
Semantics and Verification of Information-Based Protocols

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
Information-Based Interaction-Oriented Programming, specifically
as epitomized by the Blindingly Simple Protocol Language (BSPL),
is a promising new approach for declaratively expressing multia-
gent protocols. BSPL eschews traditional control flow operators
and instead emphasizes causality and integrity based solely on the
information models of the messages exchanged. BSPL has been
shown to support a rich variety of practical protocols and can be re-
alized in a distributed asynchronous architecture wherein the agents
participating in a protocol act based on local knowledge alone. The
flexibility and generality of BSPL mean that it needs a strong for-
mal semantics to ensure correctness as well as automated tools to
help develop protocol specifications.

We provide a formal semantics for BSPL and formulate impor-
tant technical properties, namely, enactability, safety, and liveness.
We further describe our declarative implementation of the BSPL
semantics as well as of verifiers for the above properties using a
temporal reasoner. We have validated our implementation by veri-
fying the correctness of several protocols of practical interest.

Categories and Subject Descriptors
H.1.0 [Information Systems]: Models and Principles—General;
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Theory, Verification

Keywords
Business protocols, agent communication

1. INTRODUCTION
We take as our point of departure Singh’s [13] recent work on

Information-Based Interaction-Oriented Programming and especially
on the Blindingly Simple Protocol Language (BSPL). The main
innovation of BSPL is that it specifies multiagent protocols with-
out the use of any control flow constructs. Instead, it relies purely
on the specifications of the information schemas of the messages
exchanged among the defined roles. From the message schemas,
consisting of parameters (adorned in a specific manner we explain

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

below), BSPL characterizes the relevant (1) causal dependencies
and (2) integrity constraints. Causality provides a basis for order-
ing requirements that traditional languages address via control flow
operators. Integrity constraints provide a basis for exclusion re-
quirements that traditional languages address via choice operators.

Singh [13] explains the generality of BSPL in handling a vari-
ety of practical protocols and its ability to support the composition
of protocols, but without violating encapsulation as previous ap-
proaches, e.g., AUML [11] and MAD-P [3], do. Further, Singh
[14] shows how BSPL can be realized in a fully distributed, asyn-
chronous architectural style wherein the participating agents can
act based solely on local knowledge. The agents are always ready
to receive any incoming message and are not prevented from emit-
ting any message whose information prerequisites they can meet.

How can we be sure that a protocol is correct? Will it lead to
erroneous enactments? Will it deadlock? Notice that BSPL merely
forces the protocol designer to be explicit about causality, but it
does not add to the challenges of correctness. Specifically, any ap-
proach that supports distributed decision making faces these prob-
lems. Traditional approaches insert arbitrary rigidness whereas
BSPL offers an opportunity to achieve correctness and flexibility.

What is needed is, first, a rigorous formalization of the BSPL se-
mantics that would capture the inherent distribution of a BSPL en-
actment along with expressing the local views of the (agents play-
ing the) roles involved. Second, what is also needed is a clear for-
mulation of important correctness properties of protocols and tools
that would verify protocols with respect to those properties.

Contributions. The main contribution of this paper is precisely
to fill the above gaps. To do so requires new technical results. One,
we formulate a formal semantics for BSPL that incorporates a no-
tion of viability and respects the locality of each role, the flow of
causality across roles, and the asynchrony of the communications
between them. Two, we capture the semantic requirements purely
declaratively so that a logic-based reasoner can compute with them.
Three, we formalize correctness properties. We realize the seman-
tics and properties in a verification tool for BSPL protocols.

Organization. Section 2 follows Singh [13] in describing BSPL.
Section 3 provides intuitions about the BSPL semantics as well as
the correctness properties of interest. Section 4 provides a seman-
tics of BSPL based on local enactments and observations by agents
playing the roles in a protocol. Section 5 introduces a temporal lan-
guage and shows how to formalize the causal structure of a protocol
along with each property. It shows how we can verify each property
by checking the (un)satisfiability of the conjunction of the causal
structure and a property-specific formula. Section 6 discusses the
related literature and some directions for future research.

2. BACKGROUND ON BSPL
Listing 1 presents a protocol to help illustrate the main features

of BSPL. For readability, in the listings, we write reserved key-
words in sans serif, and capitalize role names. In the text, we write
message and protocol names slanted, roles in SMALL CAPS, and
parameters in sans serif. We insert p and q as delimiters, as in pSelf
7→ Other: hello[ID, name]q.

Listing 1: The Purchase protocol.
P u r c h a s e {
role B , S , S h i p p e r
parameter out ID key , out i tem , out p r i c e , out

outcome

B 7→ S : r f q [out ID , out i t em]
S 7→ B : q u o t e [in ID , in i tem , out p r i c e]
B 7→ S : a c c e p t [in ID , in i tem , in p r i c e , out

a d d r e s s , out r e s p o n s e]
B 7→ S : r e j e c t [in ID , in i tem , in p r i c e , out

outcome , out r e s p o n s e]
S 7→ S h i p p e r : s h i p [in ID , in i tem , in a d d r e s s]
S h i p p e r 7→ B : d e l i v e r [in ID , in i tem , in a d d r e s s ,

out outcome]
}

BSPL distinguishes three main adornments on the parameters of
a message: pinq, meaning the binding must come from some other
message; poutq, meaning that the binding originates in this mes-
sage (presumably based on private computations of the sender); and
pnilq, meaning that no binding is known to the sender at the time of
emission. Each message instance must bind a proper value for each
pinq and each poutq parameter, and a pnulq value for each pnilq
parameter. For brevity, we avoid pnilq parameters in our examples.

Consider the quote message in Purchase, which includes an item
description and a price, and may be emitted in response to a request
for quotes for a particular item. Clearly, for the quote message to be
emitted, its sender must instantiate all of its parameters. However,
from the standpoint of the quote message, the item description is
provided from the outside into the protocol and the price is pro-
vided by the protocol to the outside. Thus we adorn item with pinq
and price with poutq.

A message instance must provide a binding for each pinq and
poutq parameter with the difference being that the poutq binding
has declarative force [2]. For example, an agent emitting a price
quote is not merely reporting a price previously computed in the
conversation but declaring it to be the definitive price in this con-
versation. One can imagine such a message carrying the weight of
a commitment, although we deemphasize commitments here.

All of Purchase’s parameters are adorned poutq, indicating that
Purchase provides them to any protocol that composes Purchase.
The rfq and quote messages help generate a price offer. Here, the
BUYER (B) generates item and the SELLER (S) generates price, since
these parameters are adorned poutq in messages emitted by these
roles. Any message that takes some pinq parameters can be enacted
only if referenced from another protocol.

Notice that the ship message is irrelevant from the parameter
standpoint since all its parameters are adorned pinq, indicating that
ship creates no new information. However, ship is clearly essential
from the role perspective: it ensures that the SHIPPER learns of the
parameter bindings that make the SHIPPER’s emission of deliver
viable. In general, BSPL separates and addresses the two concerns
of the interplay of information with (1) interactions and (2) roles.

An enactment corresponds to a binding of public parameters.
BSPL requires some of the parameters being declared as forming
the key of a protocol enactment. Thus multiple concurrent enact-
ments of the same protocol do not interfere with each other. Every

protocol and message must have a key: for brevity, the key of a
message equals the protocol key parameters that feature in it. An
enactment is complete when all its public pinq and poutq parame-
ters are bound. Specifically, an enactment of Purchase must create
a tuple of bindings for its four public parameters but may omit ad-
dress and response, which are private.

Listing 1 involves a private parameter response that is poutq in
both accept and reject. Since BSPL models each enactment as pro-
ducing a tuple of parameter bindings, the existence of the same
parameter with an poutq adornment in two messages indicates an
integrity violation: thus the two messages cannot both occur: if
they did the binding would be conceptually undefined. That is, ac-
cept and reject conflict on response. And, outcome is poutq in both
reject and deliver, thereby causing a conflict between them.

Syntax
The following BSPL syntax and explanations are simplified from
Singh [13]. Superscripts of + and ∗ indicate one or more and zero
or more repetitions, respectively. Below, b and c delimit expres-
sions, considered optional if without a superscript. For simplicity,
we omit cardinality restrictions and parameter types.

L1 . A protocol declaration consists of a name, two or more roles,
one or more parameters, and one or more references to con-
stituent protocols or messages. The parameters marked key
together form this declaration’s key.
Protocol −→ Name { role Role+ parameter

bParameterbkeycc+Reference∗ }
L2 . A reference to a protocol (from a declaration) consists of the

name of the protocol appended by as many roles and param-
eters as it declares. At least one parameter of the reference
must be a key parameter of the declaration in which it occurs.
Reference −→ Name (Role+ Parameter+)

L3 . Alternatively, a reference is a message schema, and consists
of exactly one name, exactly two roles, and one or more pa-
rameters (at least one of which must be a key parameter).
Reference −→ Role 7→ Role : Name [Parameter+]

L4 . Each parameter consists of an adornment and a name.
Parameter −→ Adornment Name

L5 . An adornment is usually either pinq or poutq. A pnilq in a
reference indicates an unknown parameter.
Adornment −→ in | out | nil

3. INTUITIONS ON BSPL SEMANTICS
A protocol describes an interaction by specifying messages to be

exchanged between specific roles, and by (indirectly, though effec-
tively) imposing a partial order on the messages. An enactment of
a protocol involves each of its roles being adopted by an agent, and
the agents exchanging messages that the protocol specifies. A mes-
sage instantiates a message schema and is precisely described by its
name, its sender, receiver, and bindings for each of its parameters.

BSPL is characterized by the interplay between parameters and
messages. In describing interactions declaratively, we are con-
cerned with tuples of parameter bindings. The keys determine the
units of enactment. And, parameter bindings are immutable in any
enactment. The parameter adornments determine how information
is propagated through them. Interactions are realized exclusively
through the exchange of messages: everything of relevance to the
interaction is visible in a message emission and reception.

For example, quote (for a given ID, its key) may occur only after
ID and item are bound. An enactment of a protocol may begin only
when at least one of its messages is enabled. However, an enact-
ment begins and proceeds to completion only if the agents involved
decide autonomously to do their respective parts.

3.1 Knowledge and Viability
We distinguish between an agent’s local and internal states. The

local state is public, though limited to the role’s view of the proto-
col enactment. The internal state depends on the agent implemen-
tation and is not visible to any other agent. We consider only the
local states of roles. The history of a role maps naturally to its local
state: each message emitted or received advances the local state.

Figure 1 illustrates the impact on a sender and receiver’s knowl-
edge with respect to a parameter adorned pinq, poutq, or pnilq.
Further, because of the immutability of parameter bindings, the
knowledge of a role increases monotonically as its history extends.
Thus these are the only three possible adornments of a parameter.

Knows_

in

��

Does not know6

out
{{

_

nil
��

Knows_
in
out
nil ��

Does not know6

out

in{{

_

nil
��

Knows Does not know Knows Does not know

Figure 1: Viability and knowledge effects for an adorned pa-
rameter on the sender (left) and receiver (right) of a message.

As a result, an pinq emission must be preceded by an pinq or
an poutq emission or reception and an poutq or a pnilq emission
must not be preceded by an pinq or an poutq emission or reception.
Notice that to send a message with an poutq parameter, the sender
agent computes the parameter (through its internal business logic)
but the only role states, i.e., local states, in which the message can
be emitted are those where the role does not know already what it
is. A correctly implemented agent would not compute a binding
for an poutq parameter that (for the given keys) is already known
to its role. And, for an pinq parameter, the role must know its bind-
ing through a previous message. Such parameter-based causality
constraints underlie the semantics of BSPL.

Figure 1 identifies all the viable message emissions and recep-
tions given a role’s state of knowledge with respect to a parameter
in a message. A message reception is always viable. In a practical
system, we would validate incoming messages, as the LoST mid-
dleware [14] does, but in the abstract semantics we assume that the
local state is never corrupted. For a message emission, the sender
must already know the bindings of the pinq parameters and not
know the bindings for any of the other parameters.

3.2 Causal Structures
Because BSPL incorporates a flexible description of interactions,

it matches well with our computational approach of generating a
causal structure as a set of declarative (temporal) constraints that
capture the flow of causality within and across roles. A causal
structure identifies partial states for each role that describe some
parameters as known, some as unknown, and leave others indeter-
minate. It supports reasoning to verify various properties.

BSPL’s flexibility does not accord well with detailed graphical
representations of possible enactments, which get unwieldy fast.
Specifically, a causal structure may be mapped to a finite state ma-
chine but with an explosion in states and transitions. However, to
convey some intuitions, we show some informal pictures below.

Consider protocol Sequential. Because ID is poutq in initial and
pinq in additional, additional causally depends on initial.
S e q u e n t i a l { . . . / / O m i t t i n g r o l e s
parameter out ID key , out answer , out more
B 7→ S : i n i t i a l [out ID , out answer]
B 7→ S : a d d i t i o n a l [in ID , out more]

}

Figure 2: Sequential is enactable and safe.

Sequential ’s causal structure (Figure 2) represents the partial
states of each role. It shows each message along with a precon-
dition partial state in which it might be emitted and the effects it
would have on the states of its sender and receiver. The precondi-
tion specifies what parameters its sender must know (pinq parame-
ters) and must not know (poutq and pnilq parameters) before emit-
ting the message. The effects specify what parameters its sender
and receiver must know after it occurs (poutq and pinq parame-
ters). The solid transitions capture the intuitions of Figure 1. (The
dashed lines show logical relationships.) A message can be emitted
in any state that matches its precondition: the sender should know
all parameters written plain and know none of the parameters writ-
ten with a strikethrough line.

In Sequential, role B can send only initial at the outset. Upon
emitting and receiving this message, respectively, B and S’s states
change as specified by the ? and ! edges from the message node.
Thus, B knows answer and so cannot send initial but it would be
superfluous here anyway. Also, B knows ID and can send additional,
resulting in changing B and S’s states further. When both messages
are emitted and received, each poutq parameter of Sequential is
known to at least one role, i.e., the enactment completes.

Figure 3 shows the causal structure for Purchase. The buyer B
emits an rfq, which enables the seller S to send a quote. At this
point, B has a choice about whether to accept or reject. In case
of reject, all public parameters are bound so the enactment com-
pletes. In case of accept, S may send ship to the SHIPPER, who can
DELIVER the item to B, thereby completing the enactment.

Figure 3: Causal structure for Purchase.

3.3 Enactability
The intuition behind enactability simply is that a protocol should

provide a clear path to completion, i.e., generating a tuple for all
pinq and poutq public parameters. Sequential and Purchase are
enactable, as the enactments described above demonstrate. Let’s
consider Local Conflict, whose causal structure is in Figure 4.
Loca l C o n f l i c t { . . .
parameter out ID key , out answer , out a l t e r n a t i v e
B 7→ C : one [out ID , out answer]
B 7→ C : two [out ID , out a l t e r n a t i v e]

}

Figure 4: Local Conflict is not enactable, but is safe.

Local Conflict is not enactable. Because messages one and two
conflict on ID, emitting one disables two and vice versa. Thus, at
most one of them can be emitted for a given binding of ID. Hence,
either answer or alternative would necessarily remain unbound.

3.4 Safety
A useful protocol must be safe, meaning that each parameter

must have no more than one binding for the same key in any en-
actment. Sequential is safe because each of its parameters is poutq
in at most one message.

Safety requires that at most one message instance with the same
parameter adorned poutq occurs for any key. This condition is easy
to ensure for a single role. Specifically, when a role emits a mes-
sage with an poutq parameter, its knowledge changes and it may
send no subsequent messages with the same poutq parameter. The
BSPL semantics requires this local constraint and the LoST middle-
ware [14] enforces it. In essence, the agent should decide internally
which, if any, of the conflicting messages to send. Local Conflict
is safe because B is the sender of both conflicting messages.

But no such reasoning applies across senders because each main-
tains separate local state information. For example, Abrupt Cancel
below is not safe because it involves a race between B and S. Con-
sider Abrupt Cancel and its causal structure (Figure 5).
Abrupt Cance l { . . .
B 7→ S : o r d e r [out ID , out i t em]
B 7→ S : c a n c e l [in ID , in i tem , out outcome]
S 7→ B : goods [in ID , in i tem , out outcome]

}

Figure 5: Abrupt Cancel is enactable but not safe.

Abrupt Cancel is enactable because it is possible to go from its
initial states to where all its public parameters bound. However,
because messages goods and cancel may both be emitted, outcome
may be bound twice. Thus Abrupt Cancel is not safe.

To verify safety involves checking that the protocol prevents a
situation where two roles can both be enabled to send conflicting
messages. In essence, if there are two conflicting execution paths,
they must have a prior branching point controlled by the same role.
For example, in Listing 1, the conflict between accept and reject
on private parameter response means that at most one of these two
messages may occur. The same sender, B, is involved, so Purchase
is safe. Further, because deliver can only occur if ship occurs previ-
ously (to convey address) and ship can occur only if accept occurs
prior (to produce a binding for address). Thus deliver presupposes

accept but accept and reject conflict. Therefore, the mutual exclu-
sion between deliver and reject is guaranteed.

Listing 2 shows Purchase Unsafe based on Purchase, and which
dispenses with the private parameter response. Thus accept and re-
ject no longer conflict, and B may send both of them. Thus deliver
and reject may both occur, violating safety for outcome.

Listing 2: An unsafe variant of Purchase.
P u r c h a s e Unsafe { / / Same as P u r c h a s e e x c e p t t h e s e
B 7→ S : a c c e p t [in ID , in i tem , in p r i c e , out

a d d r e s s]
B 7→ S : r e j e c t [in ID , in i tem , in p r i c e , out

outcome]
}

In Abrupt Cancel, the inconsistency is obvious because differ-
ent roles make mutually inconsistent decisions. Purchase Unsafe is
more insidious because the inconsistent decisions by B and SHIP-
PER are gated by a decision by B. Our intuition may indicate that B
acts in an odd manner when it emits both accept and reject. How-
ever, the semantics of a protocol depends only on the protocol spec-
ification, not on any imagined internal policies of the agents adopt-
ing its various roles. The protocol specification is the only means
by which we constrain such policies: there is no hidden additional
specification. (Of course, an autonomous agent may violate any
protocol but the semantics tells us clearly what is a violation. No-
tice that LoST [14] helps an agent both respect a given protocol
itself and ensure that others are respecting the protocol too.)

In general, when different roles are the senders of two conflicting
messages, consistency is enforceable only if there is a causally prior
conflict produced by the same role. Specifically, safety holds pre-
cisely when no causal path on which an poutq parameter is bound
once may have the same poutq parameter bound again.

3.5 Liveness
Consider the following variant of Purchase.

P u r c h a s e No Ship { . . .
/ / Same as P u r c h a s e b u t wi th s h i p d e l e t e d
}

Purchase No Ship remains enactable because if B emits reject, all
its public parameters are bound. Despite this, however, if B emits
accept the protocol enactment cannot complete: outcome is never
bound because B can no longer send reject and the SHIPPER never
becomes enabled to send deliver. Notice that we can never require
that an agent send any message. And, in some cases, the protocol
semantics prevents an agent from legally emitting a message.

Liveness requires that no matter what messages any of the agents
has emitted, it should always be possible for a protocol enactment
to legally complete. Liveness does not mean that the completion
is necessarily a “happy” one from the application standpoint, just
that the enactment terminates. In this sense, Purchase is live as are
Purchase Unsafe and Abrupt Cancel. Local Conflict is not live.

Liveness entails enactability but not the other way around. Live-
ness is the more fundamental property. However, during design,
enactability can help catch errors that are easier to fix, whereas to
make corrections to ensure liveness can be more demanding.

4. FORMALIZING BSPL SEMANTICS
We now formalize the above intuitions. For convenience, we fix

the symbols by which we refer to finite lists (mostly, treated as sets)
of roles (~t), public roles (~x), private roles (~y), public parameters (~p),
key parameters (~k ⊆ ~p), pinq parameters (~pI ⊆ ~p), poutq parame-
ters (~pO ⊆ ~p), pnilq parameters (~pN ⊆ ~p), private parameters (~q),
and parameter bindings (~v, ~w). Here, ~p= ~pI∪ ~pO∪ ~pN , ~pI∩ ~pO = /0,

~pI ∩ ~pN = /0, and ~pN ∩ ~pO = /0. Also, t and p refer to an individual
role and parameter, respectively. To reduce notation, we rename
private roles and parameters to be distinct in each protocol, and the
public roles and parameters of a reference to match the declaration
in which they occur. Throughout, we use ↓x to project a list to those
of its elements that belong to x.

Definition 1 captures BSPL protocols. A protocol (via any of
its parameters) may reference another protocol (via its public pa-
rameters). The references bottom out at message schemas. Above,
Purchase references accept. And, if a protocol were to reference
Purchase, it would be able to reference (from its public or private
parameters) only the public parameters of Purchase, not address.

DEFINITION 1. A protocol P is a tuple 〈n,~x,~y,~p,~k,~q,F〉, where n
is a name; ~x, ~y, ~p,~k, and ~q are as above; and F is a finite set of f
references, {F1, . . . ,Ff }. (∀i : 1≤ i≤ f ⇒Fi = 〈ni,~xi,~pi,~ki〉, where
~xi ⊆~x∪~y, ~pi ⊆ ~p∪~q), ~ki = ~pi ∩~k, and 〈ni,~xi,~pi,~ki〉 is the public
projection of a protocol Pi (with roles and parameters renamed).
DEFINITION 2. The public projection of a protocol P =

〈n,~x,~y,~p,~k,~q,F〉 is given by the tuple 〈n,~x,~p,~k〉.
We treat a message schema ps 7→ r : m ~p(~k)q as an atomic proto-

col with exactly two roles (sender and receiver) and no references:
〈m,{s,r}, /0,~p,~k, /0, /0〉. Here ~k is the set of key parameters of the
message schema. Usually, ~k is understood from the protocol in
which the schema is referenced:~k equals the intersection of ~p with
the key parameters of the protocol declaration.

Below, let roles(P) =~x∪~y∪
⋃

i roles(Fi); params(P) = ~p∪~q∪⋃
i params(Fi); msgs(P) =

⋃
i msgs(Fi) and msgs(s 7→ r : m ~p) =

{m}. Definition 3 assumes that the message instances are unique
up to the key specified in their schema.
DEFINITION 3. A message instance m[s,r,~p,~v] associates a mes-
sage schema ps 7→ r : m ~p(~k)q with a list of values, where |~v|= |~p|,
where~v ↓p= pnilq iff p ∈ ~pN .

Definition 4 introduces a universe of discourse (UoD). Defini-
tion 5 captures the idea of a history of a role as a sequence (equiv-
alent to a set in our approach) of all and only the messages the role
either emits or receives. Thus Hρ captures the local view of an
agent who might adopt role ρ during the enactment of a protocol.
A history may be infinite in general but we assume each enactment
in which a tuple of parameter bindings is generated is finite.
DEFINITION 4. A UoD is a pair 〈R ,M 〉, where R is a set of roles,
M is a set of message names; each message specifies its parameters
along with its sender and receiver from R .
DEFINITION 5. A history of a role ρ , Hρ , is given by a sequence
of zero or more message instances m1 ◦m2 ◦ Each mi is of the
form m[s,r,~p,~v] where ρ = s or ρ = r, and ◦ means sequencing.

Definition 6 captures the idea that what a role knows at a history
is exactly given by what the role has seen so far in terms of incom-
ing and outgoing messages. Here, 2(i) ensures that m[s,r,~p(~k),~v],
the message under consideration, does not violate the uniqueness
of the bindings. And, 2(ii) ensures that ρ knows the binding for
each pinq parameter and not for any poutq or pnilq parameter.

DEFINITION 6. A message instance m[s,r,~p(~k),~v] is viable at role
ρ’s history Hρ iff (1) r = ρ (reception) or (2) s = ρ (emission) and
(i) (∀mi[si,ri,~pi,~vi] ∈ Hρ if~k ⊆ ~pi and ~vi ↓~k=~v ↓~k then ~vi ↓~p∩~pi=
~v ↓~p∩~pi) and (ii) (∀p ∈ ~p : p ∈ ~pI iff (∃mi[si,ri,~pi,~vi] ∈ Hρ and
p ∈ ~pi and~k ⊆ ~pi)).

Definition 7 captures that a history vector for a protocol is a vec-
tor of histories of role that together are causally sound: a message
is received only if it has been emitted [8].

DEFINITION 7. Let 〈R ,M 〉 be a UoD. We define a history vec-
tor for 〈R ,M 〉 as a vector [H1, . . . ,H |R |], such that (∀s,r : 1 ≤
s,r ≤ |R | : Hs is a history and (∀m[s,r,~p,~v] ∈ Hr : m ∈M and
m[s,r,~p,~v] ∈ Hs)).

The progression of a history vector records the progression of
an enactment of a multiagent system. Under the above causality
restriction, a vector that includes a reception must have progressed
from a vector that includes the corresponding emission. Further, we
make no FIFO assumption about message delivery. The viability
of the messages emitted by any role ensures that the progression is
epistemically correct with respect to each role.

DEFINITION 8. A history vector over 〈R ,M 〉, [H1, . . . ,H |R |], is
viable iff either (1) each of its element histories is empty or (2) it
arises from the progression of a viable history vector through the
emission or the reception of a viable message by one of the roles,
i.e., (∃i,m j : H i = H ′i ◦m j and [H1, . . . ,H ′i,H |R |] is viable).

The heart of our formal semantics is the intension of a protocol,
defined relative to a UoD, and given by the set of viable history vec-
tors, each corresponding to its successful enactment. Given a UoD,
Definition 9 specifies a universe of enactments, based on which we
express the intension of a protocol. We restrict attention to viable
vectors because those are the only ones that can be realized. We
include private roles and parameters in the intension so that compo-
sitionality works out. In the last stage of the semantics, we project
the intension to the public roles and parameters.
DEFINITION 9. Given a UoD 〈R ,M 〉, the universe of enactments
for that UoD, UR ,M , is the set of viable history vectors, each of
which has exactly |R | dimensions and each of whose messages
instantiates a schema in M .

Definition 10 states that the intension of a message schema is
given by the set of viable history vectors on which that schema
is instantiated, i.e., an appropriate message instance occurs in the
histories of both its sender and its receiver.
DEFINITION 10. The intension of a message schema is given by:
[[m(s,r,~p)]]R ,M = {H|H ∈ UR ,M and (∃~v, i, j : Hs

i = m[s,r,~p,~v]
and Hr

j = m[s,r,~p,~v])}.
A (composite) protocol completes if one or more of subsets of

its references completes. For example, Purchase yields two such
subsets, namely, {rfq, quote, accept, ship, deliver} and {rfq, quote,
reject}. Informally, each such subset contributes all the viable in-
terleavings of the enactments of its members, i.e., the intersection
of their intensions. Definition 11 captures the cover as an adequate
subset of references of a protocol, and states that the intension of a
protocol equals the union of the contributions of each of its covers.

DEFINITION 11. Let P = 〈n,~x,~y,~p,~k,~q,F〉 be a protocol. Let cover
(P,G)≡G⊆ F |(∀p∈ ~p : (∃Gi ∈G : Gi = 〈ni,xi, pi〉 and p∈ ~pi));
and P’s intension, [[P]]R ,M =(

⋃
cover(P,G)(

⋂
Gi∈G[[Gi]]R ,M))

y
~x.

As an example, consider a message m1 with a single key param-
eter p adorned pinq whose sender is role r1. The intension of this
message with respect to a UoD 〈R ,M 〉 can be nonempty only if
one of the following conditions holds for some m2 ∈M (m2 should
precede m1 in role r1’s history):
• m2’s schema involves the parameter p adorned poutq and r1

is the sender or receiver of m2.
• m2’s schema involves the parameter p adorned pinq and the

receiver of m2 is the same role r1.
The intension of m1 would still be empty if the intension of any
such m2 is empty, e.g., if m2 does not occur on any viable history
vector. In general, if message m1 has message m2 as an essential
prerequisite, then the intension of m1 must be a subset of the inten-
sion of m2, i.e., [[m1]]⊆ [[m2]].

The UoD of protocol P consists of P’s roles and messages
including its references recursively. For example, Purchase’s UoD
U = 〈{B, S, SHIPPER}, {rfq, quote, accept, reject, ship, deliver}〉.
DEFINITION 12. The UoD of a protocol P , UoD(P) =
〈roles(P),msgs(P)〉.

4.1 Enactability, Safety, and Liveness
Enactability means that we can produce a history vector that gen-

erates bindings for all public parameters. Note that a protocol that
has a public pinq parameter is not enactable standalone, and must
be referenced from another protocol. Safety means that we cannot
produce a history vector that generates more than one binding for
any parameter. Liveness means that we cannot produce a history
vector that deadlocks.
DEFINITION 13. A protocol P is enactable iff [[P]]UoD(P) 6= /0.
DEFINITION 14. A protocol P is safe iff each history vector in
[[P]]UoD(P) is safe. A history vector is safe iff all key uniqueness
constraints apply across all histories in the vector.
DEFINITION 15. A protocol P is live iff each history vector in the
universe of enactments UoD(P) can be extended through a finite
number of message emissions and receptions to a history vector in
UoD(P) that is complete.

4.2 Well-Formedness Conditions
Because BSPL relies upon parameter adornments and keys for

causality and integrity, it is essential that a protocol meet some el-
ementary syntactic conditions. The main idea is that each key (set
of parameters) identifies a logical entity and nonkey parameters ex-
press attributes of that entity. Thus the nonkey parameters have no
meaning if separated from their keys. As an example, think of tak-
ing the age of a person with an identifier and putting the age in a
record without the person’s identifier. We need to carry the original
identifier along. Of course, an agent may copy the contents of one
parameter to another (e.g., set price equal to age), but such internal
reasoning is not in the purview of BSPL.

The foregoing motivation leads to the following constraints. First,
two messages must involve different parameters unless the key of
one is a subset of the key of the other. Second, no message m0 that
has an poutq key parameter must have an pinq nonkey parameter p
unless: if p occurs as an poutq in a message m1 then m0 includes
m1’s key; and, if p occurs as an pinq in a message m2 with an en-
tirely pinq key then m0 includes m2’s key. Notice that Definition 6
seeks to respect the above constraint. The net result is that if a
message has an poutq parameter p then the key with which p is
produced must be stated whenever we use p.

5. VERIFYING BSPL PROTOCOLS
To verify BSPL protocols, we express a causal structure as well

as the target properties in a temporal language and determine the
satisfiability of the resulting expressions. The language we adopt,
Precedence, is an extension of Singh’s [12] language.

The atoms of Precedence are events. Below, e and f are events.
If e is an event, its complement e is also an event. Precedence treats
e and e on par. The terms e · f and e ? f , respectively, mean that e
occurs prior to f and e and f occur simultaneously. The Boolean
operators: ‘∨’ and ‘∧’ have the usual meanings. The syntax follows
conjunctive normal form:

L6 . I −→ clause | clause ∧ I
L7 . clause −→ term | term ∨ clause
L8 . term −→ event | event · event | event ? event
The semantics of Precedence is given by pseudolinear runs of

events (instances): “pseudo” because several events may occur to-
gether though there is no branching. Let Γ be a set of events where
e ∈ Γ iff e ∈ Γ. A run is a function from natural numbers to the
power set of Γ, i.e., τ : N 7→ 2Γ. The ith index of τ , τi = τ(i). The
length of τ is the first index i at which τ(i) = /0 (after which all in-
dices are empty sets). We say τ is empty if |τ = 0. The subrun from
i to j of τ is notated τ[i, j]. Its first j− i+1 values are extracted from
τ and the rest are empty, i.e., τ[i, j] = 〈τi,τi+1 . . .τ j−i+1 . . . /0 . . .〉. On
any run, e or e may not both occur. Events are nonrepeating.

τ |=i E means that τ satisfies E at i or later. We say τ is a model
of expression E iff τ |=0 E. E is satisfiable iff it has a model.

M1 . τ |=i e iff (∃ j ≥ i : e ∈ τ j)

M2 . τ |=i e? f iff (∃ j ≥ i : {e, f} ⊆ τ j)

M3 . τ |=i r∨u iff τ |=i r or τ |=i u

M4 . τ |=i r∧u iff τ |=i r and τ |=i u

M5 . τ |=i e · f iff (∃ j ≥ i : τ[i, j] |=0 e and τ[j+1,|τ|] |=0 f)
We capture the local state of each role in a BSPL protocol by

defining two kinds of events: (1) a particular message having been
observed (one event each for sender and receiver) and (2) a partic-
ular parameter having a known binding (one event for each param-
eter whether emitted or received in any message).

Although our approach is generic and implemented, we describe
it via examples based on Purchase to simplify the exposition in
limited space. From Purchase, we first determine events from mes-
sages (B:quote, S:quote, . . . : total 12) and parameters (B:price,
S:price, . . . : total 17). Next, we describe how we generate a causal
structure, ignoring pnilq adornments for brevity. For protocol P ,
let CP be the conjunction of all clauses of the following types.

S R

p

m[in p]'' p

S R

p

m[in p]
''

p

(a) pinq parameters

S R

p
m[out p]%%

p

S R

p

p
m[out p]

''

(b) poutq parameters

Figure 6: Treatment of pinq and poutq parameters: each has
one possible scenario for the sender and two for the receiver.

Reception. If a message is received, it was previously emitted.
Specifically, either the receiver role never observes a mes-
sage or the sender observes it before (six clauses).
B:quote∨S:quote ·B:quote

Information transmission. For each message, in its sender’s view.
See Figure 6(a). Either the message is never emitted or each
of its pinq parameters is observed before (14 clauses).
S:quote∨S: item ·S:quote
See Figure 6(b). Either the message is never emitted or it is
observed simultaneously with each of its poutq parameters
(eight clauses).
S:quote∨S:price?S:quote

Information reception. For each message, in its receiver’s view.
Any poutq or pinq parameter occurs before or simultane-
ously with the message. In other words, either the message is
not observed or each such parameter is observed no later than
the message. A parameter may be observed earlier through
some other path [14] (22 clauses). See Figure 6.
B:quote∨B:price ·B:quote∨B:price?B:quote

Information minimality. For any role, if a parameter occurs, it
occurs simultaneously with some message emitted or received.
Thus, no role observes a parameter noncausally (16 clauses).

B:price∨B:price?B:quote∨B:price?B:accept∨B:price?
B: reject

Ordering. If a role emits any two messages, it observes them in
some order, not simultaneously. This constraint rules out
lockstep enactments whereby two messages happen to be
emitted magically at the same time to escape our causality
constraints (four clauses).

S:quote∨S:ship∨S:quote ·S:ship∨S:ship ·S:quote
The correctness of our decision procedures relies on the follow-

ing result, whose proof follows from construction.
THEOREM 1. Given a well-formed protocol P , for every viable
history vector, there is a model of CP and vice versa.

Proof Sketch. In the forward direction, we can proceed by induc-
tion to find a pseudolinear run that includes each message emission
and reception that occurs in any history in the history vector H. An
empty history vector corresponds to an empty run. Inductively as-
sume that a run τ exists for history vector H. We can extend H via
the emission of a message only if the message is viable in H, mean-
ing that its sender has locally observed its pinq parameters but not
its poutq or pnilq parameters. Using the information transmission
clauses, we can construct a run τ ′ that extends τ with the message
emission event. We can extend H via the reception of the message
by a role r. By Definition 7, H must include a message emission
event for some role sending to r. Thus we can construct τ ′ as τ ap-
pended with the message reception. In the reverse direction, given a
run τ , we simply construct each member history of the vector from
τ by appending the message emission and reception events (and ig-
noring all others) involving a role in sequence to that role’s history.
The clauses in CP ensure that the resulting vector is viable.

5.1 Verifying Enactability
We generate clauses that together indicate completion of a proto-

col enactment. For each public parameter we identify all the mes-
sages in which it occurs and specify a clause that is the disjunction
of the receivers of those messages observing that parameter. For
example, for outcome, we have B:outcome∨ S:outcome because
B and S are the receivers of the two messages in which outcome oc-
curs. For protocol P , let EP be the conjunction of all such clauses.
Our decision procedure is simply to check if CP∧EP is satisfiable.
THEOREM 2. A well-formed protocol P is enactable if and only
if CP∧EP is satisfiable.

Proof Sketch. In the forward direction, assume protocol P has a
nonempty intension. Then, by Definition 11, it has a cover of ref-
erences that yield bindings for all its public parameters, indicating
that EP holds for each vector. Further from Theorem 1, we know
that CP holds in the corresponding run. In the reverse direction,
from any run that satisfies CP ∧EP we can identify a cover with a
nonempty intension.

5.2 Verifying Safety
Safety means that for each parameter (public or private) adorned

poutq in two or more messages, no more than one of those “com-
peting” messages may be emitted. To this end, we generate clauses
expressing that two or more of the competing messages of some
parameter are observed by their sender. For Purchase, outcome and
response are the relevant parameters. Therefore, the resulting two
clauses are (B:accept∨ SHIPPER:deliver) and (B: reject). This

clause says that both reject and either accept or deliver is emitted,
which signifies an inconsistency. For protocol P , let SP be the
conjunction of all the property clauses. Our decision procedure is
simply to check if CP∧SP is unsatisfiable.
THEOREM 3. A well-formed protocol P is safe if and only if CP∧
SP is not satisfiable.

Proof Sketch. Let τ satisfy CP∧SP. Then, by Theorem 1, we can
construct a history vector in which at least two conflicting messages
occur. We can extend such a vector to one where at least two roles
generate bindings for the same parameter, thus violating integrity
(we cannot prove that they will generate the same bindings since
we have no access to internal reasoning). Conversely, if CP∧SP is
not satisfiable, there is no history vector in the intension of P that
violates integrity.

5.3 Verifying Liveness
Notice that a specific protocol enactment being incomplete does

not entail that some role is blocked. A enactment may fail to com-
plete even though the protocol may be live: (1) one or more agents
may decide not to send messages or (2) one or more messages may
be lost—causality requires only that receptions are preceded by
emissions, not that emissions are always followed by receptions.

To avoid situations where some agents may decide not to send
any messages, we restrict attention to models that are maximal in
the sense that they have no message left unemitted that could be
emitted based on the parameters that feature in it. That is, in a
maximal model, if the sender has observed the pinq and not ob-
served the poutq parameters of a message, then the sender must
also observe the message. The following says that either S emits
quote or it does not observe ID or item or it observes price, i.e.,
(S:quote∨S: ID∨S: item∨S:price).

To avoid situations where the communication infrastructure may
drop messages, we constrain our model to those where every mes-
sage emitted is delivered, e.g., (S:quote∨B:quote). Third, the en-
actment is incomplete, which means that at least one of the public
poutq parameters remains unbound at each role. The above condi-
tion yields a clause (: ID∨ : item∨ :price∨ :outcome) constructed
from protocol-level literals, for which no role is relevant. For each
such literal, we assert two clauses (:price∨B:price∨S:price) and
(:price∨B:price∨S:price), meaning that the protocol-level literal
is true exactly if at least one role observes the parameter.

If a maximal, nonlossy enactment can be incomplete that means
the protocol is not live. For protocol P , let LP be the conjunc-
tion of all the above property clauses. Our decision procedure is to
check if CP∧EP is satisfiable and CP∧LP is unsatisfiable.
THEOREM 4. A protocol P is live if and only if CP∧EP is satisfi-
able and CP∧LP is not satisfiable.

Proof Sketch. Let τ satisfy CP ∧LP. Then, by Theorem 1, we
can construct a viable history vector that cannot be extended by a
message emission (maximality) or by message reception (lossless
transmission), and yet is incomplete. That is, such a history vector
belongs to the universe of enactments of P but is neither complete
nor can be completed. Thus, by Definition 15, P is not live.

Conversely, if a protocol P is live, we know there is a history
vector in the universe of enactments of P that is complete. From
Theorem 2, that vector satisfies CP ∧EP. We also know that each
history vector in the universe of enactments of P is either complete
or can be finitely extended to a complete history vector. Thus if P
is live, CP∧LP is not satisfiable.

6. DISCUSSION
We employ a satisfiability (SAT) solver for Precedence built us-

ing a propositional SAT solver—an established technology for log-
ical reasoning. Our approach expresses and solves temporal con-
straints directly instead of building an explicit state machine rep-
resentation. Table 1 shows the numbers of Precedence clauses for
selected protocols.

Table 1: Counts of Precedence clauses for our properties.

Protocol |CP| |EP| |SP| |LP| Total

Abrupt Cancel 14 2 4 9 29
Purchase 70 4 4 21 99
Purchase No Reject 56 4 0 19 79
Purchase No Ship 62 4 4 19 89
Purchase Unsafe 64 4 2 21 91
FIPA Request [6] 121 3 56 27 207

A technically correct protocol may have design flaws: (1) it may
have deadwood messages, which can never be enacted; (2) param-
eters that may never be bound (e.g., a private parameter that is not
poutq in any message); (3) some parameters that may never be used
(e.g., a private parameter that is not adorned pinq in any message).
Such checks are valuable because they indicate other problems.

We elide other easy checks that help validate a protocol but which
are not critical to our verifier. A protocol that has a public pinq pa-
rameter cannot be enacted standalone: its intension is empty. A
protocol that lacks a message involving any of its public poutq pa-
rameters is also not enactable.

Traditional notations for protocols such as AUML [11], UML
2.0 message-sequence charts (MSCs), and choreography descrip-
tion languages take a procedural stance for describing interactions.
Thus they emphasize explicit constraints on how messages are or-
dered. Desai and Singh [4] identify several challenges to the en-
actability of a protocol: ordering problems termed blindness and
occurrence problems termed nonlocal choice [7]. Traditional ap-
proaches formalize properties such as safety and liveness but those
are understood purely procedurally and the underlying model does
not sustain a declarative information-based model as BSPL does.
In contrast, BSPL’s parameter adornments force clarity in terms of
causality and the flow of information. In this way, BSPL avoids
both blindness and nonlocal choice: each of them yields an empty
intension and is thus deemed nonenactable. A designer can correct
an unsound protocol by inserting suitable messages.

Miller and McGinnis [9] propose RASA, a language for express-
ing protocols. RASA takes a procedural stance on capturing pro-
tocols and takes its semantics from propositional dynamic logic
(PDL). RASA does not have a notion of parameter adornment as
in BSPL and its semantics does not capture the ideas of maximiz-
ing concurrency and interaction orientation. Like BSPL, RASA
supports protocols that an agent can inspect and reason about.

LoST [14] focuses on the architectural aspects of realizing a lan-
guage such as BSPL. That work describes the functioning of a suit-
able middleware using conceptually relational data stores. It does
not describe the formal semantics as introduced in this paper.

Several researchers have developed approaches for analyzing pro-
tocols [1, 5, 10, 15] that by and large consider higher-level aspects
of interaction than BSPL. It would be interesting and useful to see
how such approaches can be applied on top of BSPL. A potential
advantage, and one that motivates BSPL, is that by guaranteeing the
integrity of distributed enactments, BSPL can facilitate expressing
high-level, declarative meanings of protocols, thereby facilitating

analyses carried out in the above works. Thus the reasoning they
perform on commitments, delegation, and other normative con-
structs could have even better effect than presently, in particular,
obtaining a distributed rendition for free and thus the opportunity
to apply in an asynchronous information-driven environment. Ex-
ploring such connections is an important theme for future research.

Acknowledgments
This work was partially supported by the OOI Cyberinfrastructure
program, which is funded by NSF contract OCE-0418967 with the
Consortium for Ocean Leadership via the Joint Oceanographic In-
stitutions. Thanks to Matthew Arrott, Amit Chopra, and Claudiu
Farcas for discussions. Thanks to Amit Chopra, Neil Yorke-Smith,
and the anonymous reviewers for comments on previous versions.

7. REFERENCES
[1] A. Artikis, M. J. Sergot, and J. Pitt. An executable

specification of a formal argumentation protocol. Artificial
Intelligence, 171(10–15):776–804, 2007.

[2] J. L. Austin. How to Do Things with Words. Clarendon Press,
Oxford, 1962.

[3] N. Desai and M. P. Singh. A modular action description
language for protocol composition. In Proc. 22nd
Conference on Artificial Intelligence (AAAI), pp. 962–967,
Vancouver, July 2007.

[4] N. Desai and M. P. Singh. On the enactability of business
protocols. In Proc. 23rd Conference on Artificial Intelligence
(AAAI), pp. 1126–1131, Chicago, July 2008.

[5] M. El Menshawy, J. Bentahar, H. Qu, and R. Dssouli. On the
verification of social commitments and time. In Proc.
AAMAS, pp. 483–490, Taipei, May 2011.

[6] FIPA. FIPA interaction protocol specifications, 2003. FIPA:
The Foundation for Intelligent Physical Agents,
http://www.fipa.org/repository/ips.html.

[7] P. B. Ladkin and S. Leue. Interpreting message flow graphs.
Formal Aspects of Computing, 7(5):473–509, Sept. 1995.

[8] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[9] T. Miller and J. McGinnis. Amongst first-class protocols. In
Proc. 8th International Workshop on Engineering Societies
in the Agents World (ESAW 2007), LNCS 4995, pp. 208–223.
Springer, 2008.

[10] T. J. Norman and C. Reed. A logic of delegation. Artificial
Intelligence, 174(1):51–71, Jan. 2010.

[11] J. Odell, H. V. D. Parunak, and B. Bauer. Representing agent
interaction protocols in UML. In Proc. 1st International
Workshop on Agent-Oriented Software Engineering (AOSE
2000), LNCS 1957, pp. 121–140. Springer, 2001.

[12] M. P. Singh. Distributed enactment of multiagent workflows:
Temporal logic for service composition. In Proc. AAMAS,
pp. 907–914, Melbourne, July 2003.

[13] M. P. Singh. Information-driven interaction-oriented
programming: BSPL, the blindingly simple protocol
language. In Proc. AAMAS, pp. 491–498, Taipei, May 2011.

[14] M. P. Singh. LoST: Local state transfer—An architectural
style for the distributed enactment of business protocols. In
Proc. 7th IEEE International Conference on Web Services
(ICWS), pp. 57–64, Washington, DC, 2011.

[15] P. Yolum. Design time analysis of multiagent protocols. Data
and Knowledge Engineering Journal, 63:137–154, 2007.

