the motivations behind which wasddress the
challenges with KQML. A goal for the FIPA ACL or Agent Commauation Lan-

guage was to specify a definitive syntax through which ingerability among

agents created by different developers could be facititalie addition, to ensure
interoperability, the FIPA ACL also specified the semanticshe primitives. Like

KQML's, the FIPA ACL semantics is mentalist, although it lestronger basis
in logic. The FIPA ACL semantics is based on a formalizatibthe cognitive

concepts such as the beliefs and intentions of agents.

18

Chapter 3

Beliefs and intentions are suitable abstractions for desggand implement-
ing agents. However, they are highly unsuitable as a basafagent communi-
cation language. A communication language supports tleeapération of two or
more agents. Thus it must provide a basis for one agent to utenam abstraction
of the local state of another agent. The cognitive conceptgge no such basis in
a general way. They lead to the internal implementatione@friteracting agents
to be coupled with each other. The main reason for this isttteatognitive con-
cepts are definitionally internal to an agent. For exampmasitler the case where
a merchant tells a customer that a shipment will arrive ont#sday. When the
shipment fails to arrive on Wednesday, would it be any catsm to the cus-
tomer that the merchant sincerely believed that it was gtif?g The merchant
could equally well have been lying. The customer would névew without an
audit of the merchant’s databases. In certain legal stnatisuch audits can be
performed but they are far from the norm in business encosinte

One might hope that it would be possible to infer the beliefds imtentions of
another party, but it is easy to see with some additionalatdle that no unique
characterization of the beliefs and intentions of an agepbssible. In the above
example, maybe the merchant had a sincere but false beljgfaybe the mer-
chant did not have the belief it reported; or, maybe the naerttvas simply un-
sure but decided to report a belief because the merchanhatsan intention to
consummate a deal with the customer.

It is true that if one developer implements all the interagtagents correctly,
the developer can be assured that an agent would send autartitessage only
in a particular internal state (set of beliefs and interdjorHowever such a mul-
tiagent system would be logically centralized and would bseverely limited
value.

It is worth pointing out that the FIPA specifications have ehdp with a split
personality. FIPA provides the semiformal specificatiomofagent management
system, which underlies the well-regarded JADE systemHWA also provides
definitions for several interaction protocols (discusse8ection 3.2), which are
also useful and used in practice, despite their limitatiéiBA provides a formal
semantics for agent communication primitives based onitiwgimoncepts, which
gives a veneer of rigor, but is never used in multiagent syste

4.3 Evaluation with Respect to MAS

The traditional Al approaches are mentalist, which rentdent of limited value
for multiagent systems.

Chapter 3 19

Software engineering The Al approaches offer high-level abstractions, which is
a positive. However, because the abstractions are mentaBsapproaches
cannot be applied to the design of multiagent systems ext# restricted
case where one developer designs all the agents (as expédioee). Since
there is no interaction in the sense of interaction Furtlesall the discus-
sion from Section 2.2 regarding the unsuitability of a sreatlof primitives.
Both KQML and FIPA suffer from this problem.

Flexibility The flexibility of agents is severely curtailed because sfrietions
on when agents can send particular communications.

Compliance It is impossible for an observer to verify the cognitive staft an
agent. Hence verifying agent compliance (for example,afagent has the
requisite cognitive state for sending a particular messiagmpossible.

5 Commitment-Based Multiagent Approaches

In contrast with the operational approaches, commitmestopols give primacy

to thebusiness meaningsd service engagements, which are captured through the
participants’commitmentso one another [60], [11, 52, 22, 56], [20]. Computa-
tionally, each participant is modeled as agent interacting agents carry out a
service engagement by creating and manipulating commisrnerone another.

5.1 Commitments

A commitmentis an expression of the foatdebtor, creditor, antecedentonsequent
wheredebtorandcreditor are agents, andntecedenandconsequenare propo-
sitions. A commitmentc(x,y,r,u) means thatx is committed toy that if r
holds, then it will bring about. If r holds, thenc(x,y,r,u) is detachedand the
commitmentc(x,y, T,u) holds (T being the constant for truth). if holds, then

the commitment iglischargedand does not hold any longer. All commitments
areconditional an unconditional commitment is merely a special case wtnere
antecedent equals. Examples 1-3 illustrate these concepts. In the examples
below, EBooK is a bookseller, and Alice is a customer.)

Example 1 (Commitment)C(EBook Alice,$12 BNW) means that EBook com-
mits to Alice that if she pays $12, then EBook will sends herlibokBrave New
World.

20

Chapter 3

Example 2 (Detach) If Alice makes the payment, that is, if $12
holds, then c(EBookAlice,$12 BNW) is detached. In other words,
C(EBookAlice,$12 BNW) A $12=- C(EBookAlice, T,BNW).

Example 3 (Discharge) If EBook sends the book, that isBINW holds, then
bothc(EBookAlice, $12 BNW) andc(EBook Alice, T,BNW) are discharged. In
other wordsBNW=- -C(EBook Alice, $12 BNW)A

—C(EBookAlice, T,BNW).

Importantly, commitments can be manipulated, which suisgdtaxibility. The
commitment operations [45] are listed belo®REATE, CANCEL, andRELEASE
are two-party operations, where@sLEGATE andASSIGN are three-party opera-
tions.

e CREATE(X,Y,r,u) is performed by, and it causeg(x,y,r,u) to hold.

e CANCEL(X,Y,r,u) is performed by, and it causes(x,y,r, u) to not hold.
e RELEASE(X,Y,r,u) is performed by, and it causes(x,y, r,u) to not hold.
e DELEGATE(X,Y,zr,u) is performed by, and it causeg(zy,r, u) to hold.
e ASSIGN(X,Y,zr,u) is performed by, and it causes(x,z,r,u) to hold.

e DECLARE(X,Y,r) is performed by to informy that ther holds.

DECLARE is not a commitment operation, but may indirectly affect ooitn
ments by causing detaches and discharges. In relation tm@&e2, when Alice
informs EBook of the payment by performimgcLARE(Alice, EBook $12), then
the proposition $12 holds, and causes a detact{BBook Alice, $12 BNW).

Further, a commitment arises in a social or legal contexe ddntext defines
the rules of encounter among the interacting parties, ateth gerves as an arbiter
in disputes and imposes penalties on parties that violaie tommitments. For
example, eBay is the context of all auctions that take placeugh the eBay
marketplace; if a bidder does not honor a payment commitrizgrdn auction
that it has won, eBay may suspend the bidder’s account.

A formal treatment of commitments and communication based¢ammit-
ments is available in the literature [48, 15].

Chapter 3 21

Table 3.1: A commitment protocol.

Offer(mer, cus price, item) means CREATE(mer, cus price, item)
Accepfcus mer, price, item) means CREATE(CUS mer, item price)
Rejectcus mer, price, item) means RELEASE(MEer, cus price, item)
Deliver(mer, cus item) means DECLARE(Mer, cus item)

Pay(cus mer, price) means DECLARE(CUS mer, price)

5.2 Commitment Protocol Specification

Table 3.1 shows the specification of a commitment protoctéen a merchant
and a customer (omitting sort and variable declarations)sinhply states the
meanings of the messages in terms of the commitments arimhgeen the
merchant and customer. For instance, the mesgxtgr(mer, cus price,item)
means the creation of the commitmentmer,cusprice item), meaning
the merchant commits to delivering the item if the customeawysp the
price; Rejectcusmer,priceitem) means a release of the commitment;
Deliver(mer, cus item) means that the propositigiemholds.

Figure 3.5(A) shows an execution of the protocol and FiguséB) its mean-
ing in terms of commitments. (The figures depicting execwgiase a notation
similar to UML interaction diagrams. The vertical lines agent lifelines; time
flows downward along the lifelines; the arrows depict messagetween the
agents; and any point where an agent sends or receives ageessannotated
with the commitments that hold at that point. In the figurestead of writing
CREATE, we writeCreate We say that th€reatemessage realizes tl@REATE
operation. Likewise, for other operations anECLARE.) In the figure, the mer-
chant and customer role are played by EBook and Alice, réispdg cg andcyp
are the commitments(EBook Alice, $12, BNW) and c(EBookAlice, T,BNW)
respectively.

5.3 Evaluation with Respect to MAS

Compliance Protocol enactments can be judged correct as long as thegiart
volved do not violate their commitments. A customer wouldrbeiolation
if he keeps the goods but fails to pay. In this manner, comeritisisupport
business-level compliance and do not dictate specific tipagdizations
[22].

22

Chapter 3

EBook Alice EBook Alice
% Cs % i}
Pay($12— o W cup
\DeliVer(B/VW)\‘ “cg %‘

e

Messaging Meaning

Figure 3.5: Distinguishing message syntax and meaning:vitewss of the same
enactment.

Flexibility The above formulation of correctness enhances flexibilgr dradi-
tional approaches by expanding the operational choicesgoh party [13].
For example, if the customer substitutes a new way to make/a¢at or
elects to pay first, no harm is done, because the behaviorisatat the
business level. And, the merchant may employ a new shippegustomer
may return damaged goods for credit; and so on. By contréaistout busi-

ness meaning, exercising any such flexibility would resultoancompliant
executions.

Software Engineering Commitments offer a high-level abstraction for capturing
business interactions. Further, a commitment-based appraccommo-
dates the autonomy of the participants in the natural marsaaially, an
agent is expected to achieve no more than his commitmentan@ments
thus also support loose coupling among agents. Commitivesseed ap-
proaches offer a compelling alternative to the traditid&lapproaches de-
scribed in Section 3 for building systems comprised of aomeous agents.

Figure 3.6 shows some of the possible enactments based oprobe
col in Table 3.1. The labelsy and cya are C(Alice, EBookBNW,$12) and
C(Alice,EBook T,$12), respectively. Figure 3.6(B) shows the enactment where
the book and payment are exchanged in Figure 3.3. Figuré&)3afd (C) show
the additional executions supported in Figure 3.4; Figu[d reflects a new
execution that we had not considered before, one where Aboels amAccept
even before receiving an offer. All these executions arepdiamt executions in
terms of commitments, and are thus supported by the protodalble 3.1.

Chapter 3 23

EBook Alice EBook Alice
Cr
c C C €af
Cp Cs
Create(Cp) CAC Create(Cp) CAC
CaCs AVB CACBle— | “A™B
_1C CuA—
Cusle—Declare($12) uB UA Declare(BNW)\’ c
UA
\Declare(BNW)\’
(A) (B)
EBook Alice EBook Alice
Cr
Cs eate(CB)
Create(Ca) c
Cg Cale— | A
CUA—Deg
_1C are
Cus «Declare($12) uB (BNw)—, Cua
(©) (D)

Figure 3.6: Flexible enactment.

Table 3.2: Comparison of agent communication approaches.
Traditional SE Traditional Al Commitment Protocols

Abstraction control flow mentalist business relationship
Compliance lexical basis unverifiable semantic basis
Flexibility low low high

Interoperability message-level integration business-level

Table 3.2 summarizes the three approaches.

Chapter 3

6 Engineering with Agent Communication

Protocols support the development of distributed systeinsatural way to ap-

ply protocols is to derive from them the specifications of thkes that feature

in them. The idea is to use these role specifications as a foagiesigning and

implementing the agents who would participate in the giverigzol. Role spec-

ifications are sometimes termeole skeletonor endpoints and the associated
problem is calledole generatiorandendpoint projection

The above motivation of implementing the agents accordirtie roles sug-
gests an important quality criterion. We would like the repeecifications to be
such that agents who correctly implement the roles candpteate successfully
without the benefit of any additional messages than thodedad in the proto-
col and which feature in the individual role specificatioria. other words, we
would like the agents implementing the roles to only be camee with satisfying
the needs of their respective roles without regard to theratbles: the overall
computation would automatically turn out to be correct.

Role generation is straightforward for two-party protacdrhis is so because
any message sent by one role is received by the other. Tlaesasy to ensure their
joint computations generate correct outcomes. But whesetbr more roles are
involved, because any message exchange involves two a@egiecting multi-
cast across roles for now) leaves one or more roles unawareatfhas transpired.
As a result, no suitable role skeletons may exist for a paitmvolving three or
more parties. We take this nonexistence to mean that theqmioin question is
causally ill-formed and cannot be executed in a fully dgtted manner. Such a
protocol must be corrected, usually through the insertiomessages that make
sure that the right information flows to the right parties anat potential race
conditions are avoided.

In a practical setting, then, the role skeletons are mappedsimple set of
method stubs. An agent implementing a role—in this metgghofleshing out
its skeleton—provides methods to process each incomingagesand attempts to
send only those messages allowed by the protocol. Roletsksldo not consider
the contents of the messages. As a result, they can be eggnesa finite state
machine too. Notice this machine is different from a statemree that specifies a
protocol. A role’s specification is very much focused on teespective of the role
whereas the machine of a protocol describes the progresgrot@col enactment
from a neutral perspective.

Chapter 3

25

6.1 Programming with Communications

The Java Agent Development Framework (JADE) is a populafgeia for de-

veloping and running agent-based applications. It implemthe FIPA protocols
discussed earlier. JADE provides support for the notionlwdtit termsehaviors

A behavior is an abstract specification of an agent that ckeniaes important
events such as the receipt of specified messages and theeramuof timeouts.
To implement an agent according to a behavior involves defitine methods
it specifies as callbacks. In particular, a role skeleton lmanmplemented by
defining the handlers for any incoming methods. The JADE aitonline offers

comprehensive instructions for building JADE applicaton

6.2 Modeling Communications

It is not trivial to specify theight commitments for particular applications. For
instance, Desai et al. [19] show how a scenario dealing vathign exchange
transactions may be formalized in multiple ways using cotmrants, each with
different ramifications on the outcomes. The challenge etsping the right
commitments leads us to the questittow can we guide software engineers in
creating appropriate commitment-based specifications?

Such guidance is often available for operational appraasheh as state ma-
chines and Petri nets that describe interactions in termaeaesdsage order and
occurrence. For instance, Figure 3.7 shows two commonrpatexpressed as
(partial) state machines, which can aid software engineespecifying opera-
tional interactions. Herdy ands are buyer and seller, respectively. (A) says that
the seller may accept or reject an order; (B) says the buygramafirm an order
after the seller accepts it.

Accept(s,b)\A
—Order(b,s) Accept(s,b) Confirm(b,s)
Reject(s,b)—> N
(A) (B)

Figure 3.7: Example operational patterns

By contrast, commitment protocols abstract away from dperal details,

26

Chapter 3

focusing on the meanings of messages, not their flow. Clegpgrational patterns
such as the above would not apply to the design of commitmenbgols. What
kinds of patterns would help in the design of commitment gerots? By and
large, they would need to lmisiness patterrs-characterizing requirements, not
operations—that emphasize meanings in terms of commisnéantontrast with
Figure 3.7, these patterns describe whateando make, accept, reject, or update
an offer, not when to send specific messages.

Business patterns support specifying business protoddiese patterns are
motivated by the following principles.

Autonomy compatibility Autonomy broadly refers to the lack of control: no
agent has control over another agent. To get things donatsaget up the
appropriate commitments by interacting. Any expectatimmf an agent
beyond what the agent has explicitly committed would caudddmn cou-

pling.

Explicit meanings The meaning ought to be made public, not hidden within
agent implementations.

6.2.1 Business Patterns

Business patternspattern encode the common ways in whaihdases engage
each other. Below is an example of t@mpensatiopattern.

e COMPENSATION

Intent To compensate the creditor in case of commitment cancatlati viola-
tion by the debtor.

Motivation It is not known in advance whether a party will fulfill its conitm
ments; compensation commitments provide some assurairtice toeditor
in case of violations.

Implementation Compensatg,y,r,u,p) meanreatéx, y,violated x,y,r,u),p).
Example Compensatener,cus price,item discouny; it means that the merchant

will offer the customer a discount on the next purchase ifitben is paid
for but not delivered.

Chapter 3

ConsequencesA commitment (even a compensation commitment) should ide-
ally be supported by compensation; however, at some levelptly re-
course is escalation to the surrounding busirmesgext—for example, the
local jurisdiction [51].

6.2.2 Enactment Patterns

Whereas a business pattern describes the meaning of cokatianj an enact-
ment pattern describes the conditions under which an apewnid enact a busi-
ness pattern, that ighento undertake the corresponding communication. A locus
of such enactments may serve as the basic agent skeleton.

e COUNTER OFFER

Intent One party makes an offer to another, who responds with a reddififer
of its own.

Motivation Essential for negotiation.

When Let C(x,y,r,u) be the commitment corresponding to the original of-
fer. Making a counteroffer would amount to creating the cammant
c(y,x,u,r’") such thats - u andr + r’, in other words, if the consequent
is strengthened and the antecedent is weakened. An alterimaplemen-
tation includes doinReleaséx,y, r,u) in addition.

Example Let's say C(EBookAlice, $12 BNW) holds. Alice can make the
counter offerc(Alice, EBook BNWA Dune $12) meaning that she wants
Dunein addition toBNW for the same price.

ConsequencesWhenu = U andr = r/, the counter offer amounts to a mutual
commitment.

6.2.3 Semantic Antipatterns

Semantic antipatterns identify forms of representatiahr@aasoning to be avoided
because they conflict with the autonomy of the participantsith a logical basis
for commitments.

e COMMIT ANOTHER ASDEBTOR

Intent An agent creates a commitment in which the debtor is anothemta

28

Chapter 3

Motivation To capture delegation, especially in situations where diegator is
in a position of power of over the delegatee.

Implementation The sender ofreate(y, z,p,q) iSX (xandy are different agents),
thus contravening the autonomy of the

Example Consider two sellers EBook and BookWorld. EBook sends
Creatg BookWorldAlice,$12 BNW) to Alice, which violated Book-
World’s autonomy.

ConsequencesA commitment represents a public undertaking by the del#or.
special case is when= z. That is,x unilaterally makes itself the creditor.

Criteria Failed y's autonomy is not respected.

Alternative Apply delegation to achieve the desired business relatipnbased
on prior commitments. In the above example, BookWorld cchdse a
standing commitment with EBook to accept delegations. EBmm then
send a delegate “instruction” to BookWorld upon which Boakf com-
mits to Alice.

The above are some examples of patterns. For a more extelistiof pat-
terns, see [16].

6.3 Communication-Based Methodologies

Because of the centrality of agent communication to mutiegystems, a number
of methodologies for designing and implementing multiagsstems are based
on communications. We point out a few such methodologiekerfurther read-
ings section.

The common idea behind these methodologies is to ident&hctdmmunica-
tions involved in the system being specified and to state thanings of such
communications. The main protocol concepts are roles, agess and message
meanings. Below we briefly outline the high-level consitierss involved in de-
signing a protocol.

¢ |dentify stakeholder requirements.

¢ Identify the roles involved in the interaction. Let’s sagtioles identified
arecustomer, merchant, shipper, andbanker.

Chapter 3

29

¢ If a suitable protocol is available from a repository, theoase it and we're
done. After all, one of key benefits of protocols is reusapikor instance,
suppose the stakeholders wanted to design a purchasegirdfabe pro-
tocol of Table 3.1 fits their requirements, we’re done.

e Often the required protocol may be obtaineddmynposingexisting proto-
cols. For example, the desired protocol could potentiadlyobtained by
combiningOrdering PaymentandShippingprotocols.

e Sometimes the protocol or parts of its may need to be writ{@rirom
scratch. Identify the communications among the roles. kKanmgple, there
would be messages between the customer and the merchanbthidtper-
tain to ordering items. The messages between the customéaak would
pertain to payment, and so on.

¢ Identify how the messages would affect their commitments. éxample,
the Offer message could be given a meaning similar to the one in Table 3.
The customer’s payment to the bank would effectively disghdis com-
mitment to pay the merchant. Similarly, the delivery of tleods by the
shipper would effectively discharge the merchant’s commaitt to pay, and
So on.

7 Advanced Topics and Challenges

This section describes some important current directioagént communication.

7.1 Primacy of Meaning

As we outlined in the foregoing, there is an unfortunate égrog to specify com-
munication protocols in operational terms at the cost ofrtteanings that they
convey. However, agent communication should be undersabtuk level of the
“social state” of the parties involved and how it affects @ndffected by commu-
nications. Adopting a meaning-based stance protects amakels from inadver-
tent dependencies upon implementation and yields the sidlexibility for the
participating agents while maintaining correctness.

The earlier meaning-based approaches to agent commuamic&inded to
combine assertions regarding the meanings of communinsatiith operational
details, such as the conditions under which what communitatust occur and

30

Chapter 3

how the communications must be mutually ordered. Such @paed details in-
terfere with an application of meaning-based reasoningumexthey require that
the agents maintain not only the meanings of the communpicaind the chang-
ing social state but also additional, otherwise irreleyvaependencies with the
decisions of other agents.

We have not been able to find even a single compelling “ndtgralation
where such details are necessary. Any requirement thateart pgpduce a mes-
sage is a violation of its autonomy. When we think of meanirapprly, there is
never a natural need for ordering constraints—the onlyrardeconstraints that
might arise are those based on artificial grounds such asagbconventions in a
particular domain. Such conventions are fine and an apprfeagyent commu-
nication should support them. However, they do not explagnlarge number of
ordering constraints that traditional specifications tenthclude.

Although the operational details interfere with reasorabgut meaning, they
are essential to ensure that each party obtains the infanmiaheeds at the right
time so as to proceed effectively. The recent approach tetheeBlindingly Sim-
ple Protocol Language [49] provides a simple resolutiorhte tension by cap-
turing the necessary operational details in a declarataen@ar. The declarative
representation of messages facilitates producing assentegarding social state
from them, and using such assertions as a basis for reasalning the meanings
of the messages.

A research challenge, then, is to develop languages andodwtigies in
which (and with which to formulate) proper meanings for commications, so
as to capture the needs of domain settings precisely.

7.2 \erifying Compliance

Because agent communication involves the interactionsmof @r more au-
tonomous parties it inherently has the weight of a “standaialbeit a minor,
nonuniversal standard. In other words, when two agentddadke another, they
must agree sufficiently on what they are talking about ang thast be able to
judge if their counterparty is interacting in a manner thetytwould expect. To
the first point, the traditional approaches missed statipgetations properly.
Just as a standard in any domain of practice is worthless amaot judge
whether the parties subject to the standard are complyitigitvor not, so it is
with agent communication. Any approach for agent commuignanust sup-
port the statement of the mutual expectations of the pariedvedand do so in
a manner that supports each party verifying if the otherscamplying with its

Chapter 3 31

expectations of them. This is an obvious point in retrospdotvever, the mental-
ist approaches disregarded the problem of compliance. i@dasps point having
been explained over a decade ago [44], there remains a ®nttedisregard it in
approaches to communication, especially as such apprearbheapplied within
software engineering methodologies.

A research challenge here is to design specification laregufgt promote the
verification of compliance and, more importantly, to deyed¢gorithms by which
an agent or a set of cooperating agents could verify the dang# of others based
on the communications it can monitor.

7.3 Protocol Refinement and Aggregation

If we are to treat communication as a first-class abstradtospecifying mul-
tiagent systems, we must be ready to support dealing witbegoal modeling
using that abstraction. Classically, two conceptual miadeklations are known:
refinement and aggregatioRefinemendeals with how a concept refines another
in the sense of the is-a hierarchggregationdeals with how concepts are put
together into composites in the sense of the part-wholeafiRy. Refinement
and aggregation are well-understood for traditional dbgeented design and are
supported by modern programming languages.

However, dealing with refinement in particular has beenmagat for commu-
nication protocols. Recent work on session types is promisi this regard [32]
as is work on refinement with respect to commitment-basetbpots [30]. An
important challenge is to produce a generalized theory aadcated languages
and tools that would support refinement and aggregation abpols for more
powerful meaning specifications.

7.4 Role Conformance

As we stated above, the meaning of communication captuessxectations that
the parties involved can have of each other. Accordinglyngrortant engineer-
ing challenge is to develop agents who would meet such eafi@cs. An agent
can potentially apply complex reasoning and, thereforefyneg that an agent
(implementation) would meet the expectations of anothenais nontrivial.

A natural way to approach the problem is to formulate a rokcdption or a
role skeletorbased on the specification of a communication protocol. Aesée
describes the basic structure of a role. An agent who playd (@nce imple-
ments) a role would provide additional details so as to flagttwe structure that

32

Chapter 3

is the skeleton. Since a protocol involves two or more rahesahallenge is to
determine sufficient structural properties of each roléerms of what messages
it can receive and send under what circumstances and anyraioits on how the
local representation of the social state should progredighi of the messages
received and sent. We can then publish the descriptionschfrede in a protocol
along with the protocol specification.

At the same time, one can imagine that software vendors n@jupe agent
implementations that are compatible with different roks:endor would not and
should not provide the internal details but would and shquittide the public
“interface” of the agent in terms of its interactions. In @ttwords, a vendor
would describe a role that its agent would be able to play. eimegal, an agent
may need to participate in more than one protocol. Thus itldvbelp to know
if the role as published by a vendor conforms with the role egvdd from a
protocol. This is the problem able conformance Solving this problem for a
particular language would help automate part of the taskesting a multiagent
system from disparate agents while ensuring that the ageres if implemented
heterogeneously, would be able to interoperate with respecspecified protocol.

An important research challenge is to identify formal laages for specifying
roles along with algorithms for determining whether a ralaforms with another.

8 Conclusions

It should be no surprise to anyone that communication isséart of multiagent
systems, not only in our implementations but also in our eption of what a
multiagent system is and what an agent is.

To our thinking, an agent is inherently autonomous. Yetpaomous, hetero-
geneously constructed agents must also be interdependezgoh other if they
are to exhibit complex behaviors and sustain importantwesld applications.
A multiagent system, if it is any good, must be loosely cod@ad communica-
tion is the highly elastic glue that keeps it together. Sieadly, communication,
understood in terms of agents and based on high-level abstra such as those
we explained above, provides the quintessential basibématms-length relation-
ships desired in all modern software engineering as it adeethe challenges of
large decentralized systems.

The foregoing provided a historical view of the agent comioaiion, iden-
tifying the main historical and current ideas in the field.isTbhapter has only
scratched the surface of this rich and exciting area. Wedritie reader to delve

Chapter 3

33

deeper and to consider many of the fundamental researclepistthat arise in
this area. An important side benefit is that, faced with thallehges of open
systems such as on the Web, in social media, in mobile conmpuéind cyber-
physical systems, traditional computer science is nowrtregg to appreciate the
importance and value of the abstractions of agent commtioicarhus progress
on the problems of agent communication can have significapact on much of
computer science.

Further Reading

Agent communication is one of the most interesting topianuitiagent systems,
not only because of its importance to the field but also bexati#he large number
of disciplines that it relates to. In particular, it touchgson ideas in philosophy,
linguistics, social science (especially organizations iastitutions), software en-
gineering, and distributed computing. The readings belaolivtake the reader
deeper into these subjects.

Philosophical foundations. Some of the most important works on the philos-
ophy of language undergird the present understanding ofraamcation.
Austin [6] introduced the idea of communication as actioear® devel-
oped two accounts of communication, one emphasizing théalmncepts
of the parties involved [41] and the second the notion ofaaeiality that
sustains and is sustained by language [42]. Some recenswgriChopra,
Singh, and their colleagues have exploited the distindigtmween constitu-
tion and regulation that Searle described [14, 38].

Organizations and institutions. Several researchers in multiagent systems have

studied the notions of organizations and institutions. sehworks provide
computational bases for agents to participate in strudtuedationships.
The works of Vazquez-Salceda and the Dignums [55, 3] andoohdfa
and Colombetti [27] highlight important conceptual andgpical consider-
ations in this area.

Norms, conventions, and commitments.The notions of organizations and in-
stitutions are defined based on the normative relationshgisarise among
their participants. Artikis, Jones, Pitt, and Sergot hasreetbped formal-
izations of norms that are worth studying as influential pspg, 37]. Jones
and Parent [36] formalize conventions as a basis for comeation.

34

Chapter 3

Singh proposed the notion of social commitments [43, 45]rasgoortant
normative concept to be used for understanding socialoakttips. He pro-
posed commitments as basis for a social semantics for comatiam [46].

A related idea has been developed by Colombetti [17]. A fésamantics
for commitments [48] and the proper reasoning about comenitsiin situ-
ations with asynchronous communication among decouplentagl5] are
significant to practice and promising as points of deparfaremportant
research in this area.

Software engineering. A number of approaches apply communications as cen-
tral to the development of multiagent systems [10, 39, 2918 Further,
several design and verification tools for communicationiqgols and agent
communication generally have been proposed [59, 4, 2, 123B, The
development of well-principled tools is an important resbalirection be-
cause of their potential impact on computer science—if ttmyld lead to
the expanded deployment of multiagent system.

Challenges. The agent communication manifesto is a collection of shestgs
by several researchers that seek to articulate the mailengak and direc-
tions in this area [12]. The reader should consult it befordarking on
research in this area.

O Exercises

1. Which of the following statements are true?

(a) Communications are an important class of interactietabse they
support the autonomy of the parties involved

(b) The three elements of a communicative act are locutitogution,
and perlocution

(c) Unlike traditional settings, perlocutions provide thight basis for
communicative acts in open, service-oriented settings

(d) Unlike in a traditional finite state machine, the states commitment
machine are specified using logic and each transition quorets to
the meaning of the message that labels the transition

Chapter 3 35

(e) In an open environment, two agents might sometimes reedmn-
bine their local observations in order to determine thaira thgent is
complying with its commitments

2. Which of the following statements are true?

(&) In an open environment, we can typically ensure compéamsed
upon the implementations of the interacting agents

(b) The benefit of employing a commitment protocol is thatxaely
specifies the order of the messages without regard to theinimg

(c) Using the meanings of the messages, we can compute wiaeties-
sage may be sent in the current state, and the next state odd w
result from doing so

(d) Ideally, each participant in a protocol should be abheetdfy if any of
the commitments where it is the creditor are violated

3. Which of the following statements are true about interacaod
communication?

(a) Perlocutions are considered the core aspect of a concativa act

(b) The same proposition, e.geserve(Alice, UA 872, 14 May 2020), may
feature in arequestand adeclare

(c) We may not be able to decide if a statement sucBlag the doorlis
true or false but we can decide whether such a statement wades ma

(d) A statement such &hut the doorlbecomes true if the door in ques-
tion is shut opurpose not accidentally

4. Identify all of the following statements that aree about commit-
ments and commitment protocols

(a) If the debtor of a commitment delegates it simultangousth the
creditor of the same commitment assigning it, additionadsages are
in general needed for the new debtor and the new creditoraim le
about each other

(b) If the debtor of a commitment discharges it simultangousth the

creditor of the same commitment assigning it, no additiome$sages
are needed for the new creditor to learn that the debtor iptamn

36

Chapter 3

(c) A protocol for payment through a third party could natiyrae spec-
ified using the delegate of a commitment to pay

(d) Forward-going interactions such as ordering and paymeay be
modeled as commitment protocols, but not backward-goiteyaic-
tions such as returning goods for a refund

(e) Even though a commitment protocol captures the mearohdke
messages involved, the participants must accept the midtoorder
for it to work

5. We say that a commitment dischargedwhen the consequent
holds, expiredwhen the antecedent cannot ever hold, aimdated when
the antecedent holds but the consequent cannot ever hold.

Let E = {ep,e1,€,...,60,81,8,...} be a set of events such thatis the
complement o. For instance, ifp meangackage was delivered by 5PM
& meangackage was not delivered by 5PRurtherg, = e.

Let (vo, V1, ...,Vpn) represent an event trace, that is, the sequence of events
that have been recorded, where all there variables that range ovEer
Further, in any event trace, for any event, only the eventsocomplement
may occur, but not both (for example, the package was eithlereded by

5PM or it was not, but not both). Thus, for exampley, e3,&s) is a valid
trace, but(ep, e3,&s5,&p) is not.

Assume that the commitmeatx,y, ey, e; A €) holds right before we start
recording eventsxcommits toy that if g occurs, botle; ande, will occur).

For each the following event traces, indicate whether themament is
(a) satisfactorily resolved (via discharge or expiratiqb) violated, or (c)
continues to hold.

6. Examine Figure 3.1. Now create an FSM for the commitment com-
pensate pattern discussed in the chapter.

Chapter 3 37

7.

Examine Figure 3.1. Now specify a commitment pattern thpt ca
tures the idea of updating commitments.

. Create an FSM corresponding to the FIPA Request protocalrsho

in Figure 3.2.

: Create a WS-CDL specification for the FIPA Request protocol.
10.

Consider the following outline of a process for buying baoks
merchant offers an online catalog of books with price andalviity infor-
mation. A customer can browse the catalog and purchaseylartbooks
from the catalog or the merchant may contact the customecttiirwith of-
fers for particular books. However, the customer must gedar shipment
on his own: in other words, he must arrange for a shipper th ppcthe
books from the merchant’s store and deliver them to him. Ajlpents—to
the merchant for the books and to the shipper for deliverye-earried out
via a payment agency (such as PayPal).

(a) List the roles and messages involved in the protocol yidg the
above business process

(b) Specify the messages in terms of communicative acts

(c) Specify the protocol in three different ways: as an FS¥hwnessages
as the transitions, (2) an MSC, and (3) a commitment protocol

(d) Show a simplified MSC representing one possible enadtnvbere
the books have been delivered and the payments have been made

(e) Based on the commitment protocol you specified aboveotaten
points in the above described enactment with commitmeatshibld
at those points

11. Suppose the business process described in Question 10 albove

supported returns and refunds for customers.

(a) As we did above, specify the underlying protocol as an F&&/an
MSC, and as a commitment protocol

(b) Show both a synchronous and an asynchronous returnerefnact-
ment.

(c) Annotate both with the commitments at various pointan{Hor the
asynchronous enactment, read [15])

38

Chapter 3

12. Specify role skeletons for the purchase process with retam
refunds.

() Inthe JADE style.
(b) Inthe rule-based style. (Hint: read [22])

13. Map Figure 3.6 to an FSM and an MSC.

14. Compare the FSM and MSC from Question 13 to the commitment

protocol specification of Table 3.1 with respect to compimrease of cre-
ation, and ease of change.

15. Implement the logic for practical commitments describefHBi.

16. Implement a commitment-based middleware based on the postu

lates given in [15].

Acknowledgments

We have benefited from valuable discussions about agent comation with
several colleagues, in particular, our coauthors on pagéating to agent com-
munication: Matteo Baldoni, Cristina Baroglio, Nirmit CesScott Gerard, Elisa
Marengo, Viviana Patti, and Pinar Yolum.

Some parts of this chapter have appeared in previous workbebguthors
[16, 38].

Amit Chopra was supported by a Marie Curie Trentino award. niddar
Singh’s effort was partly supported by the National ScieRoeindation under
grant 0910868. His thinking on this subject has benefiteth fparticipation in
the OOI Cyberinfrastructure program, which is funded by N®Rtract OCE-
0418967 with the Consortium for Ocean Leadership via thetI@dceanographic
Institutions.

References

[1]

[2]

[3]

Marco Alberti, Federico Chesani, Marco Gavanelli, BwvalLamma, Paola Mello,
Marco Montali, and Paolo Torroni. Web service contractiBgecification and rea-
soning with SCIFF. IrProceedings of the 4th European Semantic Web Conference
pages 68-83, 2007.

Marco Alberti, Marco Gavanelli, Evelina Lamma, PaolalMeand Paolo Torroni.
Modeling interactions using social integrity constrains resource sharing case
study. InProceedings of the International Workshop on Declarativgerit Lan-
guages and Technologies (DAL Vplume 2990 oL NAI, pages 243—-262. Springer,
2004.

Huib Aldewereld, Sergio&lvarez—Napagao, Frank Dignum, and Javier Vazquez-
Salceda. Making norms concrete. Pmoceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems (AAN&ges 807-814,
Toronto, 2010. IFAAMAS.

[4] Alexander Artikis, Marek J. Sergot, and Jeremy Pitt. Aeeutable specification of

a formal argumentation protocdhrtificial Intelligence 171(10-15):776-804, 2007.

[5] Alexander Artikis, Marek J. Sergot, and Jeremy V. PitpeSifying norm-governed

[6]
[7]

[8]

[9]

computational societieACM Transactions on Computational LogiO(1), 2009.
John L. Austin.How to Do Things with Word<Clarendon Press, Oxford, 1962.

Fabio Luigi Bellifemine, Giovanni Caire, and Dominic &mnwood. Developing
Multi-Agent Systems with JADBViley-Blackwell, 2007.

Boualem Benatallah, Fabio Casati, and Farouk Toumanalysis and management
of web service protocols. I6onceptual Modeling ER 200¢olume 3288 oL NCS
pages 524-541. Springer, 2004.

Carlos Canal, Lidia Fuentes, Ernesto Pimentel, José&ndya, and Antonio Valle-
cillo. Adding roles to CORBA objectdEEE Transactions on Software Engineering
29(3):242-260, 2003.

39

40

Chapter 3

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Christopher Cheong and Michael P. Winikoff. Hermes:igaing flexible and ro-
bust agent interactions. In Virginia Dignum, editdiandbook of Research on Multi-
Agent Systems: Semantics and Dynamics of Organizationd¢lglchapter 5, pages
105-139. IGI Global, Hershey, PA, 2009.

Amit Chopra and Munindar P. Singh. Nonmonotonic conmmeibt machines. In
Frank Dignum, editorAdvances in Agent Communication: Proceedings of the 2003
AAMAS Workshop on Agent Communication Languagekime 2922 ofLNAI,
pages 183-200. Springer, 2004.

Amit K. Chopra, Alexander Artikis, Jamal Bentahar, MarColombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. |. Jones, Munindar iRgl® and Pinar
Yolum. Research directions in agent communicatidhCM Transactions on In-
telligent Systems and Technology (TIS2011. To appeat.

Amit K. Chopra and Munindar P. Singh. Contextualiziragranitment protocols. In
Proceedings of the 5th International Joint Conference otoAomous Agents and
Multiagent Systempages 1345-1352, 2006.

Amit K. Chopra and Munindar P. Singh. Constitutive majgerability. InProceed-
ings of the 7th International Conference on Autonomous #sgand MultiAgent
Systems (AAMA)ages 797-804, Estoril, Portugal, May 2008. IFAAMAS.

Amit K. Chopra and Munindar P. Singh. Multiagent commnént alignment. IdPro-
ceedings of the 8th International Conference on Autonomgests and MultiAgent
Systems (AAMA)ages 937-944, Budapest, May 2009. IFAAMAS.

Amit K. Chopra and Munindar P. Singh. Specifying and lgjgg commitment-
based business patterns. Rnoceedings of the 10th International Conference on
Autonomous Agents and MultiAgent Systems (AAMFEeEpei, May 2011. IFAA-
MAS.

Marco Colombetti. A commitment-based approach to agpaech acts and conver-
sations. InProceedings of the Autonomous Agents Workshop on Agentihgeg
and Communication Policiepages 21-29, May 2000.

R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modgliagent conversations
with colored petri nets. IWVorking Notes of the Workshop on Specifying and Imple-
menting Conversation Policiepages 59—-66, Seattle, Washington, May 1999.

Nirmit Desai, Amit K. Chopra, Matthew Arrott, Bill Spét, and Munindar P. Singh.
Engineering foreign exchange processes via commitmettqols. InProceedings
of the 4th IEEE International Conference on Services Comgupages 514-521,
Los Alamitos, 2007. IEEE Computer Society Press.

Chapter 3 41

[20] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Regenting and reasoning
about commitments in business processesPrbteedings of the 22nd Conference
on Artificial Intelligence pages 1328-1333, 2007.

[21] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Aet@a: A methodol-
ogy for modeling and evolution of cross-organizationaliivess processesACM
Transactions on Software Engineering and Methodology E®@519(2):6:1-6:45,
October 2009.

[22] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Murdar P. Singh. Interac-
tion protocols as design abstractions for business presedsEE Transactions on
Software Engineering31(12):1015-1027, December 2005.

[23] Nirmit Desai and Munindar P. Singh. On the enactabitifyjousiness protocols. In
Proceedings of the 23rd Conference on Artificial Intelliger{AAAI) pages 1126—
1131, Chicago, July 2008. AAAI Press.

[24] Hywel R. Dunn-Davies, Jim Cunningham, and Shamimahir&zally. Proposi-
tional statecharts for agent interaction protocolectronic Notes in Theoretical
Computer Sciengel34:55-75, 2005.

[25] ebBP. Electronic business extensible markup langlmg@ess process specifica-
tion schema v2.0.4, December 2006. docs.oasis-operbargldp/2.0.4/0S/.

[26] FIPA. FIPA interaction protocol specifications, 200BIPA: The Foundation for
Intelligent Physical Agents, http://www.fipa.org/regosy/ips.html.

[27] Nicoletta Fornara, Francesco Vigano, Mario Verdiogland Marco Colombetti. Ar-
tificial institutions: A model of institutional reality foopen multiagent systems.
Artificial Intelligence and Law16(1):89-105, March 2008.

[28] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language Addison-Wesley, Reading, MA, 3rd edition, 2003.

[29] Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby, Wal@mit. Oyenan, and Jorge
Valenzuela. O-MaSE: A customizable approach to developinljiagent processes.
In Proceedings of the 8th International Workshop on Agent iQeié Software En-
gineering (AOSE)2007.

[30] Scott N. Gerard and Munindar P. Singh. Formalizing aedfying protocol refine-
ments. ACM Transactions on Intelligent Systems and TechnologyTF2011. In
press.

[31] HL7Y reference information model, version 1.19. www.lokg/ Library/ data-model/
RIM/ C30119/ Graphics/ RIMbillboard.pdf, 2002.

42

Chapter 3

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Maltip asynchronous ses-
sion types. IProceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Pri
ciples of Programming Languages (PORpages 273—-284. ACM, 2008.

http://www.gs1.org/productssolutions/gdsn/. GD$Nobal Data Synchronization
Network.

http://mww.hitsp.org/. Hitsp: Healthcare informaii technology standards panel.

Marc-Philippe Huget and James Odell. Representingitaimeraction protocols
with agent UML. InAgent-Oriented Software Engineeringwlume 3382 0 NCS
pages 16-30. Springer, 2005.

Andrew J. I. Jones and Xavier Parent. A convention-aggproach to agent com-
munication languages.Group Decision and Negotiationl6(2):101-141, March
2007.

Andrew J. |. Jones and Marek Sergot. A formal charas&gion of institutionalized
power. Journal of the IGPI.4(3):429-445, 1996.

Elisa Marengo, Matteo Baldoni, Amit K. Chopra, CrigtiBaroglio, Viviana Patti,
and Munindar P. Singh. Commitments with regulations: Reiagpabout safety
and control in RGULA. In Proceedings of the 10th International Conference on
Autonomous Agents and MultiAgent Systems (AAMFEe®pei, May 2011. IFAA-
MAS.

Lin Padgham and Michael Winikoff. Prometheus: A preati agent-oriented
methodology. In Brian Henderson-Sellers and Paolo Gigrgditors, Agent-
Oriented Methodologieshapter 5, pages 107-135. Idea Group, Hershey, PA, 2005.

RosettaNet. Home page, 1998. www.rosettanet.org.
John R. SearleSpeech ActsCambridge University Press, Cambridge, UK, 1969.
John R. SearleThe Construction of Social Realitifree Press, New York, 1995.

Munindar P. Singh. Social and psychological commitieén multiagent systems.
In AAAI Fall Symposium on Knowledge and Action at Social anda@gational
Levels pages 104-106, 1991.

Munindar P. Singh. Agent communication languages:hR&ing the principles.
IEEE Computer31(12):40-47, December 1998.

Munindar P. Singh. An ontology for commitments in matfent systems: Toward
a unification of normative conceptsrtificial Intelligence and Law7(1):97-113,
March 1999.

Chapter 3

43

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Munindar P. Singh. A social semantics for agent comration languages. IRro-
ceedings of the 1999 IJCAI Workshop on Agent Communicatiagliagesvolume
1916 ofLecture Notes in Artificial Intelligencgages 31-45, Berlin, 2000. Springer.

Munindar P. Singh. Distributed enactment of multiatgeorkflows: Temporal logic
for service composition. IRProceedings of the 2nd International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAM#sges 907-914, Mel-
bourne, July 2003. ACM Press.

Munindar P. Singh. Semantical considerations on diadal and practical commit-
ments. InProceedings of the 23rd Conference on Atrtificial Intelligen(AAAI)
pages 176-181, Chicago, July 2008. AAAI Press.

Munindar P. Singh. Information-driven interactioriemted programming. IRro-
ceedings of the 10th International Conference on Auton@vments and MultiA-
gent Systems (AAMASrges 491-498, Taipei, May 2011. IFAAMAS.

Munindar P. Singh. LoST: Local state transfer—An atettural style for the dis-
tributed enactment of business protocols.Phoceedings of the 7th IEEE Interna-
tional Conference on Web Services (ICW&)ges 57—64, Washington, DC, 2011.
IEEE Computer Society.

Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. Qmitment-based service-
oriented architecturdEEE Computer42(11):72—-79, November 2009.

Munindar P. Singh, Amit K. Chopra, Nirmit Desai, and A¢HJ. Mallya. Protocols
for processes: Programming in the large for open systé&@s4 SIGPLAN Notices
39(12):73-83, December 2004.

Transaction workflow innovation standards team, Fatyu 2006.
http://www.twiststandards.org.

Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Tadga truly declarative

service flow language. IRroceedings of the 3rd International Workshop on Web

Services and Formal Methodeolume 4184 oL NCS pages 1-23. Springer, 2006.

Javier Vazquez-Salceda, Virginia Dignum, and Frangribm. Organizing multia-
gent systemsAutonomous Agents and Multi-Agent Systehi$3):307—360, 2005.

Michael Winikoff, Wei Liu, and James Harland. Enhargcicommitment machines.
In Proceedings of the 2nd International Workshop on DeclasmfA\gent Languages
and Technologies (DALT)yolume 3476 ofLNAI, pages 198-220, Berlin, 2005.
Springer-Verlag.

44

Chapter 3

[57]

[58]

[59]

[60]

WS-CDL. Web services choreography description lagguzersion 1.0, November
2005. www.w3.org/TR/ws-cdI-10/.

Daniel M. Yellin and Robert E. Strom. Protocol specifioas and component adap-
tors. ACM Transactions on Programming Languages and Syst&&{2):292—-333,
1997.

Pinar Yolum. Design time analysis of multiagent pratisc Data and Knowledge
Engineering Journal63:137-154, 2007.

Pinar Yolum and Munindar P. Singh. Flexible protocatafication and execution:
Applying event calculus planning using commitmentsPhceedings of the 1st In-
ternational Joint Conference on Autonomous Agents andiMidnt Systempages
527-534. ACM Press, July 2002.

Subject Index

agent, 5
autonomic agent, 6
autonomy, 5
heterogeneity, 5
intelligent agent, 6

architecture, 3
component, 3
connector, 3

autonomy, 28

belief, 19
business, 28

choreography, 12
cognitive concept, 17, 20
belief, 17
goal, 17
intention, 17
commitment, 7, 21
assign, 22
cancel, 22
conditional, 21
create, 22
delegate, 22
detached, 21
discharged, 21
release, 22
communicative act, 8
commissive, 9
directive, 9
illocutionary point, 9

informative, 9

performative, 9
compliance, 8, 12, 15, 17, 32
conformance, 5
coordination, 5

DARPA Knowledge Sharing Effort, 18
distributed system, 3

ebBP, 13
endpoint, 12
expert system, 18

FIPA, 14
ACL, 19
Request Interaction Protocol, 14
Foundation of Intelligent Physical
Agents,seeFIPA

institution, 35

intelligence, 6

intention, 19

interaction protocolseeprotocol
interoperation, 5

JADE, 27
behavior, 27
Java Agent Development Framework,
seeJADE

Knowledge Query and Manipulation
LanguageseeKQML

45

46

Index

KQML, 18

meaning, 21, 28, 31
message, 7
message, 4
message sequence chart, 13
methodology, 30
MSC, seemessage sequence chart

norm, 35

orchestration, 12
organization, 35

pattern, 28
enactment, 29

Petri Net, 11

process algebra, 11

protocol, 3, 33
aggregation, 33
foreign exchange, 4
GDSN, 4
HITSP, 4
HL7, 4
refinement, 33
requirements, 4
RosettaNet, 4
specifications, 4
standard protocol, 4
supply chain, 4
TWIST, 4

role, 4, 12, 33
role skeletonseerole

service engagement, 21

social commitmentseecommitment
social state, 31

speech actseecommunicative act
state machine, 11

statechart, 11
UML sequence diagram, 11

WS-CDL, 13

