
MULTIAGENT SYSTEMS

MIT Press, 2011

Contents

3 Agent Communication 1

Amit K. Chopra and Munindar P. Singh

1 Introduction . 1
1.1 Autonomy and its Implications 2
1.2 Criteria for Evaluation 6

2 Conceptual Foundations of Communication in MAS 6
2.1 Communicative Acts . 6
2.2 Agent Communication Primitives 8

3 Traditional Software Engineering Approaches 9
3.1 Choreographies . 10
3.2 Sequence Diagrams . 11
3.3 State Machines . 12
3.4 Evaluation with Respect to MAS 15

4 Traditional AI Approaches . 15
4.1 KQML . 16
4.2 FIPA ACL . 17
4.3 Evaluation with Respect to MAS 18

5 Commitment-Based Multiagent Approaches 19
5.1 Commitments . 19
5.2 Commitment Protocol Specification 21
5.3 Evaluation with Respect to MAS 21

6 Engineering with Agent Communication 24
6.1 Programming with Communications 25
6.2 Modeling Communications 25

6.2.1 Business Patterns 26
6.2.2 Enactment Patterns 27
6.2.3 Semantic Antipatterns 27

i

CONTENTS CONTENTS

6.3 Communication-Based Methodologies 28
7 Advanced Topics and Challenges 29

7.1 Primacy of Meaning . 29
7.2 Verifying Compliance 30
7.3 Protocol Refinement and Aggregation 31
7.4 Role Conformance . 31

8 Conclusions . 32
9 Exercises . 34

References . 39

ii

List of Figures

3.1 Updating an offer. 5
3.2 FIPA Request Interaction Protocol 13
3.3 A protocol specified as a state machine. 14
3.4 An alternative, more flexible state machine. 14
3.5 Distinguishing message syntax and meaning: two views ofthe

same enactment. 22
3.6 Flexible enactment. 23
3.7 Example operational patterns . 25

iii

List of Tables

3.1 A commitment protocol. 21
3.2 Comparison of agent communication approaches. 23

v

Chapter 3

Agent Communication

Amit K. Chopra and Munindar P. Singh

1 Introduction

Multiagent systems are distributed systems. Engineering amultiagent system
means rigorously specifying the communications among the agents by way of
interaction protocols. What makes specifying the protocols for agent interaction
especially interesting and challenging is that agents areautonomousandheteroge-
neousentities. These properties of agents have profound implications on the na-
ture of protocol specifications. As we shall see, protocols for multiagent systems
turn out to be fundamentally different from those for other kinds of distributed
systems such as computer networks and distributed databases.

We conceptualize all distributed systems in architecturalterms—as consisting
of components and connectors between the components. The components of the
Internet are all nodes with IP addresses. The main connectoris the Internet Pro-
tocol, which routes packets between the nodes. The components of the Web are
the clients (such as browsers) and servers and the connectoris the HTTP proto-
col. The components in a distributed database are the clientdatabases and the
coordinator and a connector is the two-phase commit protocol. We can discern a
pattern here: the connectors are nothing but the interaction protocols among the
components. Further, we can associate protocols with the application it facilitates.
For example, the Internet Protocol facilitates routing; HTTP facilitates access to

1

2 Chapter 3

a distributed database of resources; and the two-phase commit protocol facilitates
distributed transactions.

The same applies for multiagent systems except that the components are au-
tonomous and heterogeneous agents, and applications are typically higher-level—
for example, auctions, banking, shipping, and so on. Each application would have
its own set of requirements and therefore we would normally find different proto-
cols for each application. Below, the termtraditional distributed systemsrefers to
non-multiagent distributed systems such as the Internet, the Web, and so on.

The importance of protocols is not lost upon industry. Communities of prac-
tice are increasingly interested in specifying standard protocols for their respective
domains. RosettaNet [40] (e-business), TWIST [53] (foreign exchange transac-
tions), GDSN [33] (supply chains), and HITSP [34] and HL7 [31] (health care)
are just a few examples.

Our objectives in this chapter are to help the reader developa clear sense of
the conceptual underpinnings of agent communication and tohelp the reader learn
to apply the concepts to the extent possible using availablesoftware. The chapter
is broadly structured according to the following subobjectives.

Requirements for protocol specificationsThe inherently open nature of multi-
agent systems places certain requirements on protocol specifications. Meet-
ing these requirements is the key to designing good protocols.

Protocol specification approachesThere are many diverse approaches for spec-
ifying protocols. We evaluate some approaches widely practiced in soft-
ware engineering and some historically significant ones from artificial in-
telligence. We also study an approach that is particularly promising.

Directions in agent communication researchThe last fifteen years have seen
some exciting developments in agent communication. However, many prac-
tical concerns remain to be addressed. We discuss these briefly.

1.1 Autonomy and its Implications

Protocols are modular, potentially reusable specifications of interactions between
two or more components. The interactions are specified in terms of themes-
sagesthe components exchange. To promote reusability, a protocol is specified
abstractly with reference to theroles that the interacting components may adopt.
A protocol is designed with a certainapplicationin mind. Anenactmentrefers to
an execution of the protocol by the components.

Chapter 3 3

In distributed systems, the chief concern ishow can distributed components
work together effectively?In other words, how can we ensure theirinteroperation?
In engineering terms, protocols are the key to interoperation. The idea is that as
long as components are individuallyconformant, that is, follow their respective
roles in the protocol, they will be able to work together no matter how they are
implemented. Interoperation makes great engineering sense because it means that
the components are loosely coupled with each other; that is,we can potentially
replace a component by another conformant one and the modified system would
continue to function. You would have noticed that Web browsers and servers often
advertise the versions of the HTTP standard with which they are conformant.

The same concepts and concerns apply to multiagent systems.However,
agents are not ordinary components. They are components that are autonomous
and heterogeneous. Below, we discuss exactly what we mean bythese terms, and
how autonomy and heterogeneity naturally lead to requirements for agent interac-
tion protocols that go beyond protocols for traditional distributed systems.

Each agent is an autonomous entity in the sense that it itselfis a domain of
control: other agents have no direct control over its actions (including its commu-
nications). For instance, consider online auctions as theyare conducted on web
sites such as eBay. Sellers, bidders, and auctioneers are all agents, and none of
them exercises any control over the others. If an auctioneerhad control over bid-
ders, then (if it chose to) it could force any of the bidders tobid any amount by
simply invoking the appropriate method. Such a setting would lack any resem-
blance to real life.

There is a subtle tension between the idea of a protocol and autonomy. With
protocols, we seek to somehow constrain the interaction among agents so that
they would be interoperable. Autonomy means that the agentsare free to interact
as they please (more precisely, each agent acts accordinglyto the rationale of its
principal). From this observations follows our first requirement.We must design
protocols so that they do not overconstrain an agent’s interactions.

In traditional distributed systems, interoperation is achieved via low-level co-
ordination. The protocols there would specify the flow of messages between the
participants. In the case of the two-phase commit protocol,the controller co-
ordinates the commit outcome of a distributed transaction.In the first phase, a
controller component collects votes from individual databases about whether they
are each ready to commit their respective subtransactions.If they unanimously re-
spond positively, the controller, in the second phase, instructs each to commit its
respective subtransaction; otherwise, it instructs each to abort its subtransaction.

The above discussion of autonomy implies the following.

4 Chapter 3

The irrelevance of intelligence Contrast the notion of agent autonomy discussed
above with the one where autonomy is interpreted as the ability of an agent
to perform high-level reasoning (intelligent agents) or asthe degree to which
an agent can operate without the supervision of its principal (autonomic
agents). Consider that you want to automate your purchases on the Web.
On the one hand, you can design a simple bidding agent that takes input
from you about the things you want, the maximum prices you arewilling
to pay, and the reputation thresholds of the sellers and auctioneers you are
willing to deal with. On the other hand, you can design a sophisticated
bidding agent that mines your communications to discover the items you
desire and what you are willing to pay for them and can figure out on its
own which auctions to bid in on your behalf. From the agent communication
perspective, however, the latter’s sophistication does not matter—they are
both autonomous agents.

Logical versus physical distribution Because of their autonomy, agents are the
logical units of distribution: they can neither be aggregated nor decomposed
into processes. Whenever an application involves two or more agents, there
simply is no recourse but to consider their interactions. Constructs such
as processes, by contrast, are physical units of distribution. The choice of
whether an application is implemented as a single process ormultiple ones
is often driven by physical considerations such as geographical distribution,
throughput, redundancy, number of available processors and cores, and so
on. An agent itself may be implemented via multiple physicalunits of dis-
tribution; that choice, however, is immaterial from a multiagent systems
perspective.

Heterogeneity refers to the diversity of agent implementations. The software
engineering approach for accommodating heterogeneity is to make public the in-
terdependencies among the components. A component can thenbe implemented
based on what it depends on other components for (what it assumes) and what
others depend on it for (what it guarantees) without concernfor how the others
are implemented. The same approach applies to agents. The specification of the
interdependencies is essentially a protocol.

In traditional distributed systems, to accommodate heterogeneity, it is enough
that protocols specify the schemas of the messages exchanged as well as their
legal flows, that is, their ordering and occurrence. However, such a specification is
inadequate for multiagent systems, wherein accommodatingheterogeneity entails

Chapter 3 5

also specifying the semantics of the interaction. As an example, consider the finite
state machine in Figure 3.1. It specifies the part of a purchase protocol that deals
with making offers. This protocol involves two roles: buyer(b) and seller (s). The
transitions are labeled with the messages. First, the seller sends an offer to the
buyer. The buyer may then accept or reject the offer. After the buyer accepts, the
seller may send an updated offer.

Figure 3.1: Updating an offer.

There is, however, an important element of the specificationthat is missing
from this protocol. That element is what the messages mean inthe real world.
Making an offer in many settings would count as making a public, in other words,
social commitment(more on social commitments later). Thus when the seller
offers some book to the buyer for some price, it would mean that he is socially
committed to the buyer for the offer. Consequently, updating an offer, for instance,
by raising the price of the book, counts as updating the commitment. Specifically,
it means that the old commitment is canceled and in its place anew one is created.
Clearly, a protocol that specifies only the flow of messages, such as the one in
Figure 3.1 does not capture such subtleties of meaning.

If the meanings of messages are not public, that would potentially make the
agent noninteroperable. For example, this would happen if the buyer interprets
the seller’s offer as a commitment, but the seller does not. Their interaction would
potentially break down. Accommodating semantic heterogeneity presupposes that
we make the meanings of messages public as part of the protocol specification.

In practice, many multiagent protocols are specified as flowswithout reference
to the message meanings. And, they seem to work fairly well. In such cases, the
designers of the agents agree offline on how to interpret and process the messages

6 Chapter 3

and build this interpretation into the agents, thereby tightly coupling the agents.

1.2 Criteria for Evaluation

Communication has been studied in software engineering, distributed systems,
and distributed artificial intelligence. Consequently, there are many approaches
for specifying protocols. Later in the chapter, we discuss the major classes of ap-
proaches. Let us now motivate broad criteria by which to evaluate each approach.

Software engineering Ideally, protocols should be specified in terms of high-
level abstractions that appeal to their stakeholders. In other words, protocol
specifications should not be far removed from the expressionof stakeholder
requirements. Protocol specifications should be modifiable, easily under-
standable, and composable. Further, they should promote loose coupling
among agents.

Flexibility Agents should be able to enact protocols flexibly. Flexibility is espe-
cially important in dynamic settings where agents may come and go, and ex-
ceptions and opportunities may arise. Ideally, protocol specifications should
constrain agents no more than is necessary to ensure correctness, where cor-
rectness is understood in connection with the application domain of interest.

Compliance checking An important standard of correctness is compliance.
Checking an agent’s compliance with a protocol means determining if the
agent is following the protocol. To make such a determination presupposes
both that a protocol be precise and that its standard of correctness be based
on information that is accessible to the agents involved.

2 Conceptual Foundations of Communication in
MAS

2.1 Communicative Acts

An important theme in the study of communication isspeech act theory, better
calledcommunicative act theory, since it has little specific connection with spoken
communication. The main insight behind communicative act theory, due to the
philosopher of language, John Austin, is that communication is a form of action.
Specifically, we can think of communicative acts as those where “saying makes it

Chapter 3 7

so.” For example, when a judge declares a couple married, thejudge is not merely
reporting on some privately or publicly known fact; instead, the judge is bringing
the fact into existence. The same may be said for a soccer umpire who ejects
a player from the game. The umpire is not merely stating that the player is not
allowed on the field for the duration of the game, the umpire iscausing the player’s
permission to enter the field during the current game to be withdrawn. The judge
and the umpire rely upon lower level means to carry out the communicative acts.
The judge may merely speak in public or sign a marriage certificate and affix his
seal on it. The umpire may flash a red card at the player and speak out the player’s
jersey number. The physical means exist and information is transferred but what
makes the communication a true communication is the convention in place in the
given setting. Informally, we can think of the judge as saying “I declare this couple
man and wife” and the umpire as saying “I declare this player as ejected from the
game.”

Austin argued that all communications could be phrased in the above declar-
ative form through the use of appropriateperformativeverbs. Thus a simplein-
formativesuch as “the shipment will arrive on Wednesday” can be treated as if it
were “I inform you that the shipment will arrive on Wednesday.” A directivesuch
as “send me the goods” can be treated as if it were “I request that you send me
the goods” or “I demand that you send me the goods.” or other such variations. A
commissivesuch as “I’ll pay you $5” can be treated as if it were “I promisethat
I’ll pay you $5.”

The above stylized construction has an important ramification for us as stu-
dents of multiagent systems. It emphasizes that although what is being informed,
requested, or promised may or may not be within the control ofthe informer, re-
quester, or promiser, the fact that the agent chooses to inform, request, or promise
another agent is entirely within its control. The above construction thus coheres
with our multiagent systems thinking about autonomy and reflects the essence of
the autonomous nature of communication as we explained above.

The above stylized construction has another more practicaland arguably more
nefarious ramification. Specifically, this is the idea that we can use the perfor-
mative verb in the above to identify the main purpose orillocutionary pointof
a communication separately from the propositional contentof the communica-
tion. The underlying intuition is that the same propositional content could be
coupled with different illocutionary points to instantiate distinct communicative
acts. In computer science terms, the illocutionary points map to message types,
and may be thought of as being the value of a message header. Following the
shipment example above, we would associate the proposition“the shipment will

8 Chapter 3

arrive on Wednesday” with different message types, for example, inform, request,
andquery.

2.2 Agent Communication Primitives

As a result of the naturalness of the above mapping from illocutionary points to
message types, it has been customary in agent communicationlanguages to spec-
ify a small number of specialized message types as primitives. Having message
types appears reasonable, but a pitfall lurks in this thinking. Because the literature
describes a few broad-brush illocutionary points, existing approaches reflect the
assumption that only a small number of primitives is adequate. They account for
the meaning of each of these primitives. The above assumption proves erroneous
because the applications of multiagent systems are manifold. In each application,
the meanings that we need can be potentially distinct from the others. Thus the of-
ficial meaning supplied by the agent communication languageis insufficient, and
developers end up adopting additional ad hoc meanings, which they hard-code
into their agents. As a result, the agents become tightly coupled with each other.
Such coupling makes it difficult to change a multiagent system dynamically, by
swapping out one agent for another as it were. Thus the potential benefit of using
an agent communication language is lost.

In response to the above challenges, the newer approaches dispense with a
fixed set of primitives based on illocutionary points. Instead, they provide an
underlying set of abstractions that can be used to provide a formal semantics for
any domain-specific primitives that a multiagent system mayneed. In other words,
each domain is different but there is an underlying logic-based representation in
which the meanings of the terms used in the domain may be expressed.

For business applications, today, commitments are the key abstractions em-
ployed in the underlying representation. For example, in the stock-trading do-
main, we would see primitives such asrequest stock quoteand provide stock
quote. And, in the electronic commerce domain, we would see primitives such
asquote price, quote delivery charges, and so on. The semantics of the primi-
tives would be expressed in commitments. Notice that even apparently similar
primitives may end up with completely different meanings, reflecting the needs
and practices of the applicable domains. For example, in typical practice, a price
quote is an offer to sell, meaning that the seller becomes committed to providing
the specified item at the quoted price. In contrast, in typical practice, a stock quote
carries no such connotation of an offer to sell—all it means is that the quoted price
is the price at which the previous transaction was completedon the specified stock

Chapter 3 9

symbol, not that the brokerage who provided the quote is offering to sell you the
stock for the quoted price. As you can well imagine, the meanings can easily
be made more subtle and involved to capture the nuances of practical application
scenarios.

Therefore, in a nutshell, it appears misguided to have a few (about a dozen
or so) primitives with their unique definitions, hoping thatthey would cover all
practical variations. For the above reason, we suggest thatyou read the literature
on the primitives motivated from the illocutionary points,merely as showing il-
lustrative examples—possibly even as important patterns but definitely not as an
adequate basis for building a multiagent system for an arbitrary application.

3 Traditional Software Engineering Approaches

We referred above to low-level distributed computing protocols as a way to ex-
plain architectures in general. We argued that we need to consider multiagent
systems and high-level protocols as a way to specify architectures that yield in-
teroperability at a level closer to application needs. However, traditional software
engineering arguably addresses the challenges of interoperability too. Would it
be possible to adopt software engineering techniques as a basis for dealing with
agent communication?

The above view has received a significant amount of attentionin the litera-
ture. Partly because of the apparent simplicity of traditional techniques and largely
because of their familiarity to researchers and practitioners alike, the traditional
techniques continue to garner much interest in the agents community.

The traditional techniques leave the formulation of the message syntax open—
a message could be any document and in common practice is an XML document.
And, they disregard the application meaning of the messagesinvolved. Instead,
these techniques focus on the operational details of communication, mostly con-
centrating on the occurrence and ordering of messages.

Thus a protocol may be specified in terms of a finite state machine that de-
scribes its states and legal transitions from a centralizedperspective. Formally,
this may be done in a variety of ways, including state machines [58, 8], Petri Nets
[18], statecharts [24], UML sequence diagrams [35], process algebras such as the
pi-calculus [9], and logic-based or declarative approaches [47, 54]. All of these
approaches specify a set of message occurrences and orderings that are deemed to
capture the protocol being specified. We discuss a few of these below.

The above-mentioned traditional representations have theadvantage of there

10 Chapter 3

being a number of formal tools for verifying and even validating specifications
written in those representations. Thus a protocol designerwould be able to deter-
mine if a protocol in question would satisfy useful properties such as termination.
Implementing the endpoints or agents to satisfy such specifications is generally
quite straightforward. Checking compliance with the specification is also concep-
tually straightforward. As long as the messages observed respect the ordering and
occurrence constraints given by a protocol, the enactment is correct with respect
to the protocol; otherwise, an enactment is not correct.

However, the value of such tools is diminished by the fact that in the traditional
representations there is no clear way to describe the meanings of the interactions.
In other words, these approaches lack an independent application-centric standard
of correctness. For example, let us suppose that a protocol happens to specify that
a merchant ships the goods to the customer and then the customer pays. Here, if
the customer happens to pay first, that would be a violation ofthe protocol. In
informal terms, we should not care. It should be the customer’s internal decision
whether to pay first. If the customer does (taking the risk of paying first or losing
bank interest on the money paid), that is the customer’s prerogative. However,
given the traditional, operational specification, any suchdeviation from the stated
protocol is equally unacceptable. Notice that it may in factbe in the customer’s
interest to pay first, for example, to include the expense in the current year’s tax
deductions. But we have no way of knowing that.

Instead, if the protocol could be specified in terms of the meanings of the
communications involved, we would naturally express the intuition that all we
expect is that the customer eventually pays or that the customer pays no later than
some other crucial event. If the customer fails to pay, that would be a violation.
But if the customer pays early, so much the better.

3.1 Choreographies

The service-oriented computing literature includes studies of the notion of a
choreography. A choreography is a specification of the message flow among the
participants. Typically, a choreography is specified in terms of roles rather than
the participants themselves. Involving roles promotes reusability of the chore-
ography specification. Participantsadopt roles, that is, bind to the roles, in the
choreography.

A choreography is a description of an interaction from a shared or, more prop-
erly, aneutralperspective. In this manner, a choreography is distinguished from a
specification of aworkflow, wherein one party drives all of the other parties. The

Chapter 3 11

latter approach is called anorchestrationin the services literature.
An advantage of adopting a neutral perspective, as in a choreography, is that

it better applies in settings where the participants retaintheir autonomy: thus
it is important to state what each might expect from the others and what each
might offer to the others. Doing so promotes loose coupling of the components:
centralized approaches could in principle be equally loosely coupled but there
is a tendency associated with the power wielded by the central party to make
the other partners fit its mold. Also, the existence of the central party and the
resulting regimentation of interactions leads to implicitdependencies and thus
tight coupling among the parties.

A neutral perspective yields a further advantage that the overall computation
becomes naturally distributed and a single party is not involved in mediating all
information flows. A choreography is thus a way of specifyingand building dis-
tributed systems that among the conventional approaches most closely agrees with
the multiagent systems way of thinking. But important distinctions remain, which
we discuss below.

WS-CDL [57] and ebBP [25] are the leading industry supportedchoreography
standardization efforts. WS-CDL specifies choreographiesas message exchanges
among partners. WS-CDL is based on the pi-calculus, so it hasa formal oper-
ational semantics. However, WS-CDL does not satisfy important criteria for an
agent communication formalism. First, WS-CDL lacks a theory of the mean-
ings of the message exchanges. Second, when two or more messages are per-
formed within a given WS-CDL choreography, they are handledsequentially by
default, as in an MSC. Third, WS-CDL places into a choreography actions that
would be private to an agent, such as what it should do upon receiving a message.
Fourth, for nested choreographies, WS-CDL relies upon local decision-making by
an agent, such as whether to forward a request received in onechoreography to
another [50].

3.2 Sequence Diagrams

The most natural way to specify a protocol is through a message sequence chart
(MSC), formalized as part of UML as Sequence Diagrams [28]. The roles of a
protocol correspond to the lifelines of an MSC; each edge connecting two life-
lines indicates a message from a sender to a receiver. Time flows downward by
convention and the ordering of the messages is apparent fromthe chart. MSCs
support primitives for grouping messages into blocks. Additional primitives in-
clude alternatives, parallel blocks, or iterative blocks.Although we do not use

12 Chapter 3

MSCs extensively, they provide a simple way to specify agentcommunication
protocols.

FIPA (the Foundation of Intelligent Physical Agents) is a standards body, now
part of the IEEE Computer Society, that has formulated agentcommunication
standards. FIPA defines a number of interaction protocols. These protocols in-
volve messages of the standard types in FIPA. Each FIPA protocol specifies the
possible ordering and occurrence constraints on messages as a UML Sequence
Diagram supplemented with some informal documentation.

Figure 3.2 shows the FIPA Request Interaction Protocol in FIPA’s variant of
the UML Sequence Diagram notation [26]. This protocol involves two roles, an
INITIATOR and aPARTICIPANT. The INITIATOR sends arequestto thePARTIC-
IPANT, who either responds with arefuseor anagree. In the latter case, it fol-
lows up with a detailed response, which could be afailure, an inform-done, or an
inform-result. ThePARTICIPANT may omit theagreemessage unless theINITIA -
TOR asked for a notification.

The FIPA Request protocol deals with the operational details of when certain
messages may or must be sent. It does not address the meaningsof the messages
themselves. Thus it is perfectly conventional in this regard. Where it deviates
from traditional distributed computing is in the semanticsit assigns to the mes-
sages themselves, which we return to below. However, the benefit of having a
protocol is apparent even in this simple example: it identifies the roles and their
mutual expectations and thus decouples the implementations of the associated
agents from one another.

3.3 State Machines

Figure 3.3 shows a state machine between two roles, merchant(mer) and customer
(cus) as a state machine. The transitions are labeled with messages; the prefixmer,
cus indicates a message from the merchant to the customer, andcus, mer indicates
a message from the customer to the merchant. This state machine supports two
executions. One execution represents the scenario where the customer rejects the
merchant’s offer. The other execution represents the scenario where the customer
accepts the offer, following which the merchant and the customer exchange the
item and the payment for the item. In the spirit of a state machine, Figure 3.3 does
not reflect the internal policies based upon which the customer accepts an offer.

Consider the state machine in Figure 3.4. The dotted paths indicate two addi-
tional executions that are not supported by the state machine in Figure 3.3. The
executions depict the scenarios where the customer sends the payment upon re-

Chapter 3 13

Initiator Participant

Request

Refuse

[REFUSED]

Agree

[AGREED andNOTIFICATION]

Fail

Inform-done

Inform-result

AltAlt

AltAlt

Figure 3.2: FIPA Request Interaction Protocol, from the FIPA specification [26],
expressed as a UML Sequence Diagram.

ceiving an offer and after sending an accept, respectively.These additional execu-
tions are just as sensible as the original ones. However, in the context of the state
machine in Figure 3.3, these executions are triviallynoncompliant. The reason
is that checking compliance with choreographies is purely syntactical—the mes-
sages have to flow between the participants exactly as prescribed. Clearly, this
curbs the participants’ autonomy and flexibility.

We can attempt to ameliorate the situation by producing everlarger FSMs that
include more and more paths. However, doing so complicates the implementation

14 Chapter 3

Figure 3.3: A protocol specified as a state machine.

of agents and the task of comprehending and maintaining protocols, while not
supporting any real runtime flexibility. Further, any selection of paths will remain
arbitrary.

Figure 3.4: An alternative, more flexible state machine.

Chapter 3 15

3.4 Evaluation with Respect to MAS

Traditional software engineering approaches for specifying protocols are opera-
tional in nature. Instead of specifying the meaning of a communication, they spec-
ify the flow of information among agents. The lack of meaning leads to the fol-
lowing observations about protocols produced following traditional approaches.

Software engineering Because the protocols specify the set of possible enact-
ments at a low level of abstraction, any but the most trivial are difficult
to design and maintain. It is difficult to map the business requirements of
stakeholders to the protocols produced.

Flexibility Agents have little flexibility at runtime; the protocols essentially dic-
tate agent skeletons. Any deviation from a protocol by an agent, no matter
how sensible from a business perspective, is a violation. Further, to enable
interoperation, the protocols are specified so that they produce lock-step
synchronization among agents, which also limits flexibility.

Compliance Checking an agent’s compliance with the protocol is easy: compu-
tationally, it is akin to verifying whether a string is accepted by an FSM.
However, that ease comes at the expense of flexibility.

4 Traditional AI Approaches

The traditional AI approaches to agent communication beginfrom the opposite
extreme. These approaches presume that the agents are constructed based on cog-
nitive concepts, especially, beliefs, goals, and intentions. Then they specify the
communication of such agents in terms of how the communication relates to their
cognitive representations.

The AI approaches came from two related starting points, which has greatly
affected how they were shaped. The first starting point was ofhuman-computer
interaction broadly and natural language understanding specifically. The latter
includes the themes of discourse understanding from text orspeech, and speech
understanding. What these approaches had in common was thatthey were geared
toward developing a tool that would assist a user in obtaining information from
a database or performing simple transactions such as booking a train ticket. A
key functionality of such tools was to infer what task the user needed to perform
and to help the user accordingly. These tools maintained a user model and were

16 Chapter 3

configured with a domain model upon which they reasoned via heuristics to de-
termine how best to respond to their user’s request, and potentially to anticipate
the user’s request.

Such a tool was obviously cooperative: its raison d’être was to assist its user
and failure to be cooperative would be simply unacceptable.Further, it was an
appropriate engineering assumption that the user was cooperative as well. That is,
the tool could be based on the idea that the user was not purposefully misleading
it, because a user would gain nothing in normal circumstances by lying about his
needs and obtaining useless responses in return.

As the tools became more proactive they began to be thought ofas agents.
Further, in some cases the agents of different users could communicate with one
another, not only with their users. The agents would maintain their models of
their users and others based on the communications exchanged. They could make
strong inferences regarding the beliefs and intentions of one another, and act and
communicate accordingly. These approaches worked for their target setting. To
AI researchers, the approaches these agents used for communicating with users
and other agents appeared to be applicable for agent communication in general.

The second body of work in AI that related to agent communication came
from the idea of building distributed knowledge-based systems (really just ex-
pert systems with an ability to communicate with each other). The idea was that
each agent would include a reasoner and a knowledge representation and com-
munication was merely a means to share such knowledge. Here,too, we see the
same two assumptions as for the human interaction work. First, that the member
agents were constructed with the same knowledge representations. Second, that
the agents were largely cooperative with each other.

4.1 KQML

Agent communication languages began to emerge in the 1980s.These were usu-
ally specific to the projects in which they arose, and typically relied on the specific
internal representations used within the agents in those projects.

Somewhat along the same lines, but with some improved generality, arose the
Knowledge Query and Manipulation Language or KQML. KQML wascreated
by the DARPA Knowledge Sharing Effort, and was meant to be an adjunct to the
other work on knowledge representation technologies, suchas ontologies. KQML
sought to take advantage of a knowledge representation based on the construct of a
knowledge base, such as had become prevalent in the 1980s. Instead of a specific
internal representation, KQML assumes that each agent maintains a knowledge

Chapter 3 17

base described in terms of knowledge (more accurately, belief) assertions.
KQML proposed a small number of important primitives, such as query and

tell. The idea was that each primitive could be given a semantics based on the
effect it had on the knowledge bases of the communicating agents. Specifically,
an agent would send atell for some content only if it believed the content, that is,
the content belonged in its knowledge base. And, an agent whoreceived atell for
some content would insert that content into its knowledge base, that is, it would
begin believing what it was told.

Even though KQML uses knowledge as a layer of abstraction over the detailed
data structures of the internal implementation of agent, itturns out to be overly
restricted in several ways. The main assumption of KQML is that the commu-
nicating agents are cooperative and designed by the same designers. Thus the
designers would make sure that an agent sent a message, such as atell, only under
the correct circumstances and an agent who received such a message could imme-
diately accept its contents. When the agents are autonomous, they may generate
spurious messages—and not necessarily due to malice.

KQML did not provide a clear basis for agent designers to choose which of the
message types to use and how to specify their contents. As a result, designers all
too often resolved to using a single message type, typicallytell, with all meanings
encoded (usually in some ad hoc manner) in the contents of themessages. That
is, the approach is to use differenttell messages with arbitrary expressions placed
within the contents of the messages.

The above challenges complicated interoperability so thatit was in general
difficult if not impossible for agents developed by different teams to be able to
successfully communicate with one another.

4.2 FIPA ACL

We discussed the FIPA interaction protocols in Section 3.2.FIPA has also pro-
duced the FIPA ACL, one of the motivations behind which was toaddress the
challenges with KQML. A goal for the FIPA ACL or Agent Communication Lan-
guage was to specify a definitive syntax through which interoperability among
agents created by different developers could be facilitated. In addition, to ensure
interoperability, the FIPA ACL also specified the semanticsof the primitives. Like
KQML’s, the FIPA ACL semantics is mentalist, although it hasa stronger basis
in logic. The FIPA ACL semantics is based on a formalization of the cognitive
concepts such as the beliefs and intentions of agents.

18 Chapter 3

Beliefs and intentions are suitable abstractions for designing and implement-
ing agents. However, they are highly unsuitable as a basis for an agent communi-
cation language. A communication language supports the interoperation of two or
more agents. Thus it must provide a basis for one agent to compute an abstraction
of the local state of another agent. The cognitive concepts provide no such basis in
a general way. They lead to the internal implementations of the interacting agents
to be coupled with each other. The main reason for this is thatthe cognitive con-
cepts are definitionally internal to an agent. For example, consider the case where
a merchant tells a customer that a shipment will arrive on Wednesday. When the
shipment fails to arrive on Wednesday, would it be any consolation to the cus-
tomer that the merchant sincerely believed that it was goingto? The merchant
could equally well have been lying. The customer would neverknow without an
audit of the merchant’s databases. In certain legal situations, such audits can be
performed but they are far from the norm in business encounters.

One might hope that it would be possible to infer the beliefs and intentions of
another party, but it is easy to see with some additional reflection that no unique
characterization of the beliefs and intentions of an agent is possible. In the above
example, maybe the merchant had a sincere but false belief; or, maybe the mer-
chant did not have the belief it reported; or, maybe the merchant was simply un-
sure but decided to report a belief because the merchant alsohad an intention to
consummate a deal with the customer.

It is true that if one developer implements all the interacting agents correctly,
the developer can be assured that an agent would send a particular message only
in a particular internal state (set of beliefs and intentions). However such a mul-
tiagent system would be logically centralized and would be of severely limited
value.

It is worth pointing out that the FIPA specifications have ended up with a split
personality. FIPA provides the semiformal specification ofan agent management
system, which underlies the well-regarded JADE system [7].FIPA also provides
definitions for several interaction protocols (discussed in Section 3.2), which are
also useful and used in practice, despite their limitations. FIPA provides a formal
semantics for agent communication primitives based on cognitive concepts, which
gives a veneer of rigor, but is never used in multiagent systems.

4.3 Evaluation with Respect to MAS

The traditional AI approaches are mentalist, which render them of limited value
for multiagent systems.

Chapter 3 19

Software engineering The AI approaches offer high-level abstractions, which is
a positive. However, because the abstractions are mentalist, the approaches
cannot be applied to the design of multiagent systems exceptin the restricted
case where one developer designs all the agents (as explained above). Since
there is no interaction in the sense of interaction Further,recall the discus-
sion from Section 2.2 regarding the unsuitability of a smallset of primitives.
Both KQML and FIPA suffer from this problem.

Flexibility The flexibility of agents is severely curtailed because of restrictions
on when agents can send particular communications.

Compliance It is impossible for an observer to verify the cognitive state of an
agent. Hence verifying agent compliance (for example, if the agent has the
requisite cognitive state for sending a particular message) is impossible.

5 Commitment-Based Multiagent Approaches

In contrast with the operational approaches, commitment protocols give primacy
to thebusiness meaningsof service engagements, which are captured through the
participants’commitmentsto one another [60], [11, 52, 22, 56], [20]. Computa-
tionally, each participant is modeled as anagent; interacting agents carry out a
service engagement by creating and manipulating commitments to one another.

5.1 Commitments

A commitment is an expression of the formC(debtor,creditor,antecedent,consequent),
wheredebtorandcreditor are agents, andantecedentandconsequentare propo-
sitions. A commitmentC(x,y, r,u) means thatx is committed toy that if r
holds, then it will bring aboutu. If r holds, thenC(x,y, r,u) is detached, and the
commitmentC(x,y,⊤,u) holds (⊤ being the constant for truth). Ifu holds, then
the commitment isdischargedand does not hold any longer. All commitments
areconditional; an unconditional commitment is merely a special case wherethe
antecedent equals⊤. Examples 1–3 illustrate these concepts. In the examples
below, EBook is a bookseller, and Alice is a customer.)

Example 1 (Commitment)C(EBook,Alice,$12,BNW) means that EBook com-
mits to Alice that if she pays $12, then EBook will sends her the bookBrave New
World.

20 Chapter 3

Example 2 (Detach) If Alice makes the payment, that is, if $12
holds, then C(EBook,Alice,$12,BNW) is detached. In other words,
C(EBook,Alice,$12,BNW)∧$12⇒ C(EBook,Alice,⊤,BNW).

Example 3 (Discharge) If EBook sends the book, that is, ifBNW holds, then
bothC(EBook,Alice,$12,BNW) andC(EBook,Alice,⊤,BNW) are discharged. In
other words,BNW⇒¬C(EBook,Alice,$12,BNW)∧
¬C(EBook,Alice,⊤,BNW).

Importantly, commitments can be manipulated, which supports flexibility. The
commitment operations [45] are listed below;CREATE, CANCEL, andRELEASE

are two-party operations, whereasDELEGATE andASSIGN are three-party opera-
tions.

• CREATE(x,y, r,u) is performed byx, and it causesC(x,y, r,u) to hold.

• CANCEL(x,y, r,u) is performed byx, and it causesC(x,y, r,u) to not hold.

• RELEASE(x,y, r,u) is performed byy, and it causesC(x,y, r,u) to not hold.

• DELEGATE(x,y,z, r,u) is performed byx, and it causesC(z,y, r,u) to hold.

• ASSIGN(x,y,z, r,u) is performed byy, and it causesC(x,z, r,u) to hold.

• DECLARE(x,y, r) is performed byx to informy that ther holds.

DECLARE is not a commitment operation, but may indirectly affect commit-
ments by causing detaches and discharges. In relation to Example 2, when Alice
informs EBook of the payment by performingDECLARE(Alice,EBook,$12), then
the proposition $12 holds, and causes a detach ofC(EBook,Alice,$12,BNW).

Further, a commitment arises in a social or legal context. The context defines
the rules of encounter among the interacting parties, and often serves as an arbiter
in disputes and imposes penalties on parties that violate their commitments. For
example, eBay is the context of all auctions that take place through the eBay
marketplace; if a bidder does not honor a payment commitmentfor an auction
that it has won, eBay may suspend the bidder’s account.

A formal treatment of commitments and communication based on commit-
ments is available in the literature [48, 15].

Chapter 3 21

Table 3.1: A commitment protocol.

Offer(mer,cus,price, item)meansCREATE(mer,cus,price, item)
Accept(cus,mer,price, item)meansCREATE(cus,mer, item,price)
Reject(cus,mer,price, item)meansRELEASE(mer,cus,price, item)
Deliver(mer,cus, item)meansDECLARE(mer,cus, item)
Pay(cus,mer,price)meansDECLARE(cus,mer,price)

5.2 Commitment Protocol Specification

Table 3.1 shows the specification of a commitment protocol between a merchant
and a customer (omitting sort and variable declarations). It simply states the
meanings of the messages in terms of the commitments arisingbetween the
merchant and customer. For instance, the messageOffer(mer,cus,price, item)
means the creation of the commitmentC(mer,cus,price, item), meaning
the merchant commits to delivering the item if the customer pays the
price; Reject(cus,mer,price, item) means a release of the commitment;
Deliver(mer,cus, item) means that the propositionitemholds.

Figure 3.5(A) shows an execution of the protocol and Figure 3.5(B) its mean-
ing in terms of commitments. (The figures depicting executions use a notation
similar to UML interaction diagrams. The vertical lines areagent lifelines; time
flows downward along the lifelines; the arrows depict messages between the
agents; and any point where an agent sends or receives a message is annotated
with the commitments that hold at that point. In the figures, instead of writing
CREATE, we writeCreate. We say that theCreatemessage realizes theCREATE

operation. Likewise, for other operations andDECLARE.) In the figure, the mer-
chant and customer role are played by EBook and Alice, respectively; cB andcUB

are the commitmentsC(EBook,Alice,$12,BNW) and C(EBook,Alice,⊤,BNW)
respectively.

5.3 Evaluation with Respect to MAS

Compliance Protocol enactments can be judged correct as long as the parties in-
volved do not violate their commitments. A customer would bein violation
if he keeps the goods but fails to pay. In this manner, commitments support
business-level compliance and do not dictate specific operationalizations
[22].

22 Chapter 3

Figure 3.5: Distinguishing message syntax and meaning: twoviews of the same
enactment.

Flexibility The above formulation of correctness enhances flexibility over tradi-
tional approaches by expanding the operational choices foreach party [13].
For example, if the customer substitutes a new way to make a payment or
elects to pay first, no harm is done, because the behavior is correct at the
business level. And, the merchant may employ a new shipper; the customer
may return damaged goods for credit; and so on. By contrast, without busi-
ness meaning, exercising any such flexibility would result in noncompliant
executions.

Software Engineering Commitments offer a high-level abstraction for capturing
business interactions. Further, a commitment-based approach accommo-
dates the autonomy of the participants in the natural manner: socially, an
agent is expected to achieve no more than his commitments. Commitments
thus also support loose coupling among agents. Commitment-based ap-
proaches offer a compelling alternative to the traditionalSE approaches de-
scribed in Section 3 for building systems comprised of autonomous agents.

Figure 3.6 shows some of the possible enactments based on theproto-
col in Table 3.1. The labelscA and cUA are C(Alice,EBook,BNW,$12) and
C(Alice,EBook,⊤,$12), respectively. Figure 3.6(B) shows the enactment where
the book and payment are exchanged in Figure 3.3. Figures 3.6(A) and (C) show
the additional executions supported in Figure 3.4; Figure 3.6(D) reflects a new
execution that we had not considered before, one where Alicesends anAccept
even before receiving an offer. All these executions are compliant executions in
terms of commitments, and are thus supported by the protocolin Table 3.1.

Chapter 3 23

Figure 3.6: Flexible enactment.

Table 3.2: Comparison of agent communication approaches.

Traditional SE Traditional AI Commitment Protocols

Abstraction control flow mentalist business relationship
Compliance lexical basis unverifiable semantic basis
Flexibility low low high
Interoperability message-level integration business-level

Table 3.2 summarizes the three approaches.

24 Chapter 3

6 Engineering with Agent Communication

Protocols support the development of distributed systems.A natural way to ap-
ply protocols is to derive from them the specifications of theroles that feature
in them. The idea is to use these role specifications as a basisfor designing and
implementing the agents who would participate in the given protocol. Role spec-
ifications are sometimes termedrole skeletonsor endpoints, and the associated
problem is calledrole generationandendpoint projection.

The above motivation of implementing the agents according to the roles sug-
gests an important quality criterion. We would like the rolespecifications to be
such that agents who correctly implement the roles can interoperate successfully
without the benefit of any additional messages than those included in the proto-
col and which feature in the individual role specifications.In other words, we
would like the agents implementing the roles to only be concerned with satisfying
the needs of their respective roles without regard to the other roles: the overall
computation would automatically turn out to be correct.

Role generation is straightforward for two-party protocols. This is so because
any message sent by one role is received by the other. Thus it is easy to ensure their
joint computations generate correct outcomes. But when three or more roles are
involved, because any message exchange involves two agents(neglecting multi-
cast across roles for now) leaves one or more roles unaware ofwhat has transpired.
As a result, no suitable role skeletons may exist for a protocol involving three or
more parties. We take this nonexistence to mean that the protocol in question is
causally ill-formed and cannot be executed in a fully distributed manner. Such a
protocol must be corrected, usually through the insertion of messages that make
sure that the right information flows to the right parties andthat potential race
conditions are avoided.

In a practical setting, then, the role skeletons are mapped to a simple set of
method stubs. An agent implementing a role—in this metaphor, by fleshing out
its skeleton—provides methods to process each incoming message and attempts to
send only those messages allowed by the protocol. Role skeletons do not consider
the contents of the messages. As a result, they can be expressed in a finite state
machine too. Notice this machine is different from a state machine that specifies a
protocol. A role’s specification is very much focused on the perspective of the role
whereas the machine of a protocol describes the progress of aprotocol enactment
from a neutral perspective.

Chapter 3 25

6.1 Programming with Communications

The Java Agent Development Framework (JADE) is a popular platform for de-
veloping and running agent-based applications. It implements the FIPA protocols
discussed earlier. JADE provides support for the notion of what it termsbehaviors.
A behavior is an abstract specification of an agent that characterizes important
events such as the receipt of specified messages and the occurrence of timeouts.
To implement an agent according to a behavior involves defining the methods
it specifies as callbacks. In particular, a role skeleton canbe implemented by
defining the handlers for any incoming methods. The JADE tutorial online offers
comprehensive instructions for building JADE applications.

6.2 Modeling Communications

It is not trivial to specify theright commitments for particular applications. For
instance, Desai et al. [19] show how a scenario dealing with foreign exchange
transactions may be formalized in multiple ways using commitments, each with
different ramifications on the outcomes. The challenge of specifying the right
commitments leads us to the question:How can we guide software engineers in
creating appropriate commitment-based specifications?

Such guidance is often available for operational approaches such as state ma-
chines and Petri nets that describe interactions in terms ofmessage order and
occurrence. For instance, Figure 3.7 shows two common patterns expressed as
(partial) state machines, which can aid software engineersin specifying opera-
tional interactions. Here,b ands are buyer and seller, respectively. (A) says that
the seller may accept or reject an order; (B) says the buyer may confirm an order
after the seller accepts it.

Figure 3.7: Example operational patterns

By contrast, commitment protocols abstract away from operational details,

26 Chapter 3

focusing on the meanings of messages, not their flow. Clearly, operational patterns
such as the above would not apply to the design of commitment protocols. What
kinds of patterns would help in the design of commitment protocols? By and
large, they would need to bebusiness patterns—characterizing requirements, not
operations—that emphasize meanings in terms of commitments. In contrast with
Figure 3.7, these patterns describe what itmeansto make, accept, reject, or update
an offer, not when to send specific messages.

Business patterns support specifying business protocols.These patterns are
motivated by the following principles.

Autonomy compatibility Autonomy broadly refers to the lack of control: no
agent has control over another agent. To get things done, agents set up the
appropriate commitments by interacting. Any expectation from an agent
beyond what the agent has explicitly committed would cause hidden cou-
pling.

Explicit meanings The meaning ought to be made public, not hidden within
agent implementations.

6.2.1 Business Patterns

Business patternspattern encode the common ways in which businesses engage
each other. Below is an example of thecompensationpattern.

• COMPENSATION

Intent To compensate the creditor in case of commitment cancellation or viola-
tion by the debtor.

Motivation It is not known in advance whether a party will fulfill its commit-
ments; compensation commitments provide some assurance tothe creditor
in case of violations.

Implementation Compensate(x,y, r,u,p)meansCreate(x,y,violated(x,y, r,u),p).

Example Compensate(mer,cus,price, item,discount); it means that the merchant
will offer the customer a discount on the next purchase if theitem is paid
for but not delivered.

Chapter 3 27

ConsequencesA commitment (even a compensation commitment) should ide-
ally be supported by compensation; however, at some level, the only re-
course is escalation to the surrounding businesscontext—for example, the
local jurisdiction [51].

6.2.2 Enactment Patterns

Whereas a business pattern describes the meaning of communication, an enact-
ment pattern describes the conditions under which an agent should enact a busi-
ness pattern, that is,whento undertake the corresponding communication. A locus
of such enactments may serve as the basic agent skeleton.

• COUNTER OFFER

Intent One party makes an offer to another, who responds with a modified offer
of its own.

Motivation Essential for negotiation.

When Let C(x,y, r,u) be the commitment corresponding to the original of-
fer. Making a counteroffer would amount to creating the commitment
C(y,x,u′, r ′) such thatu′ ⊢ u and r ⊢ r ′, in other words, if the consequent
is strengthened and the antecedent is weakened. An alternative implemen-
tation includes doingRelease(x,y, r,u) in addition.

Example Let’s say C(EBook,Alice,$12,BNW) holds. Alice can make the
counter offerC(Alice,EBook,BNW∧Dune,$12) meaning that she wants
Dunein addition toBNW for the same price.

ConsequencesWhenu ≡ u′ and r ≡ r ′, the counter offer amounts to a mutual
commitment.

6.2.3 Semantic Antipatterns

Semantic antipatterns identify forms of representation and reasoning to be avoided
because they conflict with the autonomy of the participants or with a logical basis
for commitments.

• COMMIT ANOTHER ASDEBTOR

Intent An agent creates a commitment in which the debtor is another agent.

28 Chapter 3

Motivation To capture delegation, especially in situations where the delegator is
in a position of power of over the delegatee.

Implementation The sender ofCreate(y,z,p,q) isx (x andy are different agents),
thus contravening the autonomy of they.

Example Consider two sellers EBook and BookWorld. EBook sends
Create(BookWorld,Alice,$12,BNW) to Alice, which violated Book-
World’s autonomy.

ConsequencesA commitment represents a public undertaking by the debtor.A
special case is whenx= z. That is,x unilaterally makes itself the creditor.

Criteria Failed y’s autonomy is not respected.

Alternative Apply delegation to achieve the desired business relationship, based
on prior commitments. In the above example, BookWorld couldhave a
standing commitment with EBook to accept delegations. EBook can then
send a delegate “instruction” to BookWorld upon which BookWorld com-
mits to Alice.

The above are some examples of patterns. For a more exhaustive list of pat-
terns, see [16].

6.3 Communication-Based Methodologies

Because of the centrality of agent communication to multiagent systems, a number
of methodologies for designing and implementing multiagent systems are based
on communications. We point out a few such methodologies in the further read-
ings section.

The common idea behind these methodologies is to identify the communica-
tions involved in the system being specified and to state the meanings of such
communications. The main protocol concepts are roles, messages, and message
meanings. Below we briefly outline the high-level considerations involved in de-
signing a protocol.

• Identify stakeholder requirements.

• Identify the roles involved in the interaction. Let’s say the roles identified
arecustomer, merchant, shipper, andbanker.

Chapter 3 29

• If a suitable protocol is available from a repository, then choose it and we’re
done. After all, one of key benefits of protocols is reusability. For instance,
suppose the stakeholders wanted to design a purchase protocol. If the pro-
tocol of Table 3.1 fits their requirements, we’re done.

• Often the required protocol may be obtained bycomposingexisting proto-
cols. For example, the desired protocol could potentially be obtained by
combiningOrdering, Payment, andShippingprotocols.

• Sometimes the protocol or parts of its may need to be written up from
scratch. Identify the communications among the roles. For example, there
would be messages between the customer and the merchant thatwould per-
tain to ordering items. The messages between the customer and bank would
pertain to payment, and so on.

• Identify how the messages would affect their commitments. For example,
theOffer message could be given a meaning similar to the one in Table 3.1.
The customer’s payment to the bank would effectively discharge his com-
mitment to pay the merchant. Similarly, the delivery of the goods by the
shipper would effectively discharge the merchant’s commitment to pay, and
so on.

7 Advanced Topics and Challenges

This section describes some important current directions in agent communication.

7.1 Primacy of Meaning

As we outlined in the foregoing, there is an unfortunate tendency to specify com-
munication protocols in operational terms at the cost of themeanings that they
convey. However, agent communication should be understoodat the level of the
“social state” of the parties involved and how it affects andis affected by commu-
nications. Adopting a meaning-based stance protects one’smodels from inadver-
tent dependencies upon implementation and yields the highest flexibility for the
participating agents while maintaining correctness.

The earlier meaning-based approaches to agent communication tended to
combine assertions regarding the meanings of communications with operational
details, such as the conditions under which what communication must occur and

30 Chapter 3

how the communications must be mutually ordered. Such operational details in-
terfere with an application of meaning-based reasoning because they require that
the agents maintain not only the meanings of the communication and the chang-
ing social state but also additional, otherwise irrelevant, dependencies with the
decisions of other agents.

We have not been able to find even a single compelling “natural” situation
where such details are necessary. Any requirement that an agent produce a mes-
sage is a violation of its autonomy. When we think of meaning properly, there is
never a natural need for ordering constraints—the only ordering constraints that
might arise are those based on artificial grounds such as arbitrary conventions in a
particular domain. Such conventions are fine and an approachfor agent commu-
nication should support them. However, they do not explain the large number of
ordering constraints that traditional specifications tendto include.

Although the operational details interfere with reasoningabout meaning, they
are essential to ensure that each party obtains the information it needs at the right
time so as to proceed effectively. The recent approach termed the Blindingly Sim-
ple Protocol Language [49] provides a simple resolution to this tension by cap-
turing the necessary operational details in a declarative manner. The declarative
representation of messages facilitates producing assertions regarding social state
from them, and using such assertions as a basis for reasoningabout the meanings
of the messages.

A research challenge, then, is to develop languages and methodologies in
which (and with which to formulate) proper meanings for communications, so
as to capture the needs of domain settings precisely.

7.2 Verifying Compliance

Because agent communication involves the interactions of two or more au-
tonomous parties it inherently has the weight of a “standard”—albeit a minor,
nonuniversal standard. In other words, when two agents talkto one another, they
must agree sufficiently on what they are talking about and they must be able to
judge if their counterparty is interacting in a manner that they would expect. To
the first point, the traditional approaches missed stating expectations properly.

Just as a standard in any domain of practice is worthless if wecannot judge
whether the parties subject to the standard are complying with it or not, so it is
with agent communication. Any approach for agent communication must sup-
port the statement of the mutual expectations of the partiesinvolvedanddo so in
a manner that supports each party verifying if the others arecomplying with its

Chapter 3 31

expectations of them. This is an obvious point in retrospect. However, the mental-
ist approaches disregarded the problem of compliance. Despite this point having
been explained over a decade ago [44], there remains a tendency to disregard it in
approaches to communication, especially as such approaches are applied within
software engineering methodologies.

A research challenge here is to design specification languages that promote the
verification of compliance and, more importantly, to develop algorithms by which
an agent or a set of cooperating agents could verify the compliance of others based
on the communications it can monitor.

7.3 Protocol Refinement and Aggregation

If we are to treat communication as a first-class abstractionfor specifying mul-
tiagent systems, we must be ready to support dealing with conceptual modeling
using that abstraction. Classically, two conceptual modeling relations are known:
refinement and aggregation.Refinementdeals with how a concept refines another
in the sense of the is-a hierarchy.Aggregationdeals with how concepts are put
together into composites in the sense of the part-whole hierarchy. Refinement
and aggregation are well-understood for traditional object-oriented design and are
supported by modern programming languages.

However, dealing with refinement in particular has been nontrivial for commu-
nication protocols. Recent work on session types is promising in this regard [32]
as is work on refinement with respect to commitment-based protocols [30]. An
important challenge is to produce a generalized theory and associated languages
and tools that would support refinement and aggregation of protocols for more
powerful meaning specifications.

7.4 Role Conformance

As we stated above, the meaning of communication captures the expectations that
the parties involved can have of each other. Accordingly, animportant engineer-
ing challenge is to develop agents who would meet such expectations. An agent
can potentially apply complex reasoning and, therefore, verifying that an agent
(implementation) would meet the expectations of another agent is nontrivial.

A natural way to approach the problem is to formulate a role description or a
role skeletonbased on the specification of a communication protocol. A skeleton
describes the basic structure of a role. An agent who plays (and hence imple-
ments) a role would provide additional details so as to flesh out the structure that

32 Chapter 3

is the skeleton. Since a protocol involves two or more roles the challenge is to
determine sufficient structural properties of each role, interms of what messages
it can receive and send under what circumstances and any constraints on how the
local representation of the social state should progress inlight of the messages
received and sent. We can then publish the descriptions of each role in a protocol
along with the protocol specification.

At the same time, one can imagine that software vendors may produce agent
implementations that are compatible with different roles.A vendor would not and
should not provide the internal details but would and shouldprovide the public
“interface” of the agent in terms of its interactions. In other words, a vendor
would describe a role that its agent would be able to play. In general, an agent
may need to participate in more than one protocol. Thus it would help to know
if the role as published by a vendor conforms with the role as derived from a
protocol. This is the problem ofrole conformance. Solving this problem for a
particular language would help automate part of the task of creating a multiagent
system from disparate agents while ensuring that the agents, even if implemented
heterogeneously, would be able to interoperate with respect to a specified protocol.

An important research challenge is to identify formal languages for specifying
roles along with algorithms for determining whether a role conforms with another.

8 Conclusions

It should be no surprise to anyone that communication is at the heart of multiagent
systems, not only in our implementations but also in our conception of what a
multiagent system is and what an agent is.

To our thinking, an agent is inherently autonomous. Yet, autonomous, hetero-
geneously constructed agents must also be interdependent on each other if they
are to exhibit complex behaviors and sustain important real-world applications.
A multiagent system, if it is any good, must be loosely coupled and communica-
tion is the highly elastic glue that keeps it together. Specifically, communication,
understood in terms of agents and based on high-level abstractions such as those
we explained above, provides the quintessential basis for the arms-length relation-
ships desired in all modern software engineering as it addresses the challenges of
large decentralized systems.

The foregoing provided a historical view of the agent communication, iden-
tifying the main historical and current ideas in the field. This chapter has only
scratched the surface of this rich and exciting area. We invite the reader to delve

Chapter 3 33

deeper and to consider many of the fundamental research problems that arise in
this area. An important side benefit is that, faced with the challenges of open
systems such as on the Web, in social media, in mobile computing, and cyber-
physical systems, traditional computer science is now beginning to appreciate the
importance and value of the abstractions of agent communication. Thus progress
on the problems of agent communication can have significant impact on much of
computer science.

Further Reading

Agent communication is one of the most interesting topics inmultiagent systems,
not only because of its importance to the field but also because of the large number
of disciplines that it relates to. In particular, it touchesupon ideas in philosophy,
linguistics, social science (especially organizations and institutions), software en-
gineering, and distributed computing. The readings below will take the reader
deeper into these subjects.

Philosophical foundations. Some of the most important works on the philos-
ophy of language undergird the present understanding of communication.
Austin [6] introduced the idea of communication as action. Searle devel-
oped two accounts of communication, one emphasizing the mental concepts
of the parties involved [41] and the second the notion of social reality that
sustains and is sustained by language [42]. Some recent works by Chopra,
Singh, and their colleagues have exploited the distinctionbetween constitu-
tion and regulation that Searle described [14, 38].

Organizations and institutions. Several researchers in multiagent systems have
studied the notions of organizations and institutions. These works provide
computational bases for agents to participate in structured relationships.
The works of Vázquez-Salceda and the Dignums [55, 3] and of Fornara
and Colombetti [27] highlight important conceptual and practical consider-
ations in this area.

Norms, conventions, and commitments.The notions of organizations and in-
stitutions are defined based on the normative relationshipsthat arise among
their participants. Artikis, Jones, Pitt, and Sergot have developed formal-
izations of norms that are worth studying as influential papers [5, 37]. Jones
and Parent [36] formalize conventions as a basis for communication.

34 Chapter 3

Singh proposed the notion of social commitments [43, 45] as an important
normative concept to be used for understanding social relationships. He pro-
posed commitments as basis for a social semantics for communication [46].
A related idea has been developed by Colombetti [17]. A formal semantics
for commitments [48] and the proper reasoning about commitments in situ-
ations with asynchronous communication among decoupled agents [15] are
significant to practice and promising as points of departurefor important
research in this area.

Software engineering.A number of approaches apply communications as cen-
tral to the development of multiagent systems [10, 39, 29, 21, 16]. Further,
several design and verification tools for communication protocols and agent
communication generally have been proposed [59, 4, 2, 1, 56,23]. The
development of well-principled tools is an important research direction be-
cause of their potential impact on computer science—if theycould lead to
the expanded deployment of multiagent system.

Challenges.The agent communication manifesto is a collection of short essays
by several researchers that seek to articulate the main challenges and direc-
tions in this area [12]. The reader should consult it before embarking on
research in this area.

9 Exercises

1. Level 1 Which of the following statements are true?

(a) Communications are an important class of interactions because they
support the autonomy of the parties involved

(b) The three elements of a communicative act are locution, illocution,
and perlocution

(c) Unlike traditional settings, perlocutions provide theright basis for
communicative acts in open, service-oriented settings

(d) Unlike in a traditional finite state machine, the states of a commitment
machine are specified using logic and each transition corresponds to
the meaning of the message that labels the transition

Chapter 3 35

(e) In an open environment, two agents might sometimes need to com-
bine their local observations in order to determine that a third agent is
complying with its commitments

2. Level 1 Which of the following statements are true?

(a) In an open environment, we can typically ensure compliance based
upon the implementations of the interacting agents

(b) The benefit of employing a commitment protocol is that it exactly
specifies the order of the messages without regard to their meaning

(c) Using the meanings of the messages, we can compute whether a mes-
sage may be sent in the current state, and the next state that would
result from doing so

(d) Ideally, each participant in a protocol should be able toverify if any of
the commitments where it is the creditor are violated

3. Level 1 Which of the following statements are true about interaction and
communication?

(a) Perlocutions are considered the core aspect of a communicative act

(b) The same proposition, e.g.,reserve(Alice, UA 872, 14 May 2020), may
feature in arequestand adeclare

(c) We may not be able to decide if a statement such asShut the door!is
true or false but we can decide whether such a statement was made

(d) A statement such asShut the door!becomes true if the door in ques-
tion is shut onpurpose, not accidentally

4. Level 1 Identify all of the following statements that aretrue about commit-
ments and commitment protocols

(a) If the debtor of a commitment delegates it simultaneously with the
creditor of the same commitment assigning it, additional messages are
in general needed for the new debtor and the new creditor to learn
about each other

(b) If the debtor of a commitment discharges it simultaneously with the
creditor of the same commitment assigning it, no additionalmessages
are needed for the new creditor to learn that the debtor is compliant

36 Chapter 3

(c) A protocol for payment through a third party could naturally be spec-
ified using the delegate of a commitment to pay

(d) Forward-going interactions such as ordering and payment may be
modeled as commitment protocols, but not backward-going interac-
tions such as returning goods for a refund

(e) Even though a commitment protocol captures the meaningsof the
messages involved, the participants must accept the protocol in order
for it to work

5. Level 2 We say that a commitment isdischargedwhen the consequent
holds,expiredwhen the antecedent cannot ever hold, andviolated when
the antecedent holds but the consequent cannot ever hold.

Let E = {e0,e1,e2, . . . ,e0,e1,e2, . . .} be a set of events such thatei is the
complement ofei . For instance, ife0 meanspackage was delivered by 5PM,
e0 meanspackage was not delivered by 5PM. Further,e0 = e.

Let 〈v0,v1, ...,vn〉 represent an event trace, that is, the sequence of events
that have been recorded, where all thevi are variables that range overE.
Further, in any event trace, for any event, only the event or its complement
may occur, but not both (for example, the package was either delivered by
5PM or it was not, but not both). Thus, for example,〈e0,e3,e5〉 is a valid
trace, but〈e0,e3,e5,e0〉 is not.

Assume that the commitmentC(x,y,e0,e1∧e2) holds right before we start
recording events (x commits toy that if e0 occurs, bothe1 ande2 will occur).

For each the following event traces, indicate whether the commitment is
(a) satisfactorily resolved (via discharge or expiration), (b) violated, or (c)
continues to hold.

(a) 〈e0,e1,e5〉

(b) 〈e1,e0,e2〉

(c) 〈e1,e0,e3〉

(d) 〈e1,e0,e2〉

(e) 〈e0,e1,e2〉

6. Level 2 Examine Figure 3.1. Now create an FSM for the commitment com-
pensate pattern discussed in the chapter.

Chapter 3 37

7. Level 2 Examine Figure 3.1. Now specify a commitment pattern that cap-
tures the idea of updating commitments.

8. Level 2 Create an FSM corresponding to the FIPA Request protocol shown
in Figure 3.2.

9. Level 3 Create a WS-CDL specification for the FIPA Request protocol.

10. Level 3 Consider the following outline of a process for buying books. A
merchant offers an online catalog of books with price and availability infor-
mation. A customer can browse the catalog and purchase particular books
from the catalog or the merchant may contact the customer directly with of-
fers for particular books. However, the customer must arrange for shipment
on his own: in other words, he must arrange for a shipper to pick up the
books from the merchant’s store and deliver them to him. All payments—to
the merchant for the books and to the shipper for delivery—are carried out
via a payment agency (such as PayPal).

(a) List the roles and messages involved in the protocol underlying the
above business process

(b) Specify the messages in terms of communicative acts

(c) Specify the protocol in three different ways: as an FSM with messages
as the transitions, (2) an MSC, and (3) a commitment protocol

(d) Show a simplified MSC representing one possible enactment where
the books have been delivered and the payments have been made.

(e) Based on the commitment protocol you specified above, annotate
points in the above described enactment with commitments that hold
at those points

11. Level 4 Suppose the business process described in Question 10 abovealso
supported returns and refunds for customers.

(a) As we did above, specify the underlying protocol as an FSM, as an
MSC, and as a commitment protocol

(b) Show both a synchronous and an asynchronous return-refund enact-
ment.

(c) Annotate both with the commitments at various points. (Hint: for the
asynchronous enactment, read [15])

38 Chapter 3

12. Level 3 Specify role skeletons for the purchase process with returns and
refunds.

(a) In the JADE style.

(b) In the rule-based style. (Hint: read [22])

13. Level 3 Map Figure 3.6 to an FSM and an MSC.

14. Level 3 Compare the FSM and MSC from Question 13 to the commitment
protocol specification of Table 3.1 with respect to compliance, ease of cre-
ation, and ease of change.

15. Level 4 Implement the logic for practical commitments described in[48].

16. Level 4 Implement a commitment-based middleware based on the postu-
lates given in [15].

Acknowledgments

We have benefited from valuable discussions about agent communication with
several colleagues, in particular, our coauthors on papersrelating to agent com-
munication: Matteo Baldoni, Cristina Baroglio, Nirmit Desai, Scott Gerard, Elisa
Marengo, Viviana Patti, and Pınar Yolum.

Some parts of this chapter have appeared in previous works bythe authors
[16, 38].

Amit Chopra was supported by a Marie Curie Trentino award. Munindar
Singh’s effort was partly supported by the National ScienceFoundation under
grant 0910868. His thinking on this subject has benefited from participation in
the OOI Cyberinfrastructure program, which is funded by NSFcontract OCE-
0418967 with the Consortium for Ocean Leadership via the Joint Oceanographic
Institutions.

References

[1] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
Marco Montali, and Paolo Torroni. Web service contracting:Specification and rea-
soning with SCIFF. InProceedings of the 4th European Semantic Web Conference,
pages 68–83, 2007.

[2] Marco Alberti, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Torroni.
Modeling interactions using social integrity constraints: A resource sharing case
study. InProceedings of the International Workshop on Declarative Agent Lan-
guages and Technologies (DALT), volume 2990 ofLNAI, pages 243–262. Springer,
2004.

[3] Huib Aldewereld, SergioÁlvarez-Napagao, Frank Dignum, and Javier Vázquez-
Salceda. Making norms concrete. InProceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages 807–814,
Toronto, 2010. IFAAMAS.

[4] Alexander Artikis, Marek J. Sergot, and Jeremy Pitt. An executable specification of
a formal argumentation protocol.Artificial Intelligence, 171(10–15):776–804, 2007.

[5] Alexander Artikis, Marek J. Sergot, and Jeremy V. Pitt. Specifying norm-governed
computational societies.ACM Transactions on Computational Logic, 10(1), 2009.

[6] John L. Austin.How to Do Things with Words. Clarendon Press, Oxford, 1962.

[7] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
Multi-Agent Systems with JADE. Wiley-Blackwell, 2007.

[8] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Analysis and management
of web service protocols. InConceptual Modeling ER 2004, volume 3288 ofLNCS,
pages 524–541. Springer, 2004.

[9] Carlos Canal, Lidia Fuentes, Ernesto Pimentel, José M.Troya, and Antonio Valle-
cillo. Adding roles to CORBA objects.IEEE Transactions on Software Engineering,
29(3):242–260, 2003.

39

40 Chapter 3

[10] Christopher Cheong and Michael P. Winikoff. Hermes: Designing flexible and ro-
bust agent interactions. In Virginia Dignum, editor,Handbook of Research on Multi-
Agent Systems: Semantics and Dynamics of Organizational Models, chapter 5, pages
105–139. IGI Global, Hershey, PA, 2009.

[11] Amit Chopra and Munindar P. Singh. Nonmonotonic commitment machines. In
Frank Dignum, editor,Advances in Agent Communication: Proceedings of the 2003
AAMAS Workshop on Agent Communication Languages, volume 2922 ofLNAI,
pages 183–200. Springer, 2004.

[12] Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pınar
Yolum. Research directions in agent communication.ACM Transactions on In-
telligent Systems and Technology (TIST), 2011. To appear.

[13] Amit K. Chopra and Munindar P. Singh. Contextualizing commitment protocols. In
Proceedings of the 5th International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 1345–1352, 2006.

[14] Amit K. Chopra and Munindar P. Singh. Constitutive interoperability. InProceed-
ings of the 7th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 797–804, Estoril, Portugal, May 2008. IFAAMAS.

[15] Amit K. Chopra and Munindar P. Singh. Multiagent commitment alignment. InPro-
ceedings of the 8th International Conference on AutonomousAgents and MultiAgent
Systems (AAMAS), pages 937–944, Budapest, May 2009. IFAAMAS.

[16] Amit K. Chopra and Munindar P. Singh. Specifying and applying commitment-
based business patterns. InProceedings of the 10th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), Taipei, May 2011. IFAA-
MAS.

[17] Marco Colombetti. A commitment-based approach to agent speech acts and conver-
sations. InProceedings of the Autonomous Agents Workshop on Agent Languages
and Communication Policies, pages 21–29, May 2000.

[18] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent conversations
with colored petri nets. InWorking Notes of the Workshop on Specifying and Imple-
menting Conversation Policies, pages 59–66, Seattle, Washington, May 1999.

[19] Nirmit Desai, Amit K. Chopra, Matthew Arrott, Bill Specht, and Munindar P. Singh.
Engineering foreign exchange processes via commitment protocols. InProceedings
of the 4th IEEE International Conference on Services Computing, pages 514–521,
Los Alamitos, 2007. IEEE Computer Society Press.

Chapter 3 41

[20] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Representing and reasoning
about commitments in business processes. InProceedings of the 22nd Conference
on Artificial Intelligence, pages 1328–1333, 2007.

[21] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba: A methodol-
ogy for modeling and evolution of cross-organizational business processes.ACM
Transactions on Software Engineering and Methodology (TOSEM), 19(2):6:1–6:45,
October 2009.

[22] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interac-
tion protocols as design abstractions for business processes. IEEE Transactions on
Software Engineering, 31(12):1015–1027, December 2005.

[23] Nirmit Desai and Munindar P. Singh. On the enactabilityof business protocols. In
Proceedings of the 23rd Conference on Artificial Intelligence (AAAI), pages 1126–
1131, Chicago, July 2008. AAAI Press.

[24] Hywel R. Dunn-Davies, Jim Cunningham, and Shamimabi Paurobally. Proposi-
tional statecharts for agent interaction protocols.Electronic Notes in Theoretical
Computer Science, 134:55–75, 2005.

[25] ebBP. Electronic business extensible markup languagebusiness process specifica-
tion schema v2.0.4, December 2006. docs.oasis-open.org/ebxml-bp/2.0.4/OS/.

[26] FIPA. FIPA interaction protocol specifications, 2003.FIPA: The Foundation for
Intelligent Physical Agents, http://www.fipa.org/repository/ips.html.

[27] Nicoletta Fornara, Francesco Viganò, Mario Verdicchio, and Marco Colombetti. Ar-
tificial institutions: A model of institutional reality foropen multiagent systems.
Artificial Intelligence and Law, 16(1):89–105, March 2008.

[28] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley, Reading, MA, 3rd edition, 2003.

[29] Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby, Walamitien H. Oyenan, and Jorge
Valenzuela. O-MaSE: A customizable approach to developingmultiagent processes.
In Proceedings of the 8th International Workshop on Agent Oriented Software En-
gineering (AOSE), 2007.

[30] Scott N. Gerard and Munindar P. Singh. Formalizing and verifying protocol refine-
ments.ACM Transactions on Intelligent Systems and Technology (TIST), 2011. In
press.

[31] HL7 reference information model, version 1.19. www.hl7.org/ Library/ data-model/
RIM/ C30119/ Graphics/ RIMbillboard.pdf, 2002.

42 Chapter 3

[32] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. InProceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pages 273–284. ACM, 2008.

[33] http://www.gs1.org/productssolutions/gdsn/. GDSN: Global Data Synchronization
Network.

[34] http://www.hitsp.org/. Hitsp: Healthcare information technology standards panel.

[35] Marc-Philippe Huget and James Odell. Representing agent interaction protocols
with agent UML. InAgent-Oriented Software Engineering V, volume 3382 ofLNCS,
pages 16–30. Springer, 2005.

[36] Andrew J. I. Jones and Xavier Parent. A convention-based approach to agent com-
munication languages.Group Decision and Negotiation, 16(2):101–141, March
2007.

[37] Andrew J. I. Jones and Marek Sergot. A formal characterisation of institutionalized
power.Journal of the IGPL, 4(3):429–445, 1996.

[38] Elisa Marengo, Matteo Baldoni, Amit K. Chopra, Cristina Baroglio, Viviana Patti,
and Munindar P. Singh. Commitments with regulations: Reasoning about safety
and control in REGULA. In Proceedings of the 10th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), Taipei, May 2011. IFAA-
MAS.

[39] Lin Padgham and Michael Winikoff. Prometheus: A practical agent-oriented
methodology. In Brian Henderson-Sellers and Paolo Giorgini, editors, Agent-
Oriented Methodologies, chapter 5, pages 107–135. Idea Group, Hershey, PA, 2005.

[40] RosettaNet. Home page, 1998. www.rosettanet.org.

[41] John R. Searle.Speech Acts. Cambridge University Press, Cambridge, UK, 1969.

[42] John R. Searle.The Construction of Social Reality. Free Press, New York, 1995.

[43] Munindar P. Singh. Social and psychological commitments in multiagent systems.
In AAAI Fall Symposium on Knowledge and Action at Social and Organizational
Levels, pages 104–106, 1991.

[44] Munindar P. Singh. Agent communication languages: Rethinking the principles.
IEEE Computer, 31(12):40–47, December 1998.

[45] Munindar P. Singh. An ontology for commitments in multiagent systems: Toward
a unification of normative concepts.Artificial Intelligence and Law, 7(1):97–113,
March 1999.

Chapter 3 43

[46] Munindar P. Singh. A social semantics for agent communication languages. InPro-
ceedings of the 1999 IJCAI Workshop on Agent Communication Languages, volume
1916 ofLecture Notes in Artificial Intelligence, pages 31–45, Berlin, 2000. Springer.

[47] Munindar P. Singh. Distributed enactment of multiagent workflows: Temporal logic
for service composition. InProceedings of the 2nd International Joint Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pages 907–914, Mel-
bourne, July 2003. ACM Press.

[48] Munindar P. Singh. Semantical considerations on dialectical and practical commit-
ments. InProceedings of the 23rd Conference on Artificial Intelligence (AAAI),
pages 176–181, Chicago, July 2008. AAAI Press.

[49] Munindar P. Singh. Information-driven interaction-oriented programming. InPro-
ceedings of the 10th International Conference on Autonomous Agents and MultiA-
gent Systems (AAMAS), pages 491–498, Taipei, May 2011. IFAAMAS.

[50] Munindar P. Singh. LoST: Local state transfer—An architectural style for the dis-
tributed enactment of business protocols. InProceedings of the 7th IEEE Interna-
tional Conference on Web Services (ICWS), pages 57–64, Washington, DC, 2011.
IEEE Computer Society.

[51] Munindar P. Singh, Amit K. Chopra, and Nirmit Desai. Commitment-based service-
oriented architecture.IEEE Computer, 42(11):72–79, November 2009.

[52] Munindar P. Singh, Amit K. Chopra, Nirmit Desai, and Ashok U. Mallya. Protocols
for processes: Programming in the large for open systems.ACM SIGPLAN Notices,
39(12):73–83, December 2004.

[53] Transaction workflow innovation standards team, February 2006.
http://www.twiststandards.org.

[54] Wil M. P. van der Aalst and Maja Pesic. DecSerFlow: Towards a truly declarative
service flow language. InProceedings of the 3rd International Workshop on Web
Services and Formal Methods, volume 4184 ofLNCS, pages 1–23. Springer, 2006.

[55] Javier Vázquez-Salceda, Virginia Dignum, and Frank Dignum. Organizing multia-
gent systems.Autonomous Agents and Multi-Agent Systems, 11(3):307–360, 2005.

[56] Michael Winikoff, Wei Liu, and James Harland. Enhancing commitment machines.
In Proceedings of the 2nd International Workshop on Declarative Agent Languages
and Technologies (DALT), volume 3476 ofLNAI, pages 198–220, Berlin, 2005.
Springer-Verlag.

44 Chapter 3

[57] WS-CDL. Web services choreography description language version 1.0, November
2005. www.w3.org/TR/ws-cdl-10/.

[58] Daniel M. Yellin and Robert E. Strom. Protocol specifications and component adap-
tors. ACM Transactions on Programming Languages and Systems, 19(2):292–333,
1997.

[59] Pınar Yolum. Design time analysis of multiagent protocols. Data and Knowledge
Engineering Journal, 63:137–154, 2007.

[60] Pınar Yolum and Munindar P. Singh. Flexible protocol specification and execution:
Applying event calculus planning using commitments. InProceedings of the 1st In-
ternational Joint Conference on Autonomous Agents and MultiAgent Systems, pages
527–534. ACM Press, July 2002.

Subject Index

agent, 5
autonomic agent, 6
autonomy, 5
heterogeneity, 5
intelligent agent, 6

architecture, 3
component, 3
connector, 3

autonomy, 28

belief, 19
business, 28

choreography, 12
cognitive concept, 17, 20

belief, 17
goal, 17
intention, 17

commitment, 7, 21
assign, 22
cancel, 22
conditional, 21
create, 22
delegate, 22
detached, 21
discharged, 21
release, 22

communicative act, 8
commissive, 9
directive, 9
illocutionary point, 9

informative, 9
performative, 9

compliance, 8, 12, 15, 17, 32
conformance, 5
coordination, 5

DARPA Knowledge Sharing Effort, 18
distributed system, 3

ebBP, 13
endpoint, 12
expert system, 18

FIPA, 14
ACL, 19
Request Interaction Protocol, 14

Foundation of Intelligent Physical
Agents,seeFIPA

institution, 35
intelligence, 6
intention, 19
interaction protocol,seeprotocol
interoperation, 5

JADE, 27
behavior, 27

Java Agent Development Framework,
seeJADE

Knowledge Query and Manipulation
Language,seeKQML

45

46 Index

KQML, 18

meaning, 21, 28, 31
message, 7

message, 4
message sequence chart, 13
methodology, 30
MSC,seemessage sequence chart

norm, 35

orchestration, 12
organization, 35

pattern, 28
enactment, 29

Petri Net, 11
process algebra, 11
protocol, 3, 33

aggregation, 33
foreign exchange, 4
GDSN, 4
HITSP, 4
HL7, 4
refinement, 33
requirements, 4
RosettaNet, 4
specifications, 4
standard protocol, 4
supply chain, 4
TWIST, 4

role, 4, 12, 33
role skeleton,seerole

service engagement, 21
social commitment,seecommitment
social state, 31
speech act,seecommunicative act
state machine, 11

statechart, 11

UML sequence diagram, 11

WS-CDL, 13

