
Kokomo: An Empirically Evaluated Methodology for
Affective Applications

Derek J. Sollenberger
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

djsollen@ncsu.edu

Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

ABSTRACT
The introduction of affect or emotion modeling into software opens
up new possibilities for improving user experience. Yet, current
techniques for building affective applications are limited, with the
treatment of affect in essence handcrafted in each application. The
multiagent middleware Koko attempts to reduce the burden of in-
corporating affect modeling into applications. However, Koko can
be effective only if the models it needs to function are suitably con-
structed.

We propose Kokomo, a methodology that employs expressive
communicative acts as an organizing principle for affective appli-
cations. Kokomo specifies the steps needed to create an affective
application in Koko. A key motivation is that Kokomo would facil-
itate the construction of an affective application by engineers who
may lack a prior background in affective modeling.

We empirically evaluate Kokomo’s utility through a developer
study. The results are positive and demonstrate that the developers
who used Kokomo were able to develop an affective application in
less time, with fewer lines of code, and with a reduced perception
of difficulty than developers who worked without Kokomo.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Design—Methodologies; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—Mul-
tiagent systems

General Terms
Design, Experimentation, Human Factors

Keywords
Software engineering, Affective computing, Computational archi-
tectures for learning

1. INTRODUCTION
The term affect is used in psychology to refer to feelings or emo-

tions. The term is also used more narrowly to describe an expressed
or observed emotional response of a human to some relevant event.
Expressed responses can be most easily demonstrated in a 3D vir-
tual environment where virtual characters use gestures and dialog

Cite as: Kokomo: An Empirically Evaluated Methodology for Affective
Applications, Derek J. Sollenberger and Munindar P. Singh, Proc. of 10th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei,
Taiwan, pp. XXX-XXX.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to emulate human emotional responses [7]. In contrast, we con-
centrate on the observation aspects of affective computing. In par-
ticular, we focus on enabling software developers to use affective
computing techniques in order to create a superior user experience.

We take as our point of departure the Koko middleware devel-
oped by Sollenberger and Singh [17, 19]. Koko is a service-oriented
middleware that observes and maintains a predictive model of a
user’s affective state, and thus relieves application developers from
the challenge of maintaining such a model. However, Koko needs
to be suitably configured so as to work effectively.

We propose a methodology called Kokomo that steps an applica-
tion developer through a process for configuring Koko and incor-
porating it into an application. Interestingly, Kokomo is based on
the notion of expressives, an important but little-known (especially
in the agents community) class of communicative acts.

Further, we conducted a developer study to determine the actual
and perceived benefits of Koko and Kokomo to application devel-
opers. Our hypothesis is simple: developers who use Koko and
Kokomo can more easily construct an affective application than
those who do not, while at the same time not diminishing the qual-
ity of their application. The study consisted of the same application
assigned to groups of developers employing Kokomo (with Koko),
Koko alone, and neither (just traditional techniques).

Our evaluation measured the ease of constructing an application
both subjectively and objectively. We collected subjective devel-
oper feedback on their perceived difficulty via surveys which we
obtained throughout the duration of the study. The feedback in-
dicates a lower perception of difficulty for the affective portions
of the assignment when using Kokomo than without it. Analysis
of objective difficulty measures (code metrics and effort analysis)
shows that Kokomo yields the best results on nearly every measure
of code complexity and effort. However, the results were not uni-
formly strong for developers employing Koko alone (we revisit this
point in Section 6).

It is important to note, that this work does not introduce any
new theories or paradigms for the field of affective computing, but
rather seeks to employ existing affective theories in a compelling
new way. The main contributions of this work are focused on soft-
ware engineering as we seek to expand the scope of agent-oriented
methodologies into the realms of expressive communication and
affective agents. Additionally, unlike many agent-oriented method-
ologies, we have subjected our methodology to an empirical evalu-
ation in the form of a developer study where the developers are not
the authors of the methodology.

Paper Organization
Section 2 provides a background on affect in computing and a sum-
mary of Koko as well as of Koko-ASM, a previous methodology.

Section 3 describes the Kokomo methodology. Section 4 introduces
the application used in the developer study. Section 5 describes our
developer study in some detail along with an analysis of its results.
Section 6 concludes with a discussion of the implications of our
findings as well as some important directions for future work.

2. BACKGROUND
Smith and Lazarus [16] are credited with developing a theory of

emotions, called appraisal theory, which has become the baseline
model for affect in computational systems. As Figure 1 shows,
an appraisal (for our purposes, an expression of affect) arises from
how a user interprets or construes an event in the environment.

Environment Goals/Beliefs/
Intentions

Appraisal Outcome

 Physiological

Response Affect Action
Tendencies

Appraisal

Situational
Construal

Figure 1: Components and process of an appraisal [16].

Further, the affective state contained within an appraisal outcome
can be interpreted as a vector of discrete states, each with an asso-
ciated intensity. For instance, upon successfully completing a task,
a user could arrive at an appraisal that he or she is simultaneously
happy with an intensity of α and proud with an intensity of β.

Appraisal theory finds broad application because of its computa-
tional nature. Its applications include educational games [1], simi-
lar to the task in our developer study. We note that affective com-
puting extends beyond our discussion of appraisal theory. Picard
[12] provides an excellent overview of the affective computing field
which includes a more detailed discussion of appraisal theory.

A major challenge in applying appraisal theory is its domain de-
pendence: it yields models of affect that are tied to a particular
domain and context. The common practice when creating a new af-
fective application have been to copy and modify an existing model
to meet the specifications of the new domain. Recent approaches
have begun to address this challenge. The EMotion and Adapta-
tion (EMA) system [7] for modeling virtual characters incorporates
a domain-independent model to be populated with the necessary
context at runtime. CARE [10] does the same for modeling human
subjects.

2.1 Koko
Koko is a multiagent and service-oriented middleware, which

enables the prediction of a user’s affective state [17]. Koko is not
an affect model, but a platform within which (existing and future)
models of affect can operate.

Koko provides an ontology of emotions and an ontology of the
primitives for describing an application’s state. A developer uses
these ontologies to configure Koko by specifying (1) which emo-
tions to model and (2) the relevant components of the application’s
state. From the configuration, Koko generates a model specific to
the application. At runtime Koko receives inputs, described using
the configured primitives, from the sensors and the application.

Koko supports appraisal theory models, as described earlier in
this section. Appraisal theory dictates that each time an input is

Koko

User Agent

Application Logic

 Ontology of Emotions and Event Primitives

Affect Model
Container

 Affect
Vector

Event Repository Affect
Repository

Environmental
Sensors

Figure 2: A Koko user agent (arrows represent data flow).

received an output must be produced. The output produced by a
Koko model is a vector of probabilities, called an affect vector. The
vector contains an element for each emotion as configured for the
application. Each element is the probability that the user is cur-
rently experiencing the corresponding emotion. Koko makes each
user’s affect vector available to the appropriate applications.

Koko follows the cognitive-based user affect modeling (CB-AUM)
approach [8]. Koko supports one model per application for each
user and exposes these models to applications using a formal set of
interfaces [17]. A CB-AUM model relies heavily on machine learn-
ing techniques. Koko includes a repository for CB-AUM models
from which a developer may choose the most appropriate model
for a new application. The basic flow of such a model can be con-
ceptualized in the following steps.

1. Seed the model with information about the user’s environ-
ment. This seeding is based on the application-specific con-
figuration.

2. Provide training data. Either the user or someone observing
the user must record the user’s emotional state in conjunc-
tion with data from the application or the sensors, preferably
both. This is simplest if the application itself is appropriately
instrumented, e.g., to query the user for their emotions. The
data can optionally be acquired offline.

3. Learn a model from the training data. Koko does this using
the Weka toolkit. In general, user affect modeling [8] makes
heavy use of various machine learning techniques to adapt to
the behavior patterns of individual users.

4. Provide probabilistic predictions regarding the user’s affec-
tive state, represented in Koko as an affect vector, as de-
scribed above.

Additionally, Koko is designed to support affective interactions
among the user agents. The traditional Koko runtime is deployed
in a cloud environment where there is one Koko agent per end user
regardless of how many different Koko based applications are as-
sociated with the user. These agents are equipped to share affective
information with other agents in the user’s social circle, even across
application boundaries.

2.2 Koko-ASM
Koko-ASM is a methodology for configuring a social (multia-

gent) affective application using Koko [18]. The configuration pro-
cess of Koko is important because the affect models contained in
Koko are dependent on the quality of information they receive from
the application. The purpose of the methodology is to guide the
application developer through Koko’s configuration process in an
intuitive manner.

Instead of simply listing the requirements for Koko’s configu-
ration, Koko-ASM uses the concept of agent interaction to guide
the developer through the process. The methodology makes use of
speech act theory [15] as a means of modeling communication be-
tween agents in a social environment. The primary focus of the me-
thodology is to identify the communicative actions among agents
and then through a series of steps decompose those interactions into
the artifacts needed to configure Koko.

3. KOKOMO
We now describe Kokomo, our proposed configuration metho-

dology for Koko. Kokomo addresses the same goal as Koko-ASM,
namely, to guide the application developer to configure Koko for an
application. Koko-ASM and Kokomo share some commonalities:
both are based on agents, both use the concept of agent roles, and
both employ speech act theory.

However, Kokomo has some critical and fundamental differences
in terms of how it achieves its goal. First, although Koko is de-
signed to operate in environments ranging from those that are highly
social to those containing only a single agent, Koko-ASM only con-
siders applications that involve a high degree of interaction among
Koko’s user agents. Kokomo, in contrast, is broader in its scope and
applies to all settings where Koko can be used. Second, Kokomo
expands its treatment of agents beyond a Koko user agent (stand-
ing in for a user) to include both Koko user agents and virtual AI-
controlled entities (e.g., virtual character). The third and final dif-
ference is that no two steps are equivalent across the methodolo-
gies. In fact, Kokomo adds two additional steps to provide more
granular guidance for developers.

Upon completion of a design exercise with Kokomo, a devel-
oper will have identified or constructed all the artifacts needed to
configure Koko for an application. Table 1 lists the steps used to
create an affective application with Koko. The documentation be-
low highlights the key concepts of Steps 1–5, which are the primary
steps in Kokomo.

Table 1: The main steps of Kokomo.
Description Artifacts Produced

1 Define the set of possible roles an
agent may assume

Agent Roles

2 Describe the expressives ex-
changed between roles

Expressive Messages

3 Derive the emotions to be modeled
from the expressives

Emotions

4 Describe a set of nonexpressive ap-
plication events

Application Events

5 Construct the appropriate event
definitions

Event Definitions

6 Select the sensors to be included in
the model

Sensor Identifiers

7 Select the desired affect model
from Koko’s repository

Model Identifier

8 Register with Koko’s runtime envi-
ronment

Source Code

Step 1 requires the developer to identify the set of roles an agent
may assume in the context of the application. Examples of such
roles include teacher, student, coworker, enemy, and rival. A single
agent can assume multiple roles and a role can be restricted to apply
to the agent only if certain criteria are met. For example, the role
of coworker may only apply if the two agents communicating work
for the same organization.

Step 2 requires the developer to describe the expressive mes-
sages or expressives exchanged between various roles [15]. Searle
defines expressives as communicative acts that enable a speaker
to express their attitudes and emotions toward a proposition. Ex-
amples include statements like “Congratulations on winning the
prize!” where the attitude and emotion is congratulatory and the
proposition is winning the prize. Formally, the structure of an ex-
pressive is

〈sender, receiver, type, proposition〉

The type of the expressive refers to the attitude and emotion of
the expressive and the proposition to its content, including the rel-
evant events. The sender and receiver are selected from the set of
roles defined in Step 1. The developer then formulates the expres-
sives that can be exchanged among agents assuming those roles. In
the case that both the selected roles can only be assumed by arti-
ficially intelligent agents then formulate expressives only for com-
municative acts that are observable by a user agent. The result is a
set of all valid expressive messages allowed by the application.

Step 3 requires the developer to select a set of emotions to be
modeled from Koko’s emotion ontology. The selected emotions are
based on the expressives identified in the previous step. To compute
the set of emotions, we evaluate each expressive involving a user
agent and select the most relevant emotions from the ontology for
that particular expressive. The selected emotions are then added
to the set of emotions required by the application. This process is
repeated for every expressive and the resulting emotion set is the
output of this step.

Expressive
Message

Self Others

Events Actions Objects

Attraction
+ like

- dislike

Well-Being
+ joy

- distress

Prospects
+ hope
- fear

Hope Confirmed
+ satisfaction

- dissapointment

Fear Confirmed
+ relief

- fear-confirmed

Self
+ pride
- shame

Others
+ admiration
- reproach

Desirable
+ happy-for
- resentment

Undesirable
+ pity

- gloating

Figure 3: Expressive message hierarchy.

Koko offers support for expressives because it provides a well-
delineated representation for affect. Koko can thus exploit a natu-
ral match between expressives and affect to help designers opera-
tionalize the expressives they use in their applications. The recom-
mended approach to selecting an emotion is to structure Elliott’s set
of emotions [4] as a tree (Figure 3). Each leaf of the tree represents
two emotions, one that carries a positive connotation and the other
a negative connotation. Given an expressive, you start at the top of
the tree and using its type and proposition you filter down through
the appropriate branches until you are left with only the applicable
emotions. For example, say that you have a message with a type of
excited and a proposition equal to “I won the game.” Now using
the tree you determine that winning the game is an action the user
would have taken and that excited has a positive connotation, so the
applicable emotion must therefore be pride. In general, the sender
and receiver would have different interpretations of the same event.
For example, if the recipient of the above message is the agent who

lost the game, then the emotions that are relevant to the recipient
would be admiration or reproach depending on their perception of
the winner.

If the proposition of the expressive message is composite or even
ambiguous as to whether or not the type applies to an event, action,
or object, then more than one path of the tree may apply. Such is the
case when an agent conveys its mood via an expressive message.
Mood is an aggregation of emotions and therefore does not have a
unique causal attribution. For example, an expressive might con-
vey that a agent is generally happy or sad without being happy or
sad at something. Therefore, we do not select any specific emotion
when evaluating an expressive pertaining to mood as the emotions
that comprise the mood are captured when evaluating the other ex-
pressives. In other words, mood is not treated directly upon the
reception of an expressive.

Step 4 requires the developer to describe a set of nonexpressive
events in their application. A nonexpressive application event oc-
curs when the user has an interaction with the application that may
effect their emotions. In particular, we are interested in the emo-
tions selected in Step 3. The nonexpressive aspect of these events
is that they are not a direct result of interaction between two users,
but rather of the user with their environment.

A developer could encode the entire state of the application as a
set of events, but this is not necessary as we are only interested in
the parts of the application that may effect the emotions we have
selected. For example, the time the user has spent on a current task
would likely influence their emotional status, whereas the time until
the application needs to clear its caches or garbage collect its data
structures is likely irrelevant.

We guide developers by helping them think about the interac-
tions (direct and indirect) a user can have with their application
and how those interactions relate to the set of emotions defined in
Step 3. For example, if the application monitored phone calls and
the user had not sent or received a call all day then that may affect
the user’s emotional state. Further, after identifying an event we
must quantify it. In the previous example, the quantification could
be the time since the last call was received.

Step 5 requires the developer to construct the appropriate event
definitions using Koko’s event ontology. The events described are
a combination of the expressives in Step 2 and nonexpressive ap-
plication events identified in Step 4. Each expressive identified in
Step 2 is modeled as two event definitions, one for sending and an-
other for receipt. The decomposition of a message into two events
is essential because we cannot make the assumption that the receiv-
ing agent will read the message immediately following its receipt
and we must accommodate for its autonomy.

Step 6 and Step 7 both have trivial explanations. Koko maintains
a listing of both the available sensors and affect models, which are
accessible by their unique identifiers. The developer must simply
select the appropriate sensor and affect model identifiers.

Step 8 completes the methodology by providing the developer
with details on how to register their application within Koko’s run-
time environment. Given the artifacts gathered from the previous
steps we can configure the application via the interfaces defined
by the Koko middleware. Upon success, the Koko registration in-
terface returns an applicationID, which acts as the identifier for the
application. The developer uses the applicationID in all subsequent
interactions with the Koko runtime, such as sending information
about the user to Koko or querying for the user’s current affective
state.

4. APPLICATION FOR OUR STUDY
Our study involves the development of a math tutoring applica-

tion for high-school students. This application centers around a
dynamic lesson planning agent called the virtual teaching assistant
(vTA). The goal of the vTA is to sharpen the user’s mathematical
skills in a variety of areas, such as probability and geometry. The
target audience is students preparing for the standardized end-of-
grade tests that are given to US students at the conclusion of the
8th and 12th grades.

This application satisfies three essential criteria. First, it is sim-
ple enough to implement in a short period of time, yet complex and
open enough that multiple solutions are possible. Second, the ap-
plication can be compartmentalized into discrete units, thereby en-
abling us to compare individual components across all developers.
Third, the education domain lends itself to affective interactions,
where the role of affect in learning is well documented [14].

Let us further explain the role of affect in the learning process.
The primary motivation comes from Csíkszentmihályi’s theory of
flow [2]. In highly simplified terms, the ideas is that individuals
learn best in situations where they are neither bored (because the
challenge appears trivial) nor frustrated (because the challenge ap-
pears impossible), but instead in an intermediary state called the
flow channel. This concept has successfully (from an education
standpoint) been applied in virtual learning environments [11].

4.1 Application Details
Figure 4 describes our application. At all times the user interface

is under the control of either the virtual teaching assistant (vTA) or
the testing algorithm. The remaining boxes represent the various
services that are available to be used by either the vTA or the testing
algorithm.

User Interface (UI)

Mobile
Sensors Question Database

Virtual Teaching
Assistant (vTA)

Testing
Algorithm

Controls Controls

Uses
Uses

Uses

Figure 4: Application components.

The expected application usage is as follows. A user can elect
to start a tutoring session from a welcome screen. A tutoring ses-
sion is comprised of 15 mathematical problems where the first ten
problems are selected by the vTA and the remaining five by a test-
ing algorithm. The goal of the vTA is to select the ten best training
problems in order to prepare the user for the test. The vTA has
at its disposal a database of all possible questions as well as a set
of physical sensors that can provide information on the user’s cur-
rent state. Using those sensors and by collecting other data such
as the user’s history, environment, and current affective state the
vTA crafts a customized dynamic lesson plan for each user. The
application presents the user with a series of problems (defined by
the plan), who is then tested via the testing algorithm as a means of
evaluating the effectiveness of the vTA’s plan.

Each developer is provided working code for all components of
the application with the exception of the vTA. In this manner, we
reduce nonaffect-related variability in the solutions and in our mea-

surements of quality and effort, and force our developers to focus
on the logic of the application. Using the theory of flow as motiva-
tion, the developers are responsible for designing and implement-
ing their own customized vTA.

Now we describe each component of the application from the
developer’s perspective. Some components are used by the vTA
and others serve as an outlet for information produced by the vTA.

Problem Set (Question Database)
The problem set is a subset of a question bank that is maintained by
the National Center for Educational Statistics (http://nces.ed.gov).
We extracted all multiple choice mathematics questions asked to
8th through 12th grade students based on data collected by the Na-
tional Assessment of Educational Progress.

Each problem in the dataset contains an ID, question, grade level
(targeted), content area (properties and operations, geometry, anal-
ysis and probability, or algebra), difficulty (percentage of students
who correctly answered the question on national standardized tests),
and answer. The questions are text based, some with a greyscale
illustration, and include five multiple choice options as answers.

A developer can retrieve a set of questions based on any permu-
tation of the problem components in a manner analogous to SQL
queries, with which our intended developers are familiar. Or, a de-
veloper can request a randomly selected problem that meets speci-
fied criteria, e.g., a random geometry problem that fewer than 20%
of students answered correctly.

User Interface
As Figure 4 shows, the vTA controls the user interface (UI). The
developer determines the UI via predefined control points, which
help limit developer effort and provide uniformity across imple-
mentations. Figure 5 shows the two primary screens of the four
screens in the UI. Using these basic screens the vTA may configure
the user experience with the following four actions.

Pre-Session Questionnaire. Just before a training session begins,
the vTA may present the user with a set of up to three ques-
tions, and use the answers received to initialize the lesson
plan for the user.

Ask Question. After initialization, the UI requests a question from
the vTA, who responds with the ID of a question, which the
UI displays on the screen.

Record Result. The UI conveys the user’s answer to the vTA and
shows the user the correct answer.

Post-Question Feedback. After each question, the vTA can op-
tionally ask the user one multiple choice affect-related ques-
tion, which can provide the vTA with better insight into the
user’s current affective state.

(a) Question Presentation (b) Result and Feedback

Figure 5: The application’s user interface.

The vTA controls the user interface for the first ten problems to
train the user, at which point the testing algorithm assumes control
and asks the final five questions. The testing algorithm interacts
the same as the vTA, but may additionally display the most recent
user’s history on the application’s start page.

Mobile Sensors
A unique advantage of building a mobile application is the avail-
ability of sensory inputs. Most smart-phones today come equipped
with sensors such as GPS, accelerometer, microphone, and prox-
imity sensors. Access to data provided by these sensors is useful
for determining the environment in which the user is operating as
well as for evaluating the emotional state of the user. Using this
data, developers can track the performance of users in specific en-
vironments and customize the lesson plan accordingly.

We employ Android as our development platform. Each devel-
oper had access to an Android phone with real sensor inputs. An-
droid provides utility classes for a variety of sensors to use inter-
faces for extracting data from the sensors.

Virtual TA
The virtual TA is at its core an intelligent agent that maintains a
reasoning engine. It is in this engine where the developer must use
the available tools, such as sensors and the question database, to
craft a unique lesson plan for the user. The vTA has one simple
goal: Create the lesson plan for the user that gives them the best
chance of success when tested.

In general, a vTA could carry out complex reasoning, such as
based on the user’s previous standardized test scores and available
national statistics. However, allowing such extensive approaches
would have introduced too many variables into the evaluation. To
reduce the variability, we instructed all developers to consider only
three categories of information (exam, environmental, and emo-
tional data) in their reasoning algorithms to formulate a lesson plan.

Exam data is any data that can be computed from the user’s past
performance. It is up to the developer how complex the analysis
of the exam data is, but they must at least consider the previous
question and the overall performance of the user on the previous
exam.

Environmental data is any data gathered from a physical sensor.
For instance, by using the microphone on the device a developer
could monitor how well the user performed in noisy environments.
The developers must integrate data from at least one sensor into the
reasoning logic of their vTA.

Emotional data is qualitative feedback from the user on their cur-
rent status, which can be obtained after each math question as a
means to determine how the user felt about the last question. A
developer would use this feedback along with the theory of flow as
a basis for updating the lesson plan. Developers are required to use
such feedback to influence the next question as well as store the
feedback for future analysis when selecting questions.

The developer must construct a reasoning algorithm that uses the
data to generate a lesson plan. In addition to writing the algorithm,
each developer was required to provide written documentation de-
tailing how the algorithm functioned.

Testing Algorithm
The testing algorithm selects the five questions used to evaluate the
user at the end of each training session. The algorithm considers
the question category, difficulty, and recurrence, and asks no more
than two questions from any category. Therefore, since there are
only four categories, the test always covers a minimum of three
categories. The algorithm also ensures that the national average

for correctly answering at least one question is above 70% correct
(easy) and one is below 30% (hard). Finally, the algorithm ensures
that no question is repeated in the next three exams for the user.

The details of this algorithm were provided to the developers
so they were aware of the testing strategy. Further, we store each
user’s past performance on exams and make it available to the vTA.

5. EVALUATION
We selected 30 students to participate in the developer study.

Each developer had experience programming in Java, and had no
prior experience in affective computing. The developers were paired
into teams of two and given basic programming assignments in or-
der to evaluate their programming abilities. The assignments were
evaluated by a third-party reviewer who ranked each team based on
its programming proficiency.

Additionally, each developer was given a survey asking them
to rate their software engineering experience and describe projects
they had worked on. Over 97% of the developers had a minimum of
two years experience programming in Java, but for 88% of devel-
opers the initial programming assignments were their first exposure
to programming in the Android operating system.

Using the results of the developer surveys and the programming
assignments, we ranked each developer with respect to their peers.
Using those rankings, we then divided the teams into three groups
so as to equalize the estimated programming ability across the groups.
Each team within a group was assigned a variation of the same task.
The control group did not have access to Koko or Kokomo, one of
experimental groups had access to Koko, and the second experi-
mental groups had access to Koko and Kokomo.

All groups are given identical instructions regarding vTA. The
Koko and Kokomo groups were additionally provided instructions
for using Koko and Kokomo, respectively. Each team was given
four weeks in which to complete the assignment. They had to de-
sign and develop the vTA agent using either the components pro-
vided (e.g., question database and user interface) or any API pro-
vided by the Android SDK.

We conducted a baseline quality check for each application. This
check ensured that all applications ran appropriately and did not
omit any of the features in the required feature set. This test was
done in order to strengthen our claim that the introduction of Koko
and Kokomo does not diminish the quality of the application. All
applications from all three groups passed the baseline check. In
fact, we observed that applications using Koko and Kokomo had
additional features, in particular, affective features that were not
present in the control groups applications. However, our statistical
measures disregard such extra features.

Each team was evaluated in the same manner regardless of its
group. We evaluated the study in both objective and subjective
ways. The objective portion involved measuring the time spent
by each developer and various measurements on the source code.
The subjective portion was based on periodic surveys of the devel-
opers to measure their perceptions regarding their feelings on the
complexity of each aspect of the project and the utility of the tools
provided.

In-study surveys. These were completed by each developer ev-
ery time they worked on the project. A minimum of one survey was
required for each day (and within one day) the developer worked on
the project. The survey collected information such as the time spent
on each component of the application as well as their perceptions
and comments on difficulty.

Post-study surveys. There were completed by each developer
at the end of the development cycle to describe their perception of
the entire project. Additionally, this survey was used as a mecha-
nism for developers to recommend improvements to the project and
the tools.

The remainder of this section focuses on the evaluation of our hy-
pothesis. Our hypothesis stated that developers who use Kokomo
can more easily an construct affective application than those who
do not, while at the same time not diminishing the quality of their
application. The following two sections evaluate the objective and
subjective metrics respectively. Finally, after viewing each cate-
gory of metrics independently we take a holistic view of the results
to determine if our claim is satisfied.

5.1 Objective Results
Measuring the complexity of a project based on the resulting

source code is nontrivial because there are no definitive measures
of complexity. Complexity can relate to the size of the code base
and also to less measurable notions such as extensibility and main-
tainability. Here we adopt some well-known metrics from software
engineering [5, 13], and use them to analyze each project indepen-
dently. Finally, we compare the metrics across all three developer
groups. Figure 6 highlights the results for four of the most well-
known metrics. In all cases except Figure 6(d), the lower value
indicates a better result.

CC McCabe’s Cyclomatic complexity [9] indicates the number of
“linear” segments in a method (i.e., sections of code with no
branches) and therefore helps determine the number of tests
required to obtain complete coverage. It also indicates the
psychological complexity of a method.

NoLm The number of levels per method reflects the number of
logical branches each method has on average. NoLm is a
key factor in determining code readability, and is also used
to determine how well the code adheres to in object oriented
design patterns.

NoS The number of statements in the project is a common mea-
sure of the amount of time spent developing and the general
maintainability of the code.

NoM The number of methods in the project reflects increasing
modularity and readability of the code (for a fixed NoS value).

We had the developers log the time they spent on each portion of
the assignment. Figure 7 gives an overview of the time spent on the
project as a whole as well as its affective components specifically.
It is important to note that though the total project time did not
drastically decrease with Kokomo, the percentage of time spent on
affect fell sharply. Additionally, the drastic reduction of time and
minimal variance for Kokomo in Figure 7(c) illustrate the benefit
of the methodology.

5.2 Subjective Results
Several survey questions asked the developer to either rank com-

ponents against one another or rate the individual components on
a difficulty scale. Table 2 shows the average difficulty rankings
given by each development group for the five key components of
the project. You can see that the introduction of both Koko and
Kokomo reduced the developer’s perception of difficulty for the af-
fective aspects of the project.

Further, we asked developers to individually rate each compo-
nent of the assignment on a difficulty scale of 1 (least) to 5 (most).

(a) Cyclomatic Complexity

(b) Number of Levels

(c) Number of Statements

(d) Number of Methods

Figure 6: Software metrics from our study.

As shown in Figure 8(a), 90% of the developers using Kokomo
rated the difficulty of the affective component as a 1 or 2. However,
70% of the control development group gave the same component
a rating of 3 or higher. Finally, Figure 8(b) shows how developers
rated the benefit obtained from the Koko tools on a benefit scale
of 1 (none) to 5 (high). Of the developers using Kokomo, 70%
perceived Koko to offer a high benefit to them (a rating of 4 or 5)
whereas only 40% of those without Kokomo gave a similar rating.

5.3 Conclusions
Using both objective and subjective data, we have empirically

shown that the introduction of Kokomo results in both perceived
and tangible benefits for developers. With respect to software met-
rics the applications written using Kokomo had either equivalent
or better results than those written without Kokomo. The use of
Kokomo resulted in significant time savings and also significantly
reduced the time variance for constructing the affective component.

(a) Total Time

(b) Percentage of Time

(c) Affective Time

Figure 7: Development time metrics.

The reduction of the time variance is important in that it enables de-
velopers to more accurately budget their time. More accurate time
estimates in turn enable them to better scope the cost of incorporat-
ing affect into an application.

Further, in all cases where developers were asked their percep-
tions of the project those using Kokomo had a more positive per-
ception than those who did not. This positive perception of Kokomo
combined with the tangible benefits make a compelling case for its
practical adoption by software developers.

6. DISCUSSION
The most perplexing result of our study was that the data showed

that the introduction of Koko without Kokomo did not result in a
marked improvement. Upon evaluating the source code and devel-
oper surveys, we realized that several developers who were only
given Koko were not able to completely grasp the affect model-
ing concepts that underlie Koko. As a result, they were unsure of
how to configure the Koko middleware. Whereas the above obser-
vations strengthen the case for Kokomo’s usefulness, we plan to
improve our documentation regarding Koko for future studies and
deployment.

Existing agent-oriented software engineering methodologies spec-
ify messages at a high level and therefore are not granular enough to

Table 2: Difficulty ranking of project components.
Rank Control Koko Kokomo

1 (Easiest) Heuristic Heuristic Affect
2 Programming Affect Heuristic
3 Exam Programming Environment
4 Affect Environment Programming
5 (Hardest) Environment Exam Exam

(a) Affective Difficulty Ranking

(b) Koko’s Perceived Benefit

Figure 8: Subjective developer distributions.

support the expressive communication employed by Kokomo [3].
Further, Kokomo’s applicability has a much narrower scope than
these methodologies since it is restricted to affective applications
that may or may not employ multiagent systems in their implemen-
tation. These distinctions are simply the result of a difference in fo-
cus. It is quite possible, given the narrow scope of Kokomo, that it
could be integrated with broader methodologies in order to leverage
their existing processes and tools. For example, many methodolo-
gies have detailed processes by which they help developers identify
all possible messages that are exchanged among agents. Kokomo
would benefit by integrating such processes, thereby making it eas-
ier to identify the expressive messages.

Further, model-driven development methodologies, such as IN-
GENIAS [6] or ASEME [20], are relevant. Kokomo could benefit
from such methodologies by using a specific agent modeling de-
scription language to describe the expressive interactions among
agents. Such a model could be used to produce the source code
needed to configure the Koko runtime automatically. This would
reduce the amount of time spent translating the expressive mes-
sages into a format understood by Koko and would also facilitates
improved agility in developing such as in changing the agent inter-
action model without having to rewrite the source code.

Koko is a multiagent middleware supporting affective interaction
among agents, but this study involved only a single agent. This
choice was intentional in that it enabled us to demonstrate that un-
like Koko-ASM, the Kokomo methodology could be used in single

agent environments. In the future, we plan to demonstrate the util-
ity of Kokomo in multiagent settings by using it in social applica-
tions that take full advantage of Koko’s social design.

7. REFERENCES
[1] C. Conati and H. Maclaren. Modeling user affect from

causes and effects. In User Modeling, Adaptation, and
Personalization 2009, volume 5535 of LNCS, pages 4–15,
Berlin, September 2009. Springer.

[2] M. Csikszentmihalyi. Finding flow. Basic Books, New York,
1997.

[3] S. A. Deloach, M. F. Wood, and C. H. Sparkman. Multiagent
systems engineering. Int’l J. Soft. Eng. Know. Eng.,
11(3):231–258, 2001.

[4] C. Elliott. The Affective Reasoner: A Process Model of
Emotions in a Multi-agent System. PhD, Northwestern, 1992.

[5] N. E. Fenton. Software Metrics: A Rigorous and Practical
Approach. PWS Pub, London, 2nd edition, 1997.

[6] I. Garcõa-Magarino, J. Gomez-Sanz, and
R. Fuentes-Fernandez. Model Transformations for
Improving Multi-agent Systems Development in
INGENIAS. In Proc. AOSE, pages 25–36, 2009.

[7] J. Gratch and S. Marsella. A domain-independent framework
for modeling emotion. J. Cognitive Systems Res.,
5(4):269–306, Dec 2004.

[8] C. Martinho, I. Machado, and A. Paiva. A cognitive approach
to affective user modeling. In Affective Interactions, LNAI
1814, pages 64–75, Berlin, 2000. Springer.

[9] T. McCabe. A complexity measure. IEEE Trans. Soft. Eng.,
2:308–320, 1976.

[10] S. McQuiggan, S. Lee, and J. Lester. Predicting user
physiological response for interactive environments: An
inductive approach. In Proc. AIIDE, pages 60–65, 2006.

[11] S. W. McQuiggan, J. P. Rowe, and J. C. Lester. The effects of
empathetic virtual characters on presence in
narrative-centered learning environments. Proc. SIGCHI,
pages 1511–1520, 2008.

[12] R. W. Picard. Affective Computing. MIT Press, Cambridge,
MA, 1997.

[13] R. S. Pressman. Software Engineering. McGraw-Hill, 6th
Edition, New York, 2005.

[14] P. A. Schutz and R. Pekrun, editors. Emotion in Education.
Elsevier, Boston, MA, 2007.

[15] J. R. Searle. Speech Acts. Cambridge U Press, Cambridge,
UK, 1970.

[16] C. Smith and R. Lazarus. Emotion and adaptation. In L. A.
Pervin and O. P. John, editors, Handbook of Personality,
pages 609–637, New York, 1990. Guilford Press.

[17] D. J. Sollenberger and M. P. Singh. Architecture for affective
social games. In Proce. Workshop on Agents for Games and
Simulations, LNAI 5920, pages 79–94, Berlin, 2009.
Springer.

[18] D. J. Sollenberger and M. P. Singh. Methodology for
engineering affective social applications. In Proc. AOSE,
pages 49–60, 2009.

[19] D. J. Sollenberger and M. P. Singh. Koko: An Architecture
for Affect-Aware Games. In J. AAMAS, In press.

[20] N. Spanoudakis and P. Moraitis. Model-driven agents
development with ASEME. In Proc. AOSE, 2010.

