
Cupid: Commitments in Relational Algebra

Amit K. Chopra
Lancaster University

Lancaster LA1 4WA, United Kingdom
a.chopra1@lancaster.ac.uk

Munindar P. Singh
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract

We propose Cupid, a language for specifying commitments
that supports their information-centric aspects, and offers cru-
cial benefits. One, Cupid is first-order, enabling a systematic
treatment of commitment instances. Two, Cupid supports
features needed for real-world scenarios such as deadlines,
nested commitments, and complex event expressions for cap-
turing the lifecycle of commitment instances. Three, Cupid
maps to relational database queries and thus provides a set-
based semantics for retrieving commitment instances in states
such as being violated, discharged, and so on. We prove that
Cupid queries are safe. Four, to aid commitment modelers,
we propose the notion of well-identified commitments, and
finitely violable and finitely expirable commitments. We give
syntactic restrictions for obtaining such commitments.

1 Introduction
(Social) commitments provide a natural basis for modeling
and enacting interactions in multiagent systems (Yolum and
Singh 2002a). An important application is in realizing se-
cure collaboration among autonomous parties by providing
a formal high-level model of what each party may expect
from another and to what it may hold the other accountable
(Young and Antón 2010). Despite advances in representing
and reasoning about commitments, current approaches suf-
fer from technical shortcomings that limit their applicability
in real-world settings.

Information-based commitments. First, we distinguish
between a schema (what occurs in a specification) and
its instances (what transpires and is represented in a
database). Below, we reserve the word commitment to
mean a schema and refer to an instance explicitly.
Current approaches are not information-based. Most cur-
rent approaches represent commitments based on proposi-
tions, thereby losing the schema-instance distinction. Ex-
isting first-order approaches deal inadequately with com-
mitment instances: they rely upon commitment identi-
fiers, which interferes with reasoning about commitments
(Chopra and Singh 2011). For example, two commit-
ments would appear unrelated from their conjunction be-
cause each of the three commitments would have a unique

Copyright c� 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

identifier. A correct approach would rely upon identifiers
defined on the underlying information structures. How-
ever, there is currently no support for basing commitments
on information, and naı̈ve approaches prove inadequate.

Expressiveness. Effective secure collaboration presumes
features such as deadlines, complex expressions, stand-
ing commitments, and nested commitments. Current ap-
proaches do not provide these in a unified framework.

Tracking. To interact effectively, an agent should be able
to track the states of the commitments in which it is in-
volved. Doing so is essential for accountability. For
example, a resource owner would track which resources
it offered to share with whom and until when. A pa-
tient would track which records a hospital should share,
archive, or destroy. Current approaches provide inade-
quate support for tracking commitment instances.

Modeling guidance. First-order commitments may fail to
capture what their modelers intended. For instance, vari-
ables may be inappropriately quantified, which could
mean that commitment instances are impossible to dis-
charge. Or, specification of deadlines may be such that
commitment instances are never violated or they never ex-
pire, both of which would be undesirable in many settings.
Current approaches provide little support to modelers in
detecting and avoiding such anomalous specifications.

Cupid provides a generic application-independent solution
that avoids these shortcomings. Specifically, we contribute

• Cupid, an expressive language for specifying commit-
ments that supports identifying commitment instances.

• A semantics for Cupid using relational algebra, which
enables straightforward implementation over information
systems.

• Formulating safety and proving all Cupid queries are safe.
• Identifying syntactic restrictions such that Cupid commit-

ments are well-identified. We show that commitments
that are not well-identified are vacuous.

• Formulating finite violability and expiration and identify-
ing syntactic restrictions ensuring these properties.

Organization of this paper. Section 2 presents some chal-
lenges in commitments with the help of examples. Section 3
presents the Cupid syntax and semantics, which Section 4
uses to address the challenges of Section 2. Section 5 for-
malizes properties of interest and how they may be guaran-

teed. Section 6 concludes with a discussion of the literature.

2 Challenges in Specifying Commitments
Background. The expression C(x, y, r, u) specifies a com-
mitment from an agent x to an agent y that if its an-
tecedent r holds, then its consequent u will hold too (Singh
2008). A commitment follows the following lifecycle. As-
suming a commitment has been created, a commitment is
(a) detached if its antecedent holds (i.e., the commitment is
then unconditional); (b) discharged if its consequent holds;
(c) violated if it is detached but it is not discharged and it
will never be discharged; (d) expired if it is not detached
and it will never be detached.

Running example. For ease of exposition, we adopt this
familiar example to demonstrate our contributions:
Ex. 1 A merchant initiates the transaction by sending a cus-
tomer a Quote, which gives the unit price for some item. The
customer responds by sending an Order for some number of
those items. The parties then exchange the appropriate Pay-
ment and Shipment. The merchant sends a Refund to the
customer if it fails to ship the items.

2.1 Expressiveness Desiderata for Cupid
We derive our desiderata for Cupid from challenges that mo-
tivate a sound treatment of information for commitments.

We consider a series of examples of commitments based
on Ex. 1. To illustrate the challenges, we use a variation of
Singh’s (2008) notation augmented with variables and quan-
tifiers. We treat r and u as expressions over events. Where
the principals are not specified, we assume the commitments
are from the merchant to the customer.

Ex. 2 The merchant commits to the customer if payment oc-
curs, then delivery will occur, that is, C(paid, delivered).

Ex. 2 is not expressive: it does not say which items were
committed to be delivered for what price.

Ex. 3 8price8item(C(paid(price), delivered(item)))

Ex. 3 is erroneous: once a price is paid, discharging
the commitment would require delivering all possible items,
which is impossible in general. Even when the domain of
item is finite, the commitment has an anomalous meaning.
We say that such a commitment is not safe.

Ex. 4 8price9item(C(paid(price), delivered(item)))

Ex. 4 says that each commitment is discharged by deliver-
ing some item, but doesn’t relate the item to the price paid.

Ex. 5 8price8item(C(paid(price, item),delivered(item)))

Ex. 5 is safe: both item and price are bound when paid
occurs; delivery is expected for those items.

Ex. 6 8pID8price8item9dID(C(paid(pID , price, item),
delivered(dID , pID , item)))

Ex. 6 is safe and more expressive than Ex. 5. Here pID

and dID uniquely identify each payment and delivery. The
key pID enables expressing distinct commitments for the
same price-item pair. Further, every delivered event refers to

a paid event via pID , which identifies the payment the deliv-
ery is for: pID is a foreign key in delivered. Thus, pID iden-
tifies the commitment; an occurrence of delivered with that
pID discharges that commitment. Ex. 6 demonstrates two
desirable properties: proper use of quantifiers (for safety),
and use of keys to identify commitments.

A commitment may be discharged even if the antecedent
has not been brought about (Yolum and Singh 2002b). For
example, a merchant can discharge its commitment by de-
livering before payment occurs. The commitment in Ex. 6
rules out this possibility as the consequent is dependent on
the antecedent for information (bindings for pID and item).
Does a commitment being safe entail that a commitment in-
stance must not be discharged before it is detached? Such
inflexibility would make commitments ill-suited for describ-
ing collaboration between autonomous parties.

Ex. 6 suffers from an additional problem. Its antecedent
corresponds to the customer’s payment. The customer binds
the variables price, item . Then, the merchant is commit-
ted to delivering: whatever the customer wants at whatever
price. This is counterintuitive and violates the autonomy of
the merchant. Informally, we would expect that the mer-
chant would supply the bindings as part of its offer, and the
customer would pay accordingly to take up the offer. We
should make this apparent in the commitment itself.

Ex. 7 takes care of the above problems related to auton-
omy. The merchant commits that for any offer of an item for
a price, if the price is paid, the item will be delivered. This
commitment can be discharged, that is, item can be deliv-
ered, after offer occurs but before payment occurs, because
delivery does not depend on payment any more. Further, the
payment must equal the price indicated in the offer.
Ex. 7 8oID8price8item8pID9dID(C(o↵ered(oID , item,

price)^paid(pID ,oID ,price), delivered(dID ,oID ,item)))

Ex. 8 models a standing offer: delivered depends upon
payment. Every payment creates a new commitment in-
stance to be discharged by the corresponding delivery.
Ex. 8 8oID8price8item8pID9dID(C(o↵ered(oID ,

price, item) ^ paid(pID , oID , price),
delivered(dID , pID , item)))

Ex. 9 expresses that the merchant commits to deliver the
item only if the payment were at least 90% of the quoted
price. Further, Ex. 9 also uses expressions for deadline: the
commitment expires within ten days of making the offer and
is violated if more than five days pass since payment (oDate

and pDate are the timestamps of o↵ered and paid).
Ex. 9 8oID8price8item8oDate8pID8pDate9dID
(C(o↵ered(oID , price, item, oDate)^
paid(pID , oID , pPrice, pDate)^ � (pPrice, price ⇤0.9)^
expires(oDate + 10), delivered(dID , oID , item, dDate) ^
violated(pDate+ 5)))

We also need to express nested commitments, e.g., if a
commitment is violated, a compensation will be provided.

3 The Cupid Language
We capture the antecedent and consequent of a commitment
as event expressions, which proves perspicuous as we show.

Reasoning about commitments means reasoning about so-
cial events, such as their creation, discharge, violation, and
so on. The social events are constructed on top of rele-
vant lower-level events, which therefore count as the social
events in appropriate settings (Searle 1995). The lower-level
events are what are often recorded in the databases of busi-
ness partners enacting a protocol with each other. For ex-
ample, one party may record a message with specified con-
tents being received, e.g., a purchase order, which may cor-
respond to the social event of a commitment being created.

3.1 Syntax
Table 1 defines the syntax of Cupid. Below, A and T are
the sets of agent names and time instants, respectively; in
particular, T = N [{1}, where N is the set of natural
numbers and1 is an infinitely distant time instant.

Table 1: Syntax of Cupid.
Event �! Base | LifeEvent
LifeEvent �! created(A, A, Expr, Expr, Expr) |

detached(A, A, Expr, Expr, Expr) |
discharged(A, A, Expr, Expr, Expr) |
expired(A, A, Expr, Expr, Expr) |
violated(A, A, Expr, Expr, Expr)

Expr �! Event[Time, Time] | Expr uExpr|Expr tExpr|
Expr Expr| Expr where '

Time �! Event + T | T
ComSpec �! commitment(A, A, Expr, Expr, Expr)

Conceptually, all expressions of type Expr represent com-
posite events. This enables us to talk uniformly about the
occurrence of X u Y , X t Y , and so on. Our semantics
computes a timestamp for composite events. Time inter-
vals for an event ([Time, Time] in Table 1) are interpreted
strictly: the event is required to occur after (including at) the
left timepoint but before the right timepoint of the interval.

When the same debtor and creditor apply uniformly in a
formulation, we omit them for brevity. That is, we write
commitment(c, r, u) instead of commitment(x, y, c, r, u).

3.2 Semantics
An information schema is a nonempty set of events, each
modeled as a relation with a superkey and a distinguished
timestamp column. Base events are materialized relations.
Lifecycle events are computed via the semantics below.

A model M of an information schema specifies, for each
event schema E, an extension of that schema [[E]] as the
set of instances of that event schema, respecting the event
schema’s key. The intuition behind the key is that any two
event instances that agree on the key attributes must agree
on every attribute (i.e., they are the same instance). Below |
indicates projection to the specified set of attributes.
Definition 1 Let D = {D1 . . .Dn} be a set of domains
where T 2 D is the domain of time instants. For conve-
nience, we identify a domain with its set of possible values.

An event schema over D pairs a nonempty set of attributes
and a key. That is, E = hA,Ki, where A ✓ D, T 2 A,
and K ✓ A. (Treating each attribute as unique with its own

domain simplifies the notation without loss of generality.)
ED is the set of all possible event schemas over D.

The universe over E, is the set of all possible instances of
E. That is, if A = {A1 . . . Am}, UE = A1 ⇥ . . .⇥Am.

The intension of E is the powerset of its universe re-
stricted to sets that satisfy E’s key. That is, h[E]i = {Y |Y 2
UE and (8ui, uj 2 Y if ui|K = uj |K then ui = uj)}.

An information schema I over D is a nonempty set of
event schemas over D. That is, I ✓ ED.

Definition 2 A model of an information schema is a func-
tion that maps each of its (Base) event schemas to its exten-
sion, i.e., a member of its intension. Specifically, M : ED 7!
h[E]i. We term M(E) the extension of E and write it as
[[E]]M , omitting the subscript when M is understood.

The model defines [[E]] for Base E. The semantic pos-
tulates below lift the [[]] to all expressions in Cupid, using
relational algebra operators . Select (�), project (⇡), natural
join (./), rename (⇢), union ([), intersection (\), Cartesian
product (⇥), and complement (\) retain their usual mean-
ings (Elmasri and Navathe 1994). We reproduce definitions
for some of the less common ones. Below, SingletonA,B =
{(null, . . . , null)} is the singleton null relation whose at-
tributes are those attributes of A that are not attributes of B.
• Left semijoin (n). Rn S = ⇡R(R ./ S).
• Antijoin (B). RB S = R \ (Rn S).
• Left outer join (./). R ./ S = R ./ S [((R \ ⇡R(R ./

S))⇥ SingletonS,R).
• Right outer join (./). R./ S = S ./ R[(SingletonR,S⇥

(S \ ⇡S(S ./ R))).
Below, t is the distinguished timestamp attribute of all

event schemas and {c, d} ✓ T . In each postulate below,
t

0 refers to a fresh (previously unused) timestamp attribute
name. Below, E,F, . . . are events; X,Y, . . . are expressions.
D1. [[E[c, d]]] = �c6t<d([[E]]). Select all events in E that

occur after (including at) c but before d.
D2. [[E[F + c, d]]] = �t0+c6t<d([[E]] n ⇢t/t0 [[F]]). Select

E if F occurs and E occurs after c moments of F ’s
occurrence but before d.

D3. [[E[c, F + d]]] = �c6t<t0+d([[E]] n ⇢t/t0 [[F]]). Select
E if F occurs and E occurs after c but before d mo-
ments of F ’s occurrence.

D4. [[E[F + c,G+ d]]] = [[E[F + c,1]]] ./

[[E[0, G+ d]]]. Select E if it occurs after c mo-
ments of F ’s occurrence and before d moments of
G’s occurrence.

D5. [[X u Y]] = �t�t0([[X]] ./ ⇢t/t0 [[Y]]) [
�t0<t(⇢t/t0 [[X]] ./ [[Y]]). Select (X,Y) pairs
where both have occurred; the timestamp of this
composite event is the greater of the two.

D6. [[X t Y]] = �tt0 OR t0 is null([[X]] ./ ⇢t/t0 [[Y]]) [
�t<t0 OR t0 is null([[X]] ./ ⇢t/t0 [[Y]]). Select (X,Y)
pairs where at least one has occurred. The timestamp
of this composite event is the smaller of the two, if
both have occurred, or equal to the timestamp of the
one that has occurred.

D7. [[X where ']] = �'([[X]]). Select X if '.

The interpretation of X Y is that X should have oc-
curred but the (corresponding) Y should not have occurred.
But what is the time of nonoccurrence of an event? Consider
X E[c, d]. Here, E[c, d] (corresponding to X) has not oc-
curred if E (corresponding to X) hasn’t occurred between c

and d. Thus if E occurs before c, say at b, then the time of
the nonoccurrence of E[c, d] is b; if E doesn’t occur before
d, then the time of nonoccurrence of E[c, d] is d. Notice that
d could be1. The time of occurrence of the X E[c, d] is
the maximum of the timestamps of X and E[c, d].

D8. [[X E[c, d]]] = R [⇡S((�t06t(⇢t/t0S ⇥ T)) [
(�t0<t(S ⇥ ⇢t/t0T))), where

• R = ⇡X [[X u E[0, c]]]. R is X such that E oc-
curred too soon, that is, before c.

• S = [[X]]B ⇢t/t0 [[E[0, d]]]. S is X such that E did
not occur in time, that is, not before d.

• T = {(d)} is a singleton relation with a single at-
tribute t.

D9. [[X E[F + c, d]]] = R[⇡S((�t06t(⇢t/t0S ⇥ T))[
(�t0<t(S ⇥ ⇢t/t0T))), where

• R = ⇡X [[X u E[0, F + c]]]. R is X such that E
occurred too soon, that is, before f + c, where f is
the value of F ’s timestamp.

• S = [[X]]B ⇢t/t0 [[E[0, d]]].
• T = {(d)} is a singleton relation with a single at-

tribute t.

The definition of [[X E[c, F + d]]] follows along the
same lines except to account for the difference that the right
timepoint refers to an event (F) instead of being a constant.
As before, we want X if E occurs too soon (before c). We
also want X if E occurs too late, in this case, after f + d,
where f is the value of F ’s timestamp. We will give this
nonoccurrence of E the timestamp f + d. But what if F

itself hasn’t occurred? Then, we won’t have a value for f .
But in this case, we would not want X anyway because with-
out the occurrence of F , it is not possible to determine the
appropriateness of the occurrence of E.

D10. [[X E[c, F + d]]] = R[⇡S((�t06t(⇢t/t0S ./ T))[
(�t0<t(S ./ ⇢t/t0T))), where

• R = ⇡X [[X u E[0, c]]].
• S = [[X]]B ⇢t/t0 [[E[0, F + d]]].
• T is identical to F except that each value in the

timestamp column has been incremented by d.
D11. [[X E[F + c,G+ d]]] = R [⇡S((�t06t(⇢t/t0S ./

T)) [(�t0<t(S ./ ⇢t/t0T))), where

• R = ⇡X [[X u E[0, F + c]]].
• S = [[X]]B ⇢t/t0 [[E[0, G+ d]]].
• T is identical to G except that each value in the

timestamp column has been incremented by d.

D12–D14 reduce complex expressions involving .

D12. [[X (Y u Z)]] = [[(X Y) t (X Z)]].
D13. [[X (Y t Z)]] = [[(X Y) u (X Z)]].

D14. [[X (Y Z)]] = [[(X Y) t (X u Z)]].
D15. [[created(c, r, u)]] = [[c]]. A commitment is created

when its create event occurs.
D16. [[detached(c, r, u)]] = [[c u r]]. A commitment is de-

tached when its create and detach events both occur.
D17. [[discharged(c, r, u)]] = [[(c u u) t (r u u)]]. A com-

mitment is discharged when its discharge event has
occurred along with either its create or detach event.

D18. [[expired(c, r, u)]] = [[c r]]. A commitment is ex-
pired when its create event has occurred but its detach
fails to occur within the specified interval.

D19. [[violated(c, r, u)]] = [[(c u r) u]]. A commitment
is violated when it has been created and detached but
not discharged within the specified interval.

We define satisfaction with respect to a model and a time
instant. That is, given a model and an instant, we restrict the
extension selected by the model to events that have occurred
prior to the instant, i.e., are known at that instant.
D20. Mt0 |= X iff �06t<t0 [[X]]M is not empty

A surface syntax for Cupid helps improve readability. We
write and, or, and except for u, t, and respectively. In
time intervals, we omit lower and upper instants when they
are 0 and 1, respectively. An omitted detach clause means
the commitment is unconditional. We label commitments to
simplify writing nested commitments, as in Listings 2 and 7.

4 Specifying Realistic Commitments
Listing 1 shows an information schema capturing the sce-
nario of Ex. 1. Each event corresponding to a message in-
cludes participant IDs indicating its sender and receiver. As
earlier, when the key of an event occurs in another event, we
treat it as a foreign key in the latter.
Listing 1: Example schema identifying timestamp columns.
schema

Quote (mID , cID , qID , i temID , u P r i c e , t)
key qID

Order (cID , mID , oID , qID , qty , addr , t)
key oID

Payment (cID , mID , pID , oID , p P r i c e , t)
key pID

Shipment (mID , cID , sID , oID , addr , t)
key sID

Refund (mID , cID , rID , pID , rAmount , t)
key r ID

Coupon (cID , mID , uID , oID , r e b a t e , t)
key uID

Ex. 10 The merchant commits to the customer via Quote
that if the payment for 90% of the amount due for the quan-
tity of items ordered by the customer occurs within ten days
of the quote, then shipment will occur within five days of
payment. Listing 2 is the corresponding Cupid specification.

Listing 2: A specification in Cupid surface syntax that cap-
tures the commitment in Ex. 10.
commitment Dis coun tQuo t e mID to cID
create Quote

detach Order and Payment [, Quote + 10]
where p P r i c e >= 0 . 9 ⇤ u P r i c e ⇤ q t y

discharge Shipment [, Payment + 5]

Ex. 11 Listing 2 expresses a standing commitment: the oc-
currence of each Order and its correlated Payment corre-
sponds to the creation of a new commitment instance, each
of which would require its own Shipment. In contrast, List-
ing 3, where Order is moved from detach to create, is not a
standing commitment.

Listing 3: A specification in Cupid surface syntax that cap-
tures the commitment in Ex. 11.
commitment Discoun tQuo te mID to cID
create Quote and Order
detach Payment [, Quote + 10]
where p P r i c e >= 0 . 9 ⇤ u P r i c e ⇤ q t y

discharge Shipment [, Payment + 5]

In contrast with Ex. 10, Ex. 12 expresses a customer’s
commitment. The same schema underlies both commit-
ments. We have the choice here because Payment and Ship-
ment do not depend upon each other. Which commitment is
modeled is the modeler’s choice.
Ex. 12 Listing 4 specifies the customer’s commitment to the
merchant that if the ordered items are shipped within five
days of order placement, then payment for at least 90% of
the amount due will occur within ten days of the shipment.

Listing 4: The discounted order commitment of Ex. 12.
commitment DiscOrde r cID to mID
create Order (,) and Quote (,)
detach Shipment (, Order +5)
discharge Payment (, Shipment + 10)

where p P r i c e >= 0 . 9 ⇤ u P r i c e ⇤ q t y

Another alternative for this schema is a nested commit-
ment, as illustrated in Ex. 13.
Ex. 13 The merchant’s Quote creates the commitment that
if the customer creates an unconditional commitment within
two days of Quote to pay 90% of the Order amount within
ten days of placing the Order, then the merchant will ship
within five days of Payment. Listing 5 specifies the cus-
tomer’s unconditional commitment and Listing 6 specifies
the merchant’s commitment.

Listing 5: The Order commitment of Ex. 13.
commitment UncondPayment cID to mID
create Order and Quote
discharge Payment [, Order + 10]
where p P r i c e >= 0 . 9 ⇤ u P r i c e ⇤ q t y ;

Listing 6: The Quote commitment of Ex. 13.
commitment Nes tedQuote mID to cID
create Quote
detach c r e a t e d (UncondPayment) [, Quote + 2]
discharge Shipment [, Payment + 5]

Ex. 14 features compensation for violated commitments.
Ex. 14 Let commitment DiscountQuote be as in Ex. 10.
Listing 7 shows a compensation commitment that says that
if DiscountQuote is violated, the merchant will refund 110%
of the payment within nine days of the violation.

Listing 7: The compensation commitment of Ex. 14.
commitment Compensa t ion mID to cID
create Quote
detach v i o l a t e d (Di scoun tQuo te)
discharge Refund [, v i o l a t e d (Di s coun tQuo te) + 9]
where rAmount = 1 . 1 ⇤ p P r i c e

Ex. 15 illustrates the use of except.
Ex. 15 Listing 8 is similar to Listing 3, the only difference
being that the commitment is created only if the customer
does not introduce a coupon in the transaction (presumably
because coupons cannot be combined with other discounts,
as is often the case). Listing 8 specifies this commitment.

Listing 8: A specification in Cupid surface syntax that cap-
tures the commitment in Ex. 15.
commitment Dis coun tQuo t e mID to cID
create Quote and Order except Coupon
detach Payment [, Quote + 10]
where p P r i c e >= 0 . 9 ⇤ u P r i c e ⇤ q t y

discharge Shipment [, Payment + 5]

5 Desirable Properties
5.1 Safety
Safety is a well-known correctness criterion for database
queries (Elmasri and Navathe 1994).
Definition 3 A query Q is safe if and only if given any pos-
sible model M with finite extensions for base events, the
extension of Q relative to M , [[Q]], is finite.
Theorem 1 All Cupid queries are safe.

Proof sketch. Any Cupid query maps to finitely many appli-
cations of the semantic postulates. Each postulates produces
a finite output if its inputs are finite.

5.2 Well-Identified Commitments
Events in a commitment expression have to correlate in a
certain manner. In addition, to enable a uniform treatment
of events, commitment lifecycle events must have keys just
the same as base events. Pragmatically, such keys would
also help us refer to particular commitment instances.

We introduce the standard notion of functional determina-
tion from database theory (Elmasri and Navathe 1994). Let
A and B be subsets of the attributes of a relation R. Then
A functionally determines B in R, denoted by A ! B, iff
each A value is associated with a unique B value. Defini-
tion 4 uses this notion to correlate events.
Definition 4 Let E and F be events. E determines F iff
• the key of E functionally determines the key of F in E, or
• the key of E functionally determines the key of G in E,

and G determines E.

Definition 5 characterizes well-identified expressions in
terms of the correlation among events that occur in it.
Definition 5 Let X be an expression of type Expr in Table 1.
Let E0, E1, . . . , En be the events that appear in X . X is
well-identified iff there exists an Ei such that for all Ej , Ej

determines Ei. We refer to the key of Ei as the key of X .

A commitment(X,X

0
, X

00) is well-identified if and only
if detached(X,X

0
, X

00) determines created(X,X

0
, X

00),
and discharged(X,X

0
, X

00) determines either
created(X,X

0
, X

00) or detached(X,X

0
, X

00).
The key of created(X,X

0
, X

00) is the key of X;
that of detached(X,X

0
, X

00) is the key of X

0; that of
discharged(X,X

0
, X

00) is X 00; that of expired(X,X

0
, X

00)
is X; and that of violated(X,X

0
, X

00) is X 0.
Well-identified commitments are crucial to correlating the

events involved a single commitment instance. Each of the
commitments in the listings above is well-identified. For an
example of a commitment that is not well-identified, con-
sider an alternative schema where Payment does not refer
to Order, that is oID is not a foreign key in Payment. Now
consider the commitment of Ex. 10. There would be no way
to relate any payment instance to an order instance; the de-
tach query for this commitment would always return empty.
Definition 6 characterizes such commitments as vacuous.
Definition 6 A commitment(X,X

0
, X

00) is vacuous iff
there is no M such that M |= detached(X,X

0
, X

00) and
there is no M such that M |= discharged(X,X

0
, X

00).
Theorem 2 gives a syntactic criterion for identifying vac-

uous commitments, e.g., to assist a commitment modeler.
Theorem 2 A commitment that is not well-identified is vac-
uous.
Proof Sketch. Follows from D16 and D17.

5.3 Time-Oriented Properties
In general, modelers would normally prefer to write commit-
ments that once created are either detached or discharged or
are set to expire within a finite amount of time.

Definition 9 formalizes this property.
Definition 7 A commitment(X,X

0
, X

00) is finitely ex-
pirable if and only if the following condition holds:
8t 2 N, if Mt |= created(X,X

0
, X

00), then 9t0 2
N such that Mt0 |= detached(X,X

0
, X

00) or Mt0 |=
discharged(X,X

0
, X

00) or Mt0 |= expired(X,X

0
, X

00).
Finite expirability of a commitment specification is not

automatically guaranteed; it would depend on the specifica-
tion of the time intervals in the detach clause. For instance,
if the detach clause of a commitment expression is E[0,1],
then none of its instances will ever expire—E could happen
sometime in the future thereby detaching the instance. (Al-
ternatively, if the detach clause is E[0, 30], then if E doesn’t
happen by 30, we can be certain it is expired.)

The situation is made more complicated if the detach
clause were E[0, F + d] because now the deadline for E

depends on when F occurs. But F may never occur. Con-
sider that the create clause of this commitment may be
F [0, 10] t G[0, 10]. Say, G occurs at 8, creating the com-
mitment. If F never occurs, then the reference to F in the
interval of E is a dangling pointer. The only way to avoid
such situations is if the right timepoint of all intervals in
the detach clause refers only to events that are guaranteed
to have occurred once the commitment is created (we don’t
care about the left timepoint). The only such event is the
commitment creation. Definition 8 captures this property.

Definition 8 A commitment(X,X

0
, X

00) is expirably spec-
ified iff (1) any event that appears in the right timepoint of
any interval specification in X

0 is created(X,X

0
, X

00), and
(2)1 does not appear in the right timepoint of any interval
specification in X

0.

Theorem 3 connects Definitions 7 and 8.

Theorem 3 A commitment(X,X

0
, X

00) that is expirably
specified is finitely expirable.

Proof Sketch. From D18, those commitments are determined
expired that have been created but whose detach event is de-
termined to have not occurred. Using created(X,X

0
, X

00)
and avoiding 1 in the detach clause guarantees an upper
time bound for the nonoccurrence of the detach.

Modelers may also want to ensure that their specifications
are such that if a commitment instance is detached but not
discharged within a finite amount of time, then it is violated.
This motivates the analogous property of finite violability.

Definition 9 A commitment(X,X

0
, X

00) is finitely vio-
lable if and only if the following condition holds: 8t 2
N, if Mt |= detached(X,X

0
, X

00), then 9t0 2 N
such that if Mt0 |= discharged(X,X

0
, X

00) or Mt0 |=
violated(X,X

0
, X

00).

Definition 10 is analogous to Definition 8.

Definition 10 A commitment(X,X

0
, X

00) is violably spec-
ified iff (1) any event that appears in the right time-
point of any interval specification in X

00 is either
created(X,X

0
, X

00) or detached(X,X

0
, X

00), and (2) 1
does not appear in the right timepoint of any interval speci-
fication in X

00.

Theorem 4 connects Definitions 9 and 10.

Theorem 4 A commitment(X,X

0
, X

00) that is violably
specified is finitely violable.

Proof Sketch. From D19, those commitments are determined
violated that have been detached but whose discharge event
is determined to have not occurred. From D16, we also
know that those commitments have been created. Using
created(X,X

0
, X

00) or detached(X,X

0
, X

00) and avoiding
1 in the discharge clause guarantees an upper time bound
for the nonoccurrence of the discharge.

Listing 9 shows a finitely violable and finitely expirable
commitment.

Listing 9: A finitely violable and expirable commitment.
commitment Dis coun tQuo t e mID to cID
create Quote
detach Order (, c r e a t e d (Di scoun tQu o te) +5) and

Payment [, c r e a t e d (Di sc ou n tQu o t e) +10]
where p P r i c e >= 0 . 9 ⇤ u P r i c e ⇤ q t y

discharge

Shipment [, d e t a c h e d (Di sc oun t Quo te) +5]

6 Discussion
Broadly, our contribution consists of an elegant, expres-
sive, event and information-centric treatment of commit-
ments with time. We guarantee safety and show how to

achieve finite expirability and violability. Our semantics
provides a compositional mapping from Cupid syntax to
relational algebra queries, which are evaluated executable
on commercial database products, e.g., using Yang’s [2014]
tool. Below, we discuss some of the key literature.

Information in commitments. Our treatment of infor-
mation in commitments is novel. Some existing formal-
izations of commitment are explicitly propositional, e.g.,
(Singh 2008). Other work uses first-order languages such as
the event calculus but has not considered information sys-
tematically (Yolum and Singh 2002b; Chesani et al. 2013).
Montali et al. (2014) notice this shortcoming and present a
formalization of commitment-based multiagent systems that
focuses on information. Their conception of the system is a
centralized one. In their conception, an “institutional” agent
keeps track of all agents’ commitments; commitment speci-
fications are over the databases of multiple agents; and in the
verification of system properties they consider all agents’
specifications. By contrast, Cupid queries run on a single
agent’s database.

Montali et al. do not consider deadlines. Thus they cannot
handle lifecycle events such as expiry and violation. They
also do not address the identification of commitments nor
a clear formulation of the safety of commitments. Further,
they do not handle nested commitments. A technical differ-
ence is that Montali et al. insert commitments in databases
and delete them. Therefore, it is unclear how queries about
commitment lifecycle events would be supported in their ap-
proach. By contrast, we do not materialize commitments; in
Cupid, commitments lifecycle events are stable and our lan-
guage semantics is in terms of queries for lifecycle events.
Montali et al. formalize commitment operations as well. For
brevity, we do not include cancellation or release in this pa-
per: they are straightforward in our framework.

A way of identifying commitments is by introducing a
place called commitment identifier in the commitment rela-
tion, as in C(id , x, y, r, u) (Fornara and Colombetti 2002;
Rovatsos 2007; Flores, Pasquier, and Chaib-Draa 2007). As
discussed in Section 1, these approaches block commitment
reasoning because the identifiers would get in the way. Cu-
pid, by contrast, is compatible with commitment reason-
ing because in Cupid, commitment instances are identified
from underlying domain information. The notions of well-
identified and finitely violable and finitely expirable com-
mitments complements earlier work on providing guidance
to protocol designers (Yolum 2007).

Meneguzzi et al. (2013) specify commitments with vari-
ables to address problems in planning. However, Meneguzzi
et al. don’t systematically address the information-based
modeling of commitments. They don’t mention the concept
of a (database) key. They also lack a notion of events and
a notion of time. Further, Meneguzzi et al. employ a syn-
tactic notion of commitment types and instances of a type.
We distinguish commitment instances semantically, based
on the events that affect the state of a commitment instance.
Meneguzzi et al.’s quantification is also more limited than
ours (only existentially quantified formulas in the antecedent
and consequent). Further, they don’t handle nested com-
mitments. However, Meneguzzi et al.’s approach is largely

complementary to ours since it concerns planning with goals
rather than computing commitment lifecycle states. Of the
patterns of behavior they describe, piecemeal progress, con-
solidation, and compensation can be handled through a suit-
able design of event schemas (and their keys); concession re-
quires a more complex arrangement of commitments, which
we will consider in the future.

Cupid is broadly motivated by concerns of modeling in-
formation via artifacts (e.g., Order and Payment) in business
processes (Belardinelli, Lomuscio, and Patrizi 2011). A key
distinction is that we model commitments on top of the arti-
facts, thus enabling a higher level of abstraction at which to
model the business processes.

Commitment lifecycles and time. Cupid is event-based in
the sense that commitments are affected by the occurrence
of events. Each event instance can occur at most once and
if it occurs it cannot be undone. Note that the effect of an
event may be undone through some other event, as refund
can undo payment. In Cupid, temporal intervals qualify the
occurrence of an event. Our event-based approach is sim-
ilar in spirit to Marengo et al.’s (2011) and Chesani et al.’s
(2013). A key difference is that we treat information, includ-
ing keys systematically, and formalize a commitment lifecy-
cle via queries on databases.

Fornara and Colombetti’s (2002) commitment lifecycle
includes a precommitment phase. A precommitment is es-
tablished when a principal requests a commitment from an-
other. There is no analog of precommitment in our notion
of commitment. However, it can be modeled in Cupid if ap-
propriate for some application. In Cupid, there is no analog
of partial violation either (Chesani et al. 2009).

Mallya et al. (2004) specify the validity conditions for
time intervals that could potentially be nested. Torroni et
al. (2009) and Chesani et al. (2009) show how Mallya et al.’s
interval expressions can be encoded in the reactive event cal-
culus (REC) to enable reasoning about commitment satisfac-
tion and violation at runtime. We expect this body of work
to inform work on more expressive interval specifications.
Recently, Kafalı et al. (2014) propose an approach, GOSU,
based on the REC that enables monitoring goals in reference
to the lifecycles of commitments that support them. Cupid
could help support GOSU by enabling more complex repre-
sentations of commitments and through set queries.

Immediate directions of future work include (1) combin-
ing with distributed systems aspects of tracking commit-
ments, as in Chopra and Singh (2009); (2) enhancing the
language to aggregation and event-related abstractions; (3)
producing a compiler that generates relational algebra from
Cupid specifications (ongoing) and (4) studying the perfor-
mance of Cupid queries.

Acknowledgments
Munindar Singh was partially supported by U.S. Department
of Defense under the Science of Security Lablet grant.

References
Belardinelli, F.; Lomuscio, A.; and Patrizi, F. 2011. Verifi-
cation of deployed artifact systems via data abstraction. In

Proceedings of the Ninth International Conference on Ser-
vice Oriented Computing, number 7084 in LNCS, 142–156.
Springer.
Chesani, F.; Mello, P.; Montali, M.; and Torroni, P. 2009.
Commitment tracking via the reactive event calculus. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence, 91–96.
Chesani, F.; Mello, P.; Montali, M.; and Torroni, P. 2013.
Representing and monitoring social commitments using the
event calculus. Autonomous Agents and Multi-Agent Sys-
tems 27(1):85–130.
Chopra, A. K., and Singh, M. P. 2009. Multiagent commit-
ment alignment. In Proceedings of the Eighth International
Conference on Autonomous Agents and Multiagent Systems,
937–944. IFAAMAS.
Chopra, A. K., and Singh, M. P. 2011. Specifying and ap-
plying commitment-based business patterns. In Proceedings
of the 10th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS), 475–482. Taipei: IFAA-
MAS.
Elmasri, R., and Navathe, S. 1994. Fundamentals of
Database Systems. Redwood City, CA: Benjamin Cum-
mings, second edition.
Flores, R. A.; Pasquier, P.; and Chaib-Draa, B. 2007.
Conversational semantics sustained by commitments. Au-
tonomous Agents and Multi-Agent Systems 14(2):165–186.
Fornara, N., and Colombetti, M. 2002. Operational spec-
ification of a commitment-based agent communication lan-
guage. In Proceedings of the 1st International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS), 535–542. ACM Press.
Kafalı, Ö.; Günay, A.; and Yolum, P. 2014. GOSU: Comput-
ing goal support with commitments in multiagent systems.
In Proceedings of 21st European Conference on Artificial
Intelligence, 477–482.
Mallya, A. U.; Yolum, P.; and Singh, M. P. 2004. Resolv-
ing commitments among autonomous agents. In Dignum, F.,
ed., Advances in Agent Communication, International Work-
shop on Agent Communication Languages, ACL 2003, vol-
ume 2922 of Lecture Notes in Computer Science, 166–182.
Springer.
Marengo, E.; Baldoni, M.; Baroglio, C.; Chopra, A. K.;
Patti, V.; and Singh, M. P. 2011. Commitment with reg-
ulations: Reasoning about safety and control in REGULA.
In Proceedings of the 10th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 467–
474.
Meneguzzi, F.; Telang, P. R.; and Singh, M. P. 2013. A
first-order formalization of commitments and goals for plan-
ning. In Proceedings of the 23rd Conference on Artificial In-
telligence (AAAI), 697–703. Bellevue, Washington: AAAI
Press.
Montali, M.; Calvanese, D.; and Giacomo, G. D. 2014. Ver-
ification of data-aware commitment-based multiagent sys-
tem. In Proceedings of the 13th International Conference

on Autonomous Agents and Multiagent Systems, 157–164.
Paris: IFAAMAS.
Rovatsos, M. 2007. Dynamic semantics for agent com-
munication languages. In Proceedings of the 6th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), 100–107. Honolulu: IFAAMAS.
Searle, J. R. 1995. The Construction of Social Reality. New
York: Free Press.
Singh, M. P. 2008. Semantical considerations on dialecti-
cal and practical commitments. In Proceedings of the 23rd
Conference on Artificial Intelligence, 176–181.
Torroni, P.; Chesani, F.; Mello, P.; and Montali, M. 2009.
Social commitments in time: Satisfied or compensated. In
Proceedings of the 7th International Workshop on Declar-
ative Agent Languages and Technologies (DALT), volume
5948 of LNCS, 228–243. Springer.
Yang, J. 2014. RA: A relational algebra interpreter. http:
//www.cs.duke.edu/⇠junyang/ra/. Version 2.2b.
Yolum, P., and Singh, M. P. 2002a. Commitment machines.
In Proceedings of the 8th International Workshop on Agent
Theories, Architectures, and Languages (ATAL 2001), vol-
ume 2333 of LNAI, 235–247. Seattle: Springer.
Yolum, P., and Singh, M. P. 2002b. Flexible protocol spec-
ification and execution: Applying event calculus planning
using commitments. In Proceedings of the 1st International
Joint Conference on Autonomous Agents and MultiAgent
Systems, 527–534. ACM Press.
Yolum, P. 2007. Design time analysis of multiagent proto-
cols. Data and Knowledge Engineering Journal 63(1):137–
154.
Young, J. D., and Antón, A. I. 2010. A method for identi-
fying software requirements based on policy commitments.
In Proceedings of the 18th IEEE International Requirements
Engineering Conference, 47–56.

