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Abstract

Commitments help model interactions in multiagent
systems in a computationally realizable yet high-level
manner without compromising the autonomy and het-
erogeneity of the member agents. Recent work shows
how to combine commitments with goals and apply
planning methods to enable agents to determine their
actions. However, previous approaches to modeling
commitments are confined to propositional representa-
tions, which limits their applicability in practical cases.
We propose a first-order representation and reasoning
technique that accommodates templatic commitments
and goals that may be applied repeatedly with differing
bindings for domain objects. Doing so not only leads to
a more perspicuous modeling, but also supports many
practical patterns.

Introduction
We are concerned with the specification of interactions
among agents in a multiagent system and the reasoning by
the agents to enact such interactions. In the first regard, we
adopt the notion of a (social) commitment, which describes
an element of the social relationships between two agents
in high-level terms. Thus a commitment in this paper is not
to be confused with a “psychological” commitment express-
ing an agent’s entrenchment with its intentions (Singh 1991;
2012; Castelfranchi 1995). In the second regard, we adopt
the notion of an (achievement) goal, which describes a pro-
attitude of an agent. Goals in our approach map to consistent
desires and can be treated as possibly weaker than inten-
tions, though the subtle distinctions between goals and in-
tentions do not concern us. Existing approaches for commit-
ments (Desai, Chopra, and Singh 2009; Fornara and Colom-
betti 2009; Verdicchio and Colombetti 2002; Winikoff 2007;
Winikoff, Liu, and Harland 2005) as well as for goals and
commitments (Chopra et al. 2010a; 2010b; Telang, Yorke-
Smith, and Singh 2012) address several subtle situations.

Telang et al. (2013) show how to formalize commitments
and goals via Hierarchical Task Networks (HTNs), provid-
ing a practical means to specify and verify the realizability
of a multiagent system defined in terms of commitments.
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HTN planning is well suited for operationalizing commit-
ments and goals because it helps capture the natural hierar-
chical structure of goals and commitments (Ghallab, Nau,
and Traverso 2004). Existing HTN planning tools, such as
JSHOP2 (Ilghami and Nau 2003), can accommodate real-
life practical scenarios such as job scheduling. However, like
existing approaches on commitments, such work is defined
in a purely propositional framework. As a result, these ap-
proaches are cumbersome to apply in practical settings and
do not naturally express certain common patterns of com-
mitment reasoning.

Our contribution is twofold. First, we provide a first-order
formalization of commitments and goals that enables an off-
the-shelf HTN planner to be used in the verification of the
realizability of a multiagent system. Second, we identify key
limitations in the expressiveness of existing formalizations
and reasoning mechanisms and develop reasoning patterns
that address these limitations.

The contributions in this paper are motivated by the lim-
itations of encoding the simple purchase scenario that fol-
lows. A customer sends a request for quotes for some spec-
ified goods to a merchant, who responds with a quote for
the specified goods at a specified price. The customer either
accepts or rejects it: if the customer accepts the quote, the
merchant provides the goods; otherwise, upon receiving the
goods, the customer pays the merchant the specified amount.
When there are multiple merchants, goods, and prices, the-
oretical approaches, e.g., (Chopra and Singh 2006), do not
handle them, though interestingly practical rule-based ap-
proaches, e.g., (Desai et al. 2005), can handle them.

Key Background
Commitments
Commitments are extensively studied in multiagent sys-
tems (Desai, Chopra, and Singh 2009; Fornara and Colom-
betti 2009; Verdicchio and Colombetti 2002). Specifically, a
commitment C(DEBTOR, CREDITOR, antecedent, conse-
quent) means that the DEBTOR agent commits to the CRED-
ITOR agent to bring about the consequent if the antecedent
holds (Singh 2008). Figure 1 summarizes a commitment
lifecycle (Telang, Yorke-Smith, and Singh 2012). Upon cre-
ation, a commitment transitions from state null to active,
which consists of two substates: conditional (its antecedent
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Figure 1: State transition diagram of commitment life cycle.

Null (N)

Inactive (I) Active (A)

Suspended (U)

Terminated (T) Failed (F) Satisfied (S)

consider

activate

reconsider reactivate
suspend suspend

drop ∨ abort fail succeed

Figure 2: Goal lifecycle as a state transition diagram.

is false) and detached (its antecedent is true). An active com-
mitment expires if its antecedent fails. If the consequent of
an active commitment is brought about, the commitment is
satisfied. An active commitment may be suspended and a
pending commitment reactivated. If the debtor cancels or
the creditor releases a conditional commitment, the commit-
ment is terminated. If the debtor cancels a detached commit-
ment, the commitment is violated.

Goals
A goal is a state of the world that an agent wishes to bring
about. Formally, a goal G = G(x, pg, s, f), where x is an
agent and pg is G’s precondition, whose truth is required for
G to be considered (Telang, Yorke-Smith, and Singh 2012;
Thangarajah et al. 2011). Since, G’s success condition is s
and failure condition is f , G succeeds if s ∧ ¬f holds.

Figure 2 shows our goal lifecycle (Telang, Yorke-Smith,
and Singh 2012). A goal is in state null before it is consid-
ered, and if a goal’s precondition is true, the agent may con-
sider it, making it inactive. The agent may suspend a goal,
activate an inactive goal, and reconsider or reactivate a sus-
pended one. When the goal is inactive, active, or suspended:
(a) if the agent drops or terminates the goal, the goal tran-
sitions to terminated; (b) if the failure condition holds, the
goal transitions to failed; and (c) if the success condition
holds, the goal transitions to satisfied.

Classical and HTN Planning
We adopt the usual logic language (Apt 1997) underpin-
ning deterministic planning representations, namely, a first-

order language with infinitely many variable symbols, no
function symbols, and finitely many predicate and constant
symbols (Ghallab, Nau, and Traverso 2004, Chapter 2). We
omit specific details of the first-order logic used throughout
the paper for brevity. Classical planning defines a problem
in terms of an initial state and a goal state—each a set of
ground atoms—and a set of operators. An operator is appli-
cable when its precondition holds, and its execution brings
about its postcondition. Planning is concerned with sequenc-
ing actions, obtained by instantiating operators, which de-
scribe concrete state transformations. We represent an op-
erator o as a four-tuple 〈name(o), pre(o), del(o), add(o)〉,
where (1) name(o) = act(~x), the name of the operator,
is a symbol followed by a vector of distinct variables such
that all free variables in pre(o), del(o), and add(o) occur
in ~x; and (2) pre(o), del(o) and add(o) called, respectively,
the precondition, delete-list, and add-list, are sets of atoms
where del(o) ∩ add(o) = ∅.

A Hierarchical Task Network (HTN) (Ghallab, Nau, and
Traverso 2004) planner generates a plan by successive re-
finements of tasks. Tasks are either primitive (equivalent to
operators in STRIPS planning) or compound (abstract high-
level tasks). An HTN planner recursively decomposes com-
pound tasks by applying a set of methods until only primitive
tasks remain. Methods are elements of domain knowledge
that describe how a higher-level task can be decomposed
into more concrete tasks; they constrain the search space,
helping improve efficiency. For example, a person may rep-
resent the goal of obtaining a certain product as an abstract
task, which could be decomposed into the tasks of making an
order, sending the payment, and then picking up the goods
after shipping. Formally, an HTN planning domain D is a
tuple (A,M), containing, respectively finite sets of opera-
tors and methods. A task networkH is a tuple (T,C), where
T is a finite set of tasks (primitive and compound), and C
is a set of partial ordering constraints on tasks in T . A con-
straint specifies the order in which certain tasks can be ex-
ecuted, and can be either a precedes or a succeeds relation.
An operator corresponding to each primitive task t exists in
the planning domain (that is, A ⊆ T ), and each compound
task t must have one or more corresponding methods in the
planning domain. A method m is a tuple (t, s,H’), where
s is a precondition that must hold for a task t to be refined
into another task network H’ = (T ’, C’). Finally, an HTN
planning problem P is a tuple (d, I,D), where (1) d is a task
network, (2) I is an initial state, and (3) D is an HTN plan-
ning domain.

Technical Motivation
Clarifying how to deal with multiple instances is a useful
contribution of this paper. An initial motivation for modeling
interactions with multiple instances is the need to instantiate
a small model of an interaction multiple times and to keep
distinct instances from interfering with each other, yet re-
lating to each other as appropriate. For example, a purchase
protocol may be instantiated by multiple parties for multiple
goods sold at multiple prices. This need can be addressed
in a straightforward manner via a first-order representation.
Nevertheless, even in such a representation, the overarching



challenge is to capture different ways in which interaction
instances can (1) flexibly deviate from the initial specifica-
tion; (2) split off into two or more instances that together
accomplish the original interaction; (3) coalesce into larger
interactions. In particular, the above should be accomplished
in a modular manner, meaning that we should not have to
rewrite an interaction specification but should be able to
transform it in a systematic manner to produce the desired
interaction. Yolum and Singh (2002) introduced the idea of
digressions in protocols and Chopra and Singh (2006) intro-
duced the notion of protocol transformers, though both pa-
pers adopted propositional frameworks. Specifically, these
frameworks cannot encode domains containing the follow-
ing patterns of behavior.

Piecemeal progress. The customer may pay the merchant
in installments. The challenge to accommodate here is of
arithmetic: we would like to handle the situation that, for
example, a payment of $6 followed by a payment of $4 is
equivalent to a payment of $10. (Note that domain regula-
tions would determine whether payments may be split).

Concession. The merchant may balk at providing the goods
(or goods above a certain value) in advance of any payment.
Therefore, we might amend the protocol so that the customer
makes a partial deposit first, upon which the merchant deliv-
ers the goods, upon which the customer makes the remaining
payment. Unlike piecemeal progress, this scenario involves
altering the structure of the commitments involved: the mer-
chant is committing to providing the goods only upon re-
ceiving a deposit and the customer is committing to paying
the remaining amount upon receiving the goods. Concession
is loosely inspired by Yolum and Singh’s (2007) approach,
which deals with nesting commitments to reduce the appar-
ent risk to each party in a protocol.

Consolidation. If a customer places two purchase orders in
close succession, the merchant may ship both of the ordered
goods in the same package. Likewise, the customer may pay
for both orders via one check. This is a clear case of flexibil-
ity in enactment that multiagent protocols ought to support.
To realize it requires a richer representation wherein some
actions (e.g., delivery) may be associated with more than
one protocol instance.

Compensation. The customer may return goods to the mer-
chant and the merchant would issue a refund. The refund
should match the goods returned. This should result from
a straightforward application of the first-order representa-
tion. Additionally, the protocol should ordinarily ensure that
for piecemeal payments, only the amount received may be
refunded. Further, the protocol may build in some fraud-
resistant measures, such as that a prior refund disables a sub-
sequent refund or that the total amount refunded in succes-
sive protocol instances does not exceed some threshold.

Proposed Formal Framework
We now develop the logical rules, operators, and methods in
the HTN formalism that operationalize the goal and commit-
ment dynamics introduced above. Existing techniques show

Table 1: Logical rules for commitment dynamics

null(C,Ct, ~Cv)←¬var(C,Ct, ~Cv)
conditional(C,Ct, ~Cv)← active(C,Ct, ~Cv)∧¬p(C,Ct, ~Cv)
detached(C,Ct, ~Cv)← active(C,Ct, ~Cv) ∧ p(C,Ct, ~Cv)
active(C,Ct, ~Cv)←¬null(C,Ct, ~Cv)
∧ ¬terminal(C,Ct, ~Cv) ∧ ¬pending(C,Ct, ~Cv)
∧ ¬satisfied(C,Ct, ~Cv)

terminated(C,Ct, ~Cv)← released(C,Ct, ~Cv)
∨ (¬p(C,Ct, ~Cv) ∧ cancelled(C,Ct, ~Cv))

v iolated(C,Ct, ~Cv)← p(C,Ct, ~Cv) ∧ cancelled(C,Ct, ~Cv)
satisfied(C,Ct, ~Cv)←¬null(C,Ct, ~Cv)
∧ ¬terminal(C,Ct, ~Cv) ∧ q(C,Ct, ~Cv)

terminal(C,Ct)← commitment(C,Ct,De,Cr) ∧
(cancelled(C,Ct, ~Cv) ∨ released(C,Ct, ~Cv)
∨ expired(C,Ct, ~Cv))

that it is straightforward to convert operational business pro-
cess models into HTN (Pistore et al. 2005), as well as to
convert business process languages into planning operators
(Hoffmann, Weber, and Kraft 2010). Based on these, we
assume that a large part of the domain-specific knowledge
used in HTN encoding can be generated from the business
processes being validated.

Commitment Dynamics
A commitment is a tuple 〈Ct,De,Cr, P,Q, ~Cv〉, where: Ct
is the commitment type; De is the debtor of the commitment;
Cr is the creditor of the commitment; P is the antecedent;
Q is the consequent, both P and Q are existentially quan-
tified first-order formulas; and, ~Cv is a list [v1, . . . , vn] of
variables identifying specific instances of Ct. The first chal-
lenge in encoding commitments in a first-order setting is
in ensuring that the components of a commitment are con-
nected through their shared variables. In order to accom-
plish that, we model the entire set of variables of a partic-
ular commitment within one predicate. Thus, the number
of variables n for a commitment is equivalent to the sum
of arities of all first-order predicates in P , and Q, so if
P = pa0( ~ta0) . . . pak( ~tak) and Q = pc0( ~tc0) . . . pck( ~tck),
then n =

∑i=ck
i=a0 |~ti|. Thus, for each commitment C =

〈Ct,De,Cr, P,Q, ~Cv〉, where P is a formula ϕ and Q is
a formula κ we define the rules below:

p(C,Ct, ~Cv)← commitment(C,Ct,De,Cr) ∧ ϕ
q(C,Ct, ~Cv)← commitment(C,Ct,De,Cr) ∧ κ

Given these two basic formulas from the commitment tu-
ple, we define rules that compute a commitment’s state in
Table 1, which follow from Figure 1. The null state for a
commitment is “instance dependent”, as each commitment
has a number of possible instantiations, depending on the
variables of the antecedent. In order to accomplish this, each
commitment instance has an associated var predicate con-
taining the commitment type and the list of variables asso-
ciated to the instance. An active commitment is conditional
if its antecedent (p) is false, and is detached otherwise. A
commitment is active if it is not null, terminal, pending, or
satisfied. Note that terminal is a shortcut for the states can-



Table 2: Planning operators for commitment dynamics.

〈operator !create(C,Ct,De,Cr, ~Cv),
pre(commitment(C,Ct,De,Cr) ∧ null(C,Ct, ~Cv)),
del(),add(var(C,Ct, ~Cv))〉
〈operator !suspend(C,Ct,De,Cr, ~Cv),

pre(commitment(C,Ct,De,Cr) ∧ active(C,Ct, ~Cv)),
del(),add(pending(C,Ct, ~Cv))〉
〈operator !reactivate(C,Ct,De,Cr, ~Cv),

pre(commitment(C,Ct,De,Cr) ∧ pending(C,Ct, ~Cv)),
del(pending(C,Ct, ~Cv)),add()〉
〈operator !expire(C,Ct,De,Cr, ~Cv),

pre(commitment(C,Ct,De,Cr) ∧
conditional(C,Ct, ~Cv) ∧ timeout(C,Ct, ~Cv)),

del(),add(expired(C,Ct, ~Cv))〉
〈operator !cancel(C,Ct,De,Cr, ~Cv),

pre(commitment(C,Ct,De,Cr) ∧ active(C,Ct, ~Cv)),
del(),add(cancelled(C,Ct, ~Cv))〉
〈operator !release(C,Ct,De,Cr, ~Cv),

pre(commitment(C,Ct,De,Cr) ∧ active(C,Ct, ~Cv)),
del(),add(released(C,Ct, ~Cv))〉

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple 〈Gt,X, Pg, S, F, ~Gv〉, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = 〈Gt,X, Pg, S, F,Gv〉,
where Pg is a formula $, S is a formula ς , and F is a
formula ϑ we define the following rules:

pg(G,Gt, ~Gv)← goal(G,Gt,X) ∧$
s(G,Gt, ~Gv)← goal(G,Gt,X) ∧ ς
f (G,Gt, ~Gv)← goal(G,Gt,X) ∧ ϑ

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.

null(G,Gt, ~Gv)←¬var(G,Gt, ~Gv)
inactiveG(G,Gt, ~Gv)←¬null(G,Gt, ~Gv)
∧ ¬f(G,Gt, ~Gv) ∧ ¬s(G,Gt, ~Gv)
∧ ¬terminalG(G,Gt, ~Gv) ∧ ¬suspendedG(G,Gt, ~Gv)
∧ ¬activeG(G,Gt, ~Gv)

activeG(G,Gt, ~Gv)← activatedG(G,Gt, ~Gv)
∧ ¬f(G,Gt, ~Gv) ∧ ¬satisfiedG(G,Gt, ~Gv)
∧ ¬terminalG(G,Gt, ~Gv) ∧ ¬suspendedG(G,Gt, ~Gv)

satisfiedG(G,Gt, ~Gv)←¬null(G,Gt, ~Gv)
∧ ¬terminal(G,Gt, ~Gv) ∧ pg(G,Gt, ~Gv)
∧ s(G,Gt, ~Gv) ∧ ¬f(G,Gt, ~Gv)

f ailedG(G,Gt, ~Gv)←¬null(G,Gt, ~Gv) ∧ f(G,Gt, ~Gv)
terminatedG(G,Gt, ~Gv)←¬null(G,Gt, ~Gv)
∧ (dropped(G,Gt, ~Gv) ∨ aborted(G,Gt, ~Gv))

terminalG(G,Gt, ~Gv)← goal(G,Gt,X)
∧ (dropped(G,Gt, ~Gv) ∨ aborted(G,Gt, ~Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the



Table 4: Planning operators for goal dynamics.

〈operator !consider(G,Gt,X, ~Gv),
pre(goal(G,Gt,X) ∧ null(G,Gt, ~Gv) ∧ pg(G,Gt, ~Gv)),
del(),add(var(G,Gt, ~Gv))〉
〈operator !activate(G,Gt,X, ~Gv),

pre(goal(G,Gt,X) ∧ inactiveG(G,Gt, ~Gv)),
del(),add(activatedG(G,Gt, ~Gv))〉
〈operator !suspend(G,Gt,X, ~Gv),

pre(goal(G,Gt,X) ∧ ¬terminalG(G,Gt, ~Gv) ∧
¬null(G,Gt, ~Gv)),

del(activatedG(G,Gt, ~Gv)),add(suspendedG(G,Gt, ~Gv))〉
〈operator !reconsider(G,Gt,X, ~Gv),

pre(goal(G,Gt,X) ∧ suspendedG(G,Gt, ~Gv) ∧
¬terminalG(G,Gt, ~Gv) ∧ ¬null(G,Gt, ~Gv)),

del(),add(suspendedG(G,Gt, ~Gv))〉
〈operator !reactivate(G,Gt,X, ~Gv),

pre(goal(G,Gt,X) ∧ suspendedG(G,Gt, ~Gv) ∧
¬terminalG(G,Gt, ~Gv) ∧ ¬null(G,Gt, ~Gv)),

del(activatedG(G,Gt, ~Gv)),add(suspendedG(G,Gt, ~Gv))〉
〈operator !drop(G,Gt,X, ~Gv),

pre(goal(G,Gt,X) ∧ ¬terminalG(G,Gt, ~Gv) ∧
¬null(G,Gt, ~Gv)),

del(),add(dropped(G,Gt, ~Gv))〉
〈operator !abort(G,Gt,X, ~Gv),

pre(goal(G,Gt,X) ∧ ¬terminalG(G,Gt, ~Gv) ∧
¬null(G,Gt, ~Gv)),

del(),add(aborted(G,Gt, ~Gv))〉

Table 5: Goals and commitments for the patterns.
Id Type Goal or commitment

G1 GT1 G(CUST,needsGoods(123),goods(123),deadline(123))
G2 GT1 G(CUST,needsGoods(456),goods(456),deadline(456))
C1 CT1 C(CUST, MER, goods(123), paid($100, 123))
C2 CT2 C(MER, CUST, pay($20, 123), goods(123))
C3 CT1 C(CUST, MER, goods(123), pay($80, 123))
C4 CT1 C(CUST, MER, goods(456), pay($200, 456))
C5 CT3 C(MER, CUST, return(123), refundpaid(123))

customer may pay either as a lump sum, or in two install-
ments. Figure. 3 shows a plan in which the customer pays
two installments of $50 each.

Concession. This pattern involves two commitments: the
merchant commits (C2) to providing the goods upon receiv-
ing a deposit of $20, and the customer commits (C3) to the
merchant to pay the remaining amount of $80 upon receiv-
ing the goods. Figure 4 shows an HTN decomposition tree
for concession. The customer and the merchant create C2

and C3, respectively. Then the customer detaches C2 by pay-
ing $20. The merchant satisfies C2 by providing the goods,
which also detaches C3. Next, the customer pays $80 to sat-
isfy C3. The detach method has a structure similar to the
satisfy method.

Consolidation. In this pattern, the customer has a second
goal G2 for goods(456) and C4 is the commitment from
the customer to the merchant to paying $200 if the merchant
provides the goods. Figure 5 illustrates the HTN decompo-

Table 6: Methods and operators for the patterns.
〈method(satisfy(C)),

pre(commitment(C,CT1, cust,mer) ∧ var(C,CT1,
(cAmount, tID)) ∧ detached(C,CT1, (cAmount, tID)),
tn(pay(cust,mer, cAmount, tID)),
pre(commitment(C,CT1, cust,mer) ∧ var(C,CT1,
(cAmount, tID)) ∧ detached(C,CT1, (cAmount, tID))),
tn(pay(cust,mer, cAmount/2, tID) ∧ pay(cust,mer,
cAmount/2 + cAmount%2, tID))
pre(commitment(C,CT2,mer, cust) ∧ var(C,CT2,
(cAmount, tID)) ∧ detached(C,CT2, (cAmount, tID))),
tn(goods(mer, cust, tID))
pre(commitment(C,CT3,mer, cust) ∧ var(C,CT3,
(tID)) ∧ detached(C,CT2, (tID))),
tn(refundpaid(mer, cust, tID))〉

〈method(satisfy(C1, C2)),
pre(commitment(C1, CT1, cust,mer) ∧ var(C1, CT1,
(c1Amount, t1ID)) ∧ detached(C2, CT1, (c1Amount,
t1ID)) ∧ commitment(C2, CT1, cust,mer) ∧ var(C2,
CT1, (c2Amount, t2ID)) ∧ detached(C2, CT1,
(c2Amount, t2ID)))
tn(paytogether(cust,mer, amount, t1ID, t2ID))〉

〈method(paytogether(cust,mer, amount, t1ID, t2ID)),
pre(commitment(C1, CT1, cust,mer)
∧var(C1, CT1, (c1Amount, t1ID))
∧detached(C2, CT1, (c1Amount, t1ID))
∧commitment(C2, CT1, cust,mer)
∧var(C2, CT1, (c2Amount, t2ID))
∧detached(C2, CT1, (c2Amount, t2ID))
∧(amount = c1Amount+ c2Amount))
tn(pay(cust,mer, c1Amount, t1ID)
∧pay(cust,mer, (amount− c1Amount), t2ID))
〈method(pay(cust,mer, amount, tID)),

pre(commitment(C,Ct, cust,mer) ∧ var(C,Ct,
(cAmount, tID)) ∧ paid(cust,mer, oldAmt, tID)),
tn(!updatepaid(cust,mer, (oldAmt+ amount), tID))
pre(commitment(C,Ct, cust,mer)
∧var(C,Ct, (cAmount, tID)),
tn(!paid(cust,mer, amount, tID))〉

〈operator !paid(cust,mer, amount, tID),
pre(agent(cust) ∧ agent(mer)),
del(),add(paid(cust,mer, amount, tID))〉
〈operator !updatepaid(cust,mer, amount, tID),

pre(agent(cust) ∧ agent(mer)
∧ paid(cust,mer, oldAmount, tID)),
del(paid(cust,mer, oldAmount, tID)),

add(paid(cust,mer, amount, tID))〉

sition tree for consolidation, which shows that to achieve
its goals G1 and G2, the customer creates commitments
C1 and C4. The merchant detaches C1 and C4 by shipping
the goods (goods(123) and goods(456)) together using the
shiptogether method. The customer satisfies C1 and C4 by
making a consolidated payment of $300 to the merchant.
Table 6 shows the details of the paytogether method, which
splits the $300 into $100 and $200, and applies them to the
transactions 123 and 456.

Compensation. In this pattern, the merchant commits (C5)
to the customer to refunding the amount paid by the cus-
tomer if the customer returns the goods. Figure 6 illustrates



achieveGoal(G1)

create(C1) detach(C1) satisfy(C1)

!paid(40, 123) !paid(100, 123)

pay(40, 123)!goods(123) pay(60, 123)

Figure 3: Decomposition tree for the piecemeal pattern.

achieveGoal(G1)

create(C2) satisfy(C2)detach(C2)

!paid(20, 123)

pay(20, 123) !goods(123)

create(C3) satisfy(C3)

!paid(80, 123)

pay(80, 123)

Figure 4: Decomposition tree for the concession pattern.

the HTN decomposition tree for compensation. The cus-
tomer and the merchant create C1 and C5, respectively. The
merchant detaches C1 by providing the goods, and the cus-
tomer makes a partial payment of $50 to the merchant. Next,
the customer returns the goods, which detaches commitment
C5. The merchant satisfies C5 by refunding $50 to the cus-
tomer. Notice that the refundpaid method identifies and re-
funds the actual amount paid by the customer.

Discussion
HTN planning provides a promising approach to provide
depth of representation and reasoning to conceptualizing the
connection between commitments and goals. We motivate
some key patterns of reasoning about and enacting commit-
ments and show how our approach naturally accommodates
them. We articulate a first-order approach to represent com-
mitments and the generation of plans that lead them to suit-
able states (satisfied in a happy path). Such a formalization
not only affords greater expressivity than currently existing

achieveGoals(G1, G2)

create(C1) satisfy(C1, C4)detach(C1,C4)

!goods(123)

shiptogether(123, 456)

create(C4)

!goods(456)

paytogether(300, 123, 456)

pay(100, 123) pay(200, 456)

!paid(100, 123) !paid(200, 456)

Figure 5: Decomposition tree for the consolidation pattern.

achieveGoal(G1)

create(C1) detach(C1)

!goods(123)

create(C5) pay(50, 123)

refundpaid(123)!paid(50, 123)

!refund(50)

detach(C5)

!return(123)

satisfy(C5)

Figure 6: Decomposition tree for the compensation pattern.

approaches, but also allows one to employ an off-the-shelf
HTN planner as a validation tool for a business process.
Moreover, since most agent programming languages build
agent plan libraries using an HTN-like abstraction, our for-
malization also creates the possibility of directly implement-
ing business process in agent systems.

A network of commitments among agents specifies the
interactive components of a business model. The joint plans
generated from such a model via HTN planning describe al-
ternative means to enact the model. These alternatives in-
volve different costs and benefits for the participating agents
and even a simple element of a business model can lead to
a variety of interactions. Our first-order approach provides a
practically viable way to generate such diverse interactions.

We have implemented a conversion tool that automati-
cally generates the HTN domain from a set of goals and
commitments and have verified, using JSHOP2 (Ilghami and
Nau 2003), that the examples shown in this paper are valid.
Our conversion tool is limited in that the domain-specific
knowledge still needs to be encoded by hand, but we ex-
pect to be able to leverage existing work on planning within
business processes to overcome this limitation (Pistore et al.
2005; Hoffmann, Weber, and Kraft 2010).

Future Directions
This approach open some interesting directions for future
work. Key among these is grounding the notion of protocol
transformations in HTN planning. Specifically, we envisage
applying HTN planning not only to operationalize business
models but to affect the three aspects of a commitment-based
service engagement (Singh, Chopra, and Desai 2009).

First, HTN planning applies at the level of achieving the
antecedents and consequents of the relevant commitments
to address the idea of digression (Yolum and Singh 2002) in
commitment protocols: a planner could identify joint plans
that support different enactments that result in a commit-
ment being satisfied. Second, HTN planning can apply to
the structure of interrelated commitments and thus alter the
business model itself. Concession, described above, is an ex-
ample of a business transactional (Singh, Chopra, and Desai
2009) change. Similar transformations could be identified
not only at the business transaction level but also at the or-
ganizational structure level (e.g., involving delegation) and
the organizational context level. In future work, we plan to
remove goal and plan identifier variables (C and G) from our
formalization, since they interfere with some of the logical
deductions we aim to implement (Chopra and Singh 2011).
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