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Abstract

The Platys project focuses on developing a high-level, seman-
tic notion of location called place. A place, unlike a geospa-
tial position, derives its meaning from a user’s actions and
interactions in addition to the physical location where they
occur. Our aim is to enable the construction of a large variety
of applications that take advantage of place to render rele-
vant content and functionality and thus, improve user expe-
rience. We consider elements of context that are particularly
related to mobile computing. The main problems we have ad-
dressed to realize our place-oriented mobile computing vi-
sion, are: (a) representing places, (b) recognizing places, and
(c) engineering place-aware applications. We describe the ap-
proaches we have developed for addressing these problems
and related sub-problems. A key element of our work is the
use of collaborative information sharing where users’ devices
share and integrate knowledge about places. Our Place ontol-
ogy facilitates such collaboration. Declarative privacy poli-
cies allow users to specify contextual features under which
they prefer to share or not share their information.

Introduction
Mobile applications that automatically adapt to their sur-
rounding circumstances will lead to an enhanced user ex-
perience. Emerging mobile applications exploit a users lo-
cation to deliver personalized services. In current practice,
the user’s location is captured at the level of position, i.e.,
geospatial (latitude-longitude) coordinates. However, what
often matters for experience is the user’s place: a location in
conceptual terms such as home, work, gym, or grocery shop-
ping – descriptions that combine positions with the user’s
activities, properties of the user’s environment, and the ac-
tivities of people surrounding or interacting with the user.

The Platys project seeks to realize the above notion of
place and enable the construction of a rich variety of applica-
tions that take advantage of place to render relevant content
and functionality and thus, improve user experience. Exam-
ples include proactively: (a) changing phone settings (e.g.,
turn ringer off during a meeting and turn it back on at the end
of the meeting); (b) downloading relevant information (e.g.,
the map of an amusement park, museum, or any place the
user visits); (c) annotating images or other media; (d) filter-
ing content such as alerts, notifications, and customized ads;
(e) changing the ambiance (e.g., playing music); (f) showing
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(place-dependent) reminders from to-do lists; and (g) push-
ing recommendations to the user when the situation seems
appropriate.

In this paper, we report on our efforts pertaining to the
Platys project. A semantic model of user-centric places, the
Platys ontology, enables the mapping of positions to places.
In the model, places and activities can be represented at dif-
ferent levels of granularity using subsumption hierarchies.
We want to determine a user’s place at any given time. Place
recognition has been addressed with standard machine learn-
ing classifiers as well as a semi-supervised expectation max-
imization algorithm. The recognition is based on data cap-
tured from a user’s smartphone: location, sensor readings,
wifi, Bluetooth scannings, and phone settings. Location is
an essential part of place and therefore place recognition re-
lies on location sensing.Since frequent location sensing by
a mobile device depletes power, we have also investigated
energy-efficient techniques for maintaining an a sufficiently
accurate location model.

We study not only private places specific to each user,
but also public places that are shared by a community or
an affinity group. A key element of our work is the use
of collaborative information sharing where users’ devices
share and integrate knowledge about places. By providing
a common semantic model, the Platys ontology facilitates
such collaboration. Declarative privacy policies using the
ontology allow users to specify contextual features under
which they prefer to share or not share their information. Co-
occurrences of users at particular places are used to learn the
social circles of users.

Place-aware proactive mobile applications will be capable
of proactively performing actions or making recommenda-
tions according to the user’s current place. Available frame-
works (e.g., Locale for Android1 and Nokia Situations2) al-
low development of the former. A situation and the action
to be taken in it must be specified with fixed rule patterns
such as: WHEN [in meeting] SET [ringtone=off]. Situations
must be clearly defined through specific values of phone sta-
tus attributes such as date, time, location, and battery level.
A place such as “work” or “in meeting” could be specified as
a situation by using a combination of date, time and location.

1http://www.twofortyfouram.com/
2https://betalabs.nokia.com/trials/nokia-situations



This approach is clearly limited and rigid. Our approach rec-
ognizes place at different levels of granularity and capturing
nuances in how a user perceives them. The user need not
specify fixed attribute values that define the “in meeting”
place. Consequently, if there are changes in those values
(e.g., a change of the normal meeting room), our approach
may still be able to recognize the place.

While decades of research in context-awareness has ad-
dressed similar issues and made progress solving particu-
lar problems (see side bar), non-trivial context-aware ap-
plications are still unavailable to everyday users as are
frameworks that facilitate their creation. This is especially
true for frameworks supporting a general, complex and all-
encompassing notion of context.

The reminder of this paper is organized as follows. In the
next section we provide a formal definition of a user-centric
place and consider elements of context particularly rele-
vant to mobile computing. We then discuss the different ap-
proaches we have used to address the problems identified in
realizing our place-oriented vision. Our techniques are user-
centric and attempt recognize places in a privacy-preserving
manner. In (Hang, Murukannaiah, and Singh 2013; Zavala et
al. 2011) we discuss architectures on which place-aware ap-
plications can be engineered. Currently, prototypes and ex-
periments have been run in several university campus sce-
narios.

Sidebar: Context-Aware Computing

Research in context-aware computing (Schilit, Adams, and
Want 1994) aims to enable computing systems that acquire
and maintain context data and use it to adapt their behavior.
It originated with Weiser’s vision of ubiquitous computing
(Weiser 1999) were human activities are enhanced with de-
vices that are all around but unnoticeable to the user and
which provide services that adapt to the circumstances in
which they are used. (Want et al. 1992; Schilit, Adams, and
Want 1994; Schilit et al. 1993) are early works in context-
aware computing and dealt with tracking a user’s location
and using it to provide better services or sharing it with oth-
ers. Research in the field has addressed a range of problems,
including the formal definition and categorizations for con-
text, context representation, context recognition (user loca-
tion, user activity, user mood, etc.), and context sharing. Sev-
eral software frameworks have been proposed to facilitate
the development of context aware applications (Korpipaa et
al. 2003; Gu, Pung, and Zhang 2004; Fahy and Clarke 2004;
Salber, Dey, and Abowd 1999; Román et al. 2002; Dey,
Abowd, and Salber 2001; Chen, Finin, and Joshi 2005). At
a minimum, they all comprise context recognition services
(usually distributed) and a context manager (usually central-
ized) that allows client applications to query and/or regis-
ter for context information. Some also include formal con-
text modeling to share contextual information among het-
erogeneous entities, security and privacy, inference mech-
anisms, and/or agent capabilities. (Chen and Kotz 2000;
Baldauf, Dustdar, and Rosenberg 2007) provide surveys of
developments and applications in the field.

Semantic Place Model
We define a (user-centric) place as a conceptually well-
delineated set of positions associated with a user and alter-
natively combined with contextual information such as user
activities, environmental properties, and nearby people and
their ongoing activities. Using this user-centric, contextual
notion of place it is possible to:

1. Capture nuances in how a user perceives places.

2. Have a place that includes disjoint spatial regions (the set
of positions that delineate a place need not be contigu-
ous). For example, each workplace of a user (e.g., work
office, home office, lab or a café) has its own spatial re-
gion, but a user (for a specific purpose) may conceptualize
all workplaces as a single place.

3. Map a spatial region to more than one place, each associ-
ated with a different user. For example, a coffee place can
be café for some users, but workplace for others.

4. Map a spatial region to more than one place for the
same user, varying contextual information. For example, a
shopping mall can be mall as well as workplace for a user
who works at the mall. The contextual information would
be used to know when the user is at one or the other.

Place Ontology
We developed a light-weight, upper level ontology to model
the concept of place in terms of activities that occur at that
place. We adopt description logics (Baader et al. 2003),
specifically the Web Ontology Language OWL (Bechhofer
et al. 2007), and associated inference mechanisms to rep-
resent the model. OWL supports the specification and use
of ontologies that consist of terms representing individuals,
classes of individuals, properties, and axioms that assert con-
straints over them.

Figure 1 shows the ontology’s core classes and their re-
lationships. A User is associated with a Device whose
Position maps to a geographic place (GeoP lace) such as
“UMBC” and to a conceptual place (Place) such as “at
work”. Some Geoplaces are part of others via spatial con-
tainment defined by the transitive (part of ) relationship.
The mapping from Positions to GeoP laces is many to
one and the mapping from Positions to Places is many-to-
many, i.e., the same Position may map to multiple Places,
even for the same User; and, many Positions map to the
same Place. Mapping from Positions to Places is done
through GeoP laces (maps to is a transitive property). An
Activity involves Users under certain Roles, and occurs
at a given Place and Time. Activities have a composi-
tional nature, i.e., fine-grained activities make up more gen-
eral ones. Ambiance encapsulates concepts describing the
environment of the User (e.g., noise level, ambiance light,
and temperature).

The representation of activities is crucial to mapping posi-
tions to places. This approach reflects our pragmatic philos-
ophy that the significance or meaning of a place for a given
user depends largely on the activities that occur there, spe-
cially the patterns of lower-level activities. The idea applies



Figure 1: The Place ontology models the concept of place in
terms of activities that occur there.

at both the individual and collaborative level. For a user in-
dividually, the patterns of actions can help identify a place
from that user’s perspective. The patterns of actions com-
mon to users can help identify a place in a collaborative
manner. For example, a park or a library would see similar
patterns from multiple users.

The Knowledge Base

The knowledge base (KB) on each device aligns with the
Place ontology. Using this ontology, devices can share in-
formation about their context. Given the position of the de-
vice (i.e., geospatial coordinates) and the user’s activity (if
available), we assert the corresponding facts in the KB. In
this section we focus on how we populate the KB with geo-
place information. Activity and place inference are covered
in the next section.

We use the Android Location API to obtain the position
of the device. Position on Android phones is determined
through location providers such as the device’s GPS and the
network (which is based on availability of cell tower and
WiFi access points). Given the Position of the user’s de-
vice, we assert the corresponding triples into the KB (see
Figure 2). Then, we use additional online resources, specif-
ically GeoNames spatial KB (RDF version) and its associ-
ated services, to infer the user’s GeoP lace by:

1. Using reverse geocoding services to find the closest
GeoNames entity to the current position

2. Querying GeoNames through SPARQL to get further in-
formation about that entity

3. Applying transformation rules to the data obtained from
GeoNames (see Figure 2)

4. Using OWL inference to obtain the triples corresponding
to the spatial containment of entities (transitivity of the
part of relationship)

5. Using ad-hoc property chains (Figure 3) to infer knowl-
edge about a user’s geoplace based on the places her as-
sociated device is observed.

Figure 2: KB assertions (left) in Turtle and a Jena rule used
to integrate knowledge from GeoNames (right).

Figure 3: Property chain axioms asserting facts about a
user’s location: a) Device is observed at the place whose
position it maps to; b) User’s location is the place where
her associated device is observed at; c) Generalization of
user location based on spatial containment (part of ).

Recognizing User-Centric Places
We wish to determine a user’s place at any given time using
data captured from her smartphone: location, sensor read-
ings, wifi, bluetooth scannings, and phone settings. We have
addressed the problem using a semi-supervised expectation
maximization (EM) algorithm as well as standard machine
learning classifiers. In the former, we determine place based
on unaligned historical sensor data and user labels. The fo-
cus is on place as a set of positions and we are able to rec-
ognize disjoint spatial regions as a single place. In the latter,
contextual information is also taken into account. We rec-
ognize place and activity at different levels of granularity.
Further, we are able to recognize the same spatial region as
more than one place.

Semi-supervised expectation maximization (EM)
We developed (Hang, Murukannaiah, and Singh 2013) a
semi-supervised expectation maximization (EM) algorithm
to recognize user-centric places. Our approach: (a) recog-
nizes subjective places, (b) does not require manual tuning
of place radius and duration, and (c) employs infrequent sen-
sor readings from multiple sources.

Each user is required to label places of his or her interest
(at least once for each place). Given a user’s place labels and
historical sensor data from multiple sources, our algorithm
operates as follows.

Build a dataset consisting of a data instance for each sen-
sor reading and user label. Further, consider a training set
as a subset of the above dataset, consisting of instances
corresponding to place labels only.

Assign features to training instances. For each sensor type,
add three features—a sensor reading at the time of label-
ing, one immediately before and one immediately after.



Assign a place label to each unlabeled instance. For each
unlabeled instance, find the similarity of the instance to
each labeled instance and assign the label corresponding
to the most similar instance.

Remove incorrect labels by establishing a similarity
boundary for each place and iteratively shrinking it
(using EM) until instances assigned to each place are
sufficiently similar to each other.
We evaluated our approach in a user study of six users.

Each carried an Android phone installed with a data collec-
tion program for at least three weeks. The program recorded
the sensor data (including GPS, WiFi, and Bluetooth) and
prompted users to label places at random intervals.

We compared our approach with two staypoint ap-
proaches (Hariharan and Toyama 2004; Zheng et al. 2012).
Platys cannot be directly compared with a staypoint ap-
proach since the latter only recognizes whether a user is in
some staypoint or not (not the specific staypoint as there are
no labels). To enable a fair comparison, we implemented two
versions of Platys: (a) Place-or-not, which only recognizes
if a user is in one of the labeled places or not, and (b) Which-
place, which recognizes the specific place. Figure 4 shows
the comparison.
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Figure 4: Comparing Platys with two staypoint approaches that
distinguish places from nonplace, but do not identify a place.

The following are our main findings.
1. Platys (Place-or-not) performs better than both staypoint

approaches compared with. Importantly, the F-measures
for Platys, unlike those of staypoint approaches, are
straight lines since since they do not depend on place ra-
dius and duration.

2. A staypoint approach with optimal place parameter val-
ues may perform better than Platys for some users. How-
ever, as shown, optimal place parameter values vary from
user to user.

3. Place-or-not is an upper bound on Which-place. How-
ever, in most case, the performance of Which-place is
close to that of Place-or-not. Thus, once Platys identifies
a user to be in one of the labeled places, in most cases it
correctly identifies which place the user is in.

Supervised Classification
We used supervised machine learning algorithms to recog-
nize activity (e.g., “sleeping”, “walking”, “sitting”, “cook-
ing”) and place (e.g., ”at work”, ”at home”) at different lev-
els of granularity (Zavala et al. 2011). The current exper-
iments are confined to a University domain and the users
are students and faculty. Furthermore, the experiments are
focused on learning to recognize an individual’s context (ac-
tivity and place). For high-level, general activities, we ob-
tained a high accuracy but with more fine-grained ones the
accuracy drops. We expect this to improve as we incorporate
more complex models that allow for collaborative context
inference.

We collected data for five users over the course of two
weeks using Android smartphones and an interactive data
collection program. The information collected includes lo-
cation, ambiance light and noise, wifi scanning, bluetooth
scanning, current calendar event (if any), sensors readings
(accelerometer, magnetic field, orientation, and proximity),
call statistics (missed calls, answered calls, and duration),
and phone state (idle, in use, etc.). We collect the data ev-
ery two, five, or twelve minutes (set by the user according
to current activity duration) for a period of one minute. At
the beginning of each collection, the user is asked to enter
the current place and activity. This information is used as
ground truth for the learning task. Multiple labels can be
selected to capture different levels of granularity (e.g., at
work in office in meeting). Hierarchy is not specified in
the collection program since we preprocess the data for each
particular learning task we try and we know the hierarchy.

We have compared the performance of different machine
learning algorithms in classifying the place and activity of
the user given the particular readings from the phone af-
ter some preprocessing. Using the Weka Machine Learning
Algorithms Toolkit (Witten and Frank 2002), we have con-
ducted several experiments varying the classification task
to different combinations of place and activity at different
levels of granularity. We present here results for three al-
gorithms: Decision Trees, Naive Bayes, and Support Vector
Machines —SVMs. Table 1 shows the accuracy of the al-
gorithms for a mid-level detailed activity recognition task
for a particular user and nine everyday activities using 10
cross fold validation and 66% split validation testing op-
tions. Accuracy levels are comparable to those reported on



Classifier 10 Fold 66% Split
SVM (LibSVM) 76.9231% 79.5699%
Decision Tree (J48 Trees) 91.97% 93.3133%
Naive Bayes 47.9638% 50.5376%
Activities: Working/Studying, Sleeping, Walking, In Class, Outdoors, In Meeting

Talk-Listening, Other/Idle, Shopping

Table 1: Accuracy of different algorithms for activity recog-
nition of a particular user and ten everyday activities.

Activity Accuracy
At Home, At Work/ School, Elsewhere 99.0%
In Meeting, In Class, Elsewhere 94.94%

Table 2: Recognition accuracy for high-level, general activ-
ities using Decision Trees.

(Bao and Intille 2004), although their focus was mainly
recognition of a limited subset of everyday activities con-
sisting largely of ambulatory motions. Overall, recognition
accuracy is highest for decision tree classifiers, which is
also consistent with (Bao and Intille 2004). This might be
due to the fact that rule-based activity recognition appears
to capture conjunctions in feature values. The Naive Bayes
approach assumptions of conditional independence between
features and normal distribution of feature values may con-
tribute to the weaker performance of the approach. Further-
more, to achieve good accuracy even when the assumptions
are not met, the approach usually requires large volumes of
training data.

Higher accuracy is observed for higher-level, general ac-
tivities (see Table 2). Our 99% accuracy for “at home vs. at
work vs. elsewhere” is higher than the one reported in (Ea-
gle and (Sandy) Pentland 2006) where they used a simple
Hidden Markov Model conditioned on both the hour of day
as well as weekday or weekend for the same classification
task.

From Place to Social Circles
Often, a place is associated with a social context. For ex-
ample, a user interacts with his or her family at home, col-
leagues at a workplace, and friends at a party. Platys So-
cial (Murukannaiah and Singh 2012) exploits this intuition
to recognize social circles from places.

A social circle of a user (ego-centric) is a set of contacts
the user perceives as a logical group. Recognizing social
circles could enable social network sites to deliver a high-
quality user experience by (a) reducing information overload
(e.g., by prioritizing updates from contacts), and (b) enhanc-
ing privacy controls (e.g., by providing a fine-grained con-
trol on who to share information with).

Currently, social network sites require users to manually
create and maintain social circles (e.g., circles on Google+
and groups on Facebook), which is tedious an time consum-
ing (Lampinen et al. 2011). Alternatively, community de-
tection algorithms are used to recognize social circles auto-
matically. However, communities detected from a network

of acquaintanceships (e.g., “friendship” on Facebook and
Google+) are coarser than social circles. Further, commu-
nity detection presupposes that the global structure of the
network is known.

Platys Social learns social circles by exploiting places in-
formation. It is implemented within the Platys middleware
and employs information locally available on a user’s mo-
bile device. Platys Social operates as follows.

Construct a contact co-occurrence graph, whose nodes
are the contacts of a user and add an edge between two
nodes if the user meets the two contacts at the same place.

Assign a weight to each edge proportional to the frequency
with which the user meets corresponding contacts at the
same place.

Find overlapping communities in the contact co-
occurrence graph using Clique Percolation Method
(Palla et al. 2005). Treat each community corresponds
to a social circle. Further, within each social circle, edge
weights can be used to distinguish strong and weak
contacts.

Evaluation
We evaluated Platys Social in a user study of six users. The
users in the study carried a smart phone installed with Platys
for the duration of the study. Each user recorded the places
he or she visited and social circles (including strong and
weak contacts) encountered on a daily basis. We measured
the accuracy of Platys social as the similarity between the
social circles reported by users and those learned by Platys
Social,

accuracy =
|learned circles

⋂
reported circles|

|learned circles
⋃

reported circles|
We compared three variants of Platys Social depending on
how edges are added to the contact co-occurrence graph.
Staypoints: Add an edge between two contacts if two con-

tacts are found (via Bluetooth devices) at the same stay-
point (determined from WiFi access point log).

Interactions: Add an edge between two contacts if a
user’s interaction includes both contacts (determined from
email, call, and text logs).

Place: Add an edge in either of the above cases, according
to the intuition that a place has both spatial and social
attributes.
As shown in Figure 5, Platys social performs best when

places are defined using both spatial and social attributes.

Privacy Reasoning and Enforcement
A key element of our work is the use of collaborative in-
formation sharing where devices share and integrate knowl-
edge about their place. Consequently, users must protect
their privacy by controlling the release of information and
how it is shared. In (Hang, Murukannaiah, and Singh 2013;
Zavala et al. 2011) we discuss architectures on which place-
aware applications can be engineered. Devices might inter-
act directly or through services on the Internet. Users specify
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Figure 5: Comparing accuracies of social circles recognized em-
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privacy policies that regulate the disclosure of (a) sensor in-
formation to the server (e.g., GPS information), (b) inferred
context information to the server (e.g., activity information)
and (c) inferred context information to other users.

Privacy policies are expressed as horn clause rules over
the knowledge base. In our prototype system, the focus is
not on the protocol used by devices to exchange informa-
tion, but on the privacy control mechanisms. Therefore, re-
quests are simple messages with the required information
embedded in them. Whenever a request is received, either at
the server or at a device, the privacy control module fetches
the static knowledge about the user (e.g., personal informa-
tion and defined groups), the dynamic context knowledge
and the user specified privacy preferences. Access rights are
obtained by performing backward reasoning confirms con-
clusions by verifying conditions. Additionally, when access
is allowed and according to the user defined sharing prefer-
ences, certain pieces of the information might be obfuscated
in order to protect user privacy. Privacy rules are defined as
Jena rules (Carroll et al. 2004) and Jena reasoning engine is
used to perform the reasoning. For the devices, we use the
AndroJena (Lorecarra 2009) port of Jena for Android.

Policies for Information Sharing

Privacy policies are represented as rules that describe which
information a user is willing to share, with whom, and un-
der what conditions. Conditions can be defined based on at-
tributes such as a user’s current location, current activity or
any other dynamic attribute. We rely heavily on the notion
of group to define the subjects who are allowed to access
certain information. A user can manage different networks
of friends, and assign a variety of group level privacy pref-
erences accordingly. Example policies are: “share detailed
contextual information with family members all the time,”
“share my activity with friends all the time except when I
am attending a lecture,” and “do not share my sleeping ac-
tivity with Teachers on weekdays from 9am to 5pm.”. Fig-
ure 6 shows the representation of the first rule as a Jena rule
(left) and the results on a test screen we provide to observe
the results of the reasoning engine (right).

Figure 6: Left: Jena rule for expressing the policy “share
detailed contextual information with family members all the
time.” Right: Android device screen with reasoning results.
It shows access levels for requester “Ron” who is a member
of the group Family.

Policies for Obfuscating Shared Information
Users need to be in control of the release of their personal in-
formation at different levels of granularity, from raw sensed
data to high level inferred place information. Besides being
able to specify which information a user is willing to share,
we can specify how that information should be shared. A
user can disclose information with different accuracy lev-
els; for instance, she may be willing to reveal to her close
friends the exact room and building on which she is located,
but only the vicinity or town to others. Furthermore, a user
may decide not to disclose her location to advertisers.

We have built generalization models for location and ac-
tivity which are based on hierarchies over location and ac-
tivity entities. The models take advantage of the hierarchical
nature of location and activity information, which is evident
by the part-of or contained relations between location enti-
ties and the compositional nature of activities entities. The
policies allow us to specify at which level the information
is to be revealed. When a query for location or activity in-
formation is received, the reasoner will not only conclude
whether the information can be shared or not, but also at
what level in the hierarchy the information should be shared
and only the corresponding triples are shared. For example,
if location information should be shared at the City level,
then triples containing location information with instances
of entities below City in the hierarchy are not shared.

Energy-Efficient Location Sensing
Location-based services (LBS) rely on global localization
techniques such as GPS and Skyhook to obtain reference-
able coordinates of the device. Pinpointing the location of a
device on Earth with respect to an absolute reference point
can be extremely challenging. GPS currently operates 31
satellites. Skyhook, which combines Wi-Fi and cellular sig-
nal fingerprints with GPS coordinates for indoor position-
ing, performs extensive war-driving in the cities where their
services are provided.

Solving a much simpler problem can provide similar ben-
efits to a particular class of LBS applications. We focus on
what we call the location matching problem: “In an arbi-
trary location, can a smart phone efficiently detect whether
or not it had previously visited this location?”. This prob-



lem is much simpler than global positioning because it does
not need to know the relative distance between two different
locations on a geographical plane.

We approach the problem by pairing locations with an
event (i.e., a set of action(s) performed by the user at that
location). For instance, when a user is in a conference room,
they mute the ring tone, or when they are in a gym, they
play their favourite play list from a music. By recording such
events and corresponding cellular signal statistics at that lo-
cation, we can easily identify the event for that location and
reproduce that event (if needed) by matching the currently
received cellular signals with those stored in the database.
None of these applications require global positioning; they
can function just as well with location matching.

Cellular Signal Signatures
We developed an Android application to collect cellular sig-
nal signatures per event. A signature is defined as the set
of Probability Density Functions (PDFs) of signal strengths
from all observable Base Stations (BS) when the smart
phone is associated with that event. We collected data from
around 40 volunteers from a university campus area for over
a period of three weeks.

The smart phones carried by the users receive signals
from one or more cell towers (max seven) constantly. By an-
alyzing the dataset, we found that utilizing the detailed sta-
tistical information of cellular signals alone is sufficient to
accurately identify the event. Cellular signals are received at
no extra cost in mobile devices and have ubiquitous connec-
tivity. Hence, we achieve continuous context sensing with
minimal extra energy overhead.

An Auto-tuned Event Sensing Algorithm
To better utilize the detailed statistical information recorded
in our signatures, we design an event sensing algorithm
(ATiS) with auto-tuning capabilities. The idea is that the
closer the input signal strengths match with the signature
database, the more accurate the event estimate is. If the prob-
ability of seeing a particular signal strength within the PDF
of a BS is high and the probability of the BS observed when
performing an event is high, the total argument is maximized
and hence we get a close match with the corresponding sig-
nature.

Finally, a signature threshold range CL and CU represent-
ing the lower bound and upper bound determines the event.
The algorithm learns adaptively from its mistakes by eval-
uating itself against ground truth. Note that the values of
[CL, CU ] are initialized with [1, 0] initially. During auto-
matic tuning, CL decreases and CU increases respectively
based on the ground truth to provide a tight bound for signa-
ture thresholds.

Accuracy and Energy Measurements
We evaluate for both accuracy and energy efficiency. For our
analysis, we use Active Hour Trace (AHT) of the user logs
which we assume to be from 07:00 hrs to 23:00 hrs because
this is the time period during which most users will be ac-
tive and mobile in general. We use first 70% of the logs for
training and remaining 30% for evaluation.
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Figure 7: (a) FP Vs. FN values for a random user. ATiS
achieves very low FP and FN values simultaneously. (b)
Variation in FP and FN values for 5 consecutive days for
a random user in the dataset.

Table 3: Energy consumption per second between our sys-
tem and other techniques for continuous location sensing.

Item Energy Consumed (mWh)

Our System 0.0173
Wi-Fi Scan 0.1185

Accelerometer 0.6670
GPS 1.5800

We evaluate the output of the algorithms at each time in-
stant (here 20 sec), and compare it with the ground truth
from the logs. False positive ratio (FP (%)) is defined as
the percentage of cases when the algorithm detects an event
when it is not available in the ground truth divided by the to-
tal number of cases. Similarly, false negative ratio (FN(%))
is defined as the percentage of cases when the algorithm
does not detect an event when it is available in the ground
truth divided by the total number of cases. As shown in
Figure 7 (a), we find that to achieve very low FP (%) val-
ues, Base Station Set: BSSET (Rahmati and Zhong 2007)
and Mean Squared Error: MSE (Prasithsangaree, Krish-
namurthy, and Chrysanthis 2002; Varshavsky et al. 2007)
based algorithms need very high threshold values which re-
sults in high FN(%) values. But ATiS achieves low FP (%)
and FN(%) values simultaneously. However, the values dif-
fer for every individual user and on a daily basis as shown in
Figure 7 (b). Overall, we achieved an average FP (%) and
FN(%) values of 1.10% and 0.19% which is very close to
the ideal case of zero FP (%) and FN(%) values.

We use a digital power monitoring device from Monsoon
Solutions3 to measure the energy consumptions for event
sensing on Android smart phones (Google Nexus One).
Extensive trials are done to avoid sensitive fluctuations in
power consumption. Table 3 shows the general energy con-
sumptions per second for location sensing by our system and
other available techniques. However, the total amount of en-
ergy consumption varies differently depending on the appli-
cation scenarios.

3http://www.msoon.com/LabEquipment/PowerMonitor/



Conclusions
The Platys project builds on a semantic concept of place
to facilitate developing context-aware mobile applications
that can enhance their users’ experience. A place in Platys
goes beyond location to include associated time spans, acti-
vates, people, roles and objects. Our resulting context model
is supported by an ontology in OWL.

Place recognition is currently performed on individual ac-
tivity recognition but we make use of information about
nearby devices (through Bluetooth and WiFi scanning) and
are working on a collaborative approach. Performance for
recognizing place at a general level (home vs. work vs. else-
where) is higher than that reported in existing works. Com-
pared to unsupervised staypoint approaches, the F-measures
for Platys, unlike those of staypoint approaches, are straight
lines since since they do not depend on place radius and du-
ration. Location plays an important role in place recognition.
We have addressed the problem of energy-efficient location
sensing.

A place is naturally associated with a social context. We
have proposed an approach to recognize social circles by
exploiting places information. Our approach performs best
when places are defined using both spatial and social at-
tributes.

In order to provide users with privacy to protect the per-
sonal information their mobile devices are collecting, we
define privacy and information sharing policies. The poli-
cies are expressed in the Semantic Web languages OWL and
RDF. Our release policies ensure context dependent release
of information in accordance to the user preferences as well
as obfuscation of shared information.
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