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Abstract

Work
ows are composite activities that achieve interoperation of a variety of system
and human tasks. Work
ows must satisfy subtle domain-speci�c integrity and orga-
nizational requirements. Consequently, 
exibility in execution is crucial. A promising
means to achieve 
exibility is through declarative speci�cations (Part 1) with automatic
distributed scheduling techniques (Part 2).

Intertask dependencies are constraints among the tasks that constitute a work
ow.
We propose a rigorous formal semantics for work
ow computations and dependencies.
Importantly, our approach uses symbolic reasoning to capture scheduler transitions. It
includes an equational system that is guaranteed to yield the most general answers for
scheduling, yet is sound and complete.

work
ows, temporal logic, formal semantics.

1 Introduction

Work
ows are composite activities that typically involve a variety of computational and
human tasks, and span multiple systems. Work
ows arise naturally in heterogeneous en-
vironments, which are computing environments consisting of a variety of databases and
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information systems. Such environments frequently involve fairly intricate integrity and
organizational constraints among di�erent sites.

For traditional (homogeneous or centralized) environments, database transactions pro-
vide e�ective and robust support for applications. Unfortunately, corresponding support is
not available in heterogeneous environments. Work
ows are widely regarded as the appro-
priate concept for structuring complex activities, and work
ow management systems would
provide functions analogous to those provided by present-generation transaction monitors.
Accordingly, increasing attention has focused on work
ows [8, 20].

Although several work
ow products exist, relatively few of these are integrated with
databases. Even the best of those integrated with databases often have centralized imple-
mentations, and o�er little support for semantic or recoverability properties. For example,
InConcert lists distribution as a future challenge [31]. ActionWork
ow is also centralized,
and more geared toward computer-supported collaborative work [37]. Flowmark o�ers strong
support for business processes, but has a centralized implementation [26]. However, asso-
ciated with these products are useful techniques for process modeling and capture, e.g.,
ActionWork
ow's \language/action" model of human interaction, and Flowmark's activity-
network model of processes.

Important open issues for products and research include (a) semantic or recoverability
properties demanded by serious applications; (b) distributed implementations; (c) ease of
specifying and modifying work
ows; and (d) formal models of work
ow computations to
give a solid foundation for the reasoning necessary to design, analyze, and reliably enact
work
ows [22].

Technical Motivation

Work
ows incorporate both integrity and organizational requirements [5, 29]. The former in-
clude abstractions from extended transaction models that relate to correctness, concurrency
control, failure handling, and recovery. The latter include abstractions from business mod-
eling that relate to organizational structure, roles of participants, and coordination among
them and the information system. Both aspects would be facilitated by an infrastructure
that includes a generic and rigorous approach to work
ow speci�cation and scheduling.

The traditional transaction model de�nes ACID transactions, which have the properties of
atomicity, consistency, isolation, and durability. ACID transactions have proved remarkably
e�ective in a number of data processing applications [17]. Unfortunately, they are not well-
suited to heterogeneous systems. First, atomic commit protocols are ine�cient because of
distribution and often impossible because of autonomous components. Second, the semantic
requirements in heterogeneous applications are often complex and need more sophisticated
task structuring than ACID transactions [10].

Extended transaction models (ETMs) [10] generalize the ACID model in di�erent ways.
Each ETM requires customized scheduling. This motives generic approaches that provide
a small number of primitives to specify ETMs, e.g., [16, 6, 2]. These approaches provide
declarative intertask dependencies to specify work
ows, which may correspond to di�erent
ETMs. This paradigm presupposes that two major issues be addressed:
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(a) how to express dependencies, and

(b) how to schedule events to satisfy dependencies.

Contributions

We provide a formal language for specifying intertask dependencies and give it a formal
model-theoretic semantics ([13, pp. 79{94] is a good introduction to model-theoretic semantics|
this paper is self-contained, however). Our approach addresses both of the above issues|
expressing dependencies and scheduling events. It has two strengths. First, our semantics
meets certain criteria that are crucial to a speci�cation language: it is compositional, pro-
vides a notion of correctness, associates a notion of strength with di�erent speci�cations,
and distinguishes between event types and instances. Second, our approach has key features
crucial to scheduling: it encodes the knowledge of the scheduling system, and provides an op-
erator for the most general decisions on events, and computes it through symbolic reasoning.
We provide rigorous de�nitions of work
ow computations, and show how those de�nitions
may be used to specify work
ows and to formally reason about their properties. Details of
scheduling are reported in [32].

Our approach applies to work
ows whose constituent activities may or may not be
database transactions. However, we draw our examples from transactional work
ows, which
include database transactions as component activities [15].

Organization

Section 2 describes our system model. Section 3 presents our event algebra for representing
and reasoning about dependencies. It also exhibits a carefully engineered set of equations by
which a scheduler can symbolically reason about dependencies, and shows how these can be
used in scheduling. Section 4 establishes the soundness and completeness of our equations.
Section 5 extends our technical development to apply to arbitrary tasks. Section 6 shows
how we satisfy technical properties crucial for speci�cation and scheduling. Section 7 reviews
the related research. Appendix A gives the proofs. Appendix B shows a translation from
information control nets to our notation.

2 Execution Model

A work
ow in execution involves the coordinated execution of di�erent tasks. Following [6],
we use signi�cant events to model the tasks. Typically, the events correspond to transaction
manager or operating system primitives, such as begin, commit, abort, spawn, and fail.
The events specify the visible operations of a task. Intertask dependencies, which specify
work
ows, are constraints across the signi�cant events of di�erent tasks.

The tasks are interfaced to the scheduler through proxy agents, which hide the complexity
of the tasks and show only transitions corresponding to signi�cant events. Figure 1 shows a
task agent suitable for a transaction that has an explicit prepared state. Figure 2 shows a
task agent suitable for a computation that loops over and retries some subcomputation. Our
approach is not limited to the above agents. The agent informs the system of uncontrollable
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Figure 1: Task agent for a typical transaction [11, p. 535]
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Figure 2: Task agent for a looping computation

events like abort and requests permission for controllable ones like commit. When triggered
by the system, it causes appropriate events like start in the task.

Consider the Work
ow Management Coalition (WfMC) reference model [36]. Our system
can be viewed as providing a \work
ow enactment service." Our algebraic language provides
a rudimentary means to formally specify processes into which high-level languages may be
translated. Based on the speci�cations, our run-time environment deals with \work
ow client
applications" that can attempt events in the enactment service. The run-time environment
can also trigger \invoked applications," which can be arbitrary programs. We emphasize
that, whereas our system has been prototyped, it is by no means an implementation of the
WfMC model.

3 Event Algebra

Because events describe the operations of tasks, and work
ows coordinate tasks by constrain-
ing their signi�cant events, to represent work
ows, we represent events and dependencies on
them. Our formal language is based on an algebra of event types, which is related to Pratt's
action logic [28]. Our key motivation is that speci�cations should describe entire computa-
tions, without regard to the details scheduling. But the execution mechanism should be able
to allow or trigger events on the basis of whatever information is available at the given stage
of the computation.

However, we need special equations to obtain the necessary independence and modularity
properties, and closed-form answers for symbolic reasoning. We discovered that our equations
were not sound in the usual models! We realized that this was because the usual models
lacked an explicit combination of a notion of change|of the system evolving because of
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events|and a notion of the system's knowledge|its state for scheduling decisions. Our
approach captures both notions through a quotient construction, which identi�es expressions
that are equivalent with respect to the desired behavior of the scheduler.

3.1 Syntax and Semantics

E, the language of event expressions has the following syntax. � 6= ; is the set of signi�cant
event symbols; � = fe; e : e 2 �g is the alphabet. A dependency or an expression is a member
of E. A work
ow is a set of dependencies.

Syntax 1 � � E

Syntax 2 0;> 2 E

Syntax 3 E1; E2 2 E implies E1 _ E2, E1 ^ E2, E1 � E2 2 E

Intuitively, e means that event e occurs somewhere. The constant 0 refers to a spec-
i�cation that is always false; > refers to one that is always true. The operator _ means
disjunction. The operator ^ means conjunction or interleaving. The operator � (dot) means
sequencing. To reduce the number of parentheses, we assume that � has precedence over ^,
and ^ has precedence over _.

The semantics of E is given in terms of computations or traces. Each trace is a sequence
of events. It is important to associate expressions with possible computations, because they
are used (a) to specify desirable computations and (b) to determine event schedules to realize
good computations. For convenience, we overload event symbols with the events they denote
(we could underline the latter, but that would add more clutter than clarity!). Traces are
written as event sequences enclosed in h and i brackets. Thus hefi means the trace in which
event e occurs followed by the event f . � 4 h i is the empty trace. (Throughout, 4 means
is de�ned as.)

Let UE
4 ��[�! be our universe. This consists of all possible (�nite and in�nite) traces

over �. For a trace, � 2 UE , and an expression E 2 E, � j= E means that � satis�es E. [[ ]]
gives the denotation of an expression: [[E]] 4 f� : � j= Eg.

Semantics 1 [[f ]] = f� 2 UE : � mentions fg, f 2 �

Semantics 2 [[0]] = ;

Semantics 3 [[>]] = UE

Semantics 4 [[E1 � E2]] = f�� 2 UE : � 2 [[E1]] and � 2 [[E2]]g

Semantics 5 [[E1 _ E2]] = [[E1]] [ [[E2]]

Semantics 6 [[E1 ^ E2]] = [[E1]] \ [[E2]]
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The syntax and semantics of E is carefully designed to mirror propositional logic. Atoms
e and e are literals, 0 is false, > is true, _ is or, ^ is and. The only di�erences with
propositional logic are (a) an atom e denotes the set of traces in which event e occurs, and
(b) � is an additional operator denoting sequencing of its arguments. Technically, E1 � E2

corresponds to memberwise concatenation of the denotation of E1 with that of E2; E1 _ E2

corresponds to their union; and E1^E2 to their intersection. This semantics validates useful
properties, e.g., associativity of _, �, and ^, and distributivity of � over _ and ^.

Example 1 Let � = fe; e; f; fg be the alphabet. Then the denotation of e, [[e]] = fhei; heei;
hefi; hfei; hef i; heeeff i; : : :g. The denotation of e � f , [[e � f ]] = fhefi; heefi; heffei;
hfeeeffi; : : :g. One can verify that [[e _ e]] 6= [[>]] and [[e^ e]] 6= [[0]].

De�nition 1 E � F i� [[E]] = [[F ]]. This is an abbreviation (� is not in E).

De�nition 2 D is a sequence expression 4 D = e1 � : : : � en, where n � 1 and each ei 2 �.
Also, length(D) 4 n.

We treat e and e symmetrically as events. We thus de�ne a formal complement for
each event, including those like start, whose non-occurrence constitutes their complement.
This is crucial for eager scheduling|section 6 gives additional rationale. Traces that satisfy
assumptions 1 and 2 are termed legal:

Assumption 1 Event instances and their complements are mutually exclusive.

Assumption 2 An event instance occurs at most once in a computation.

Our universe set (and Example 1) includes illegal traces, but these are eliminated from
our formal model in section 4.1. The reader should assume legality everywhere.

As running examples, we use two dependencies due to [23], and related to the primitives
in [2, 7, 19]. e < f means that if both events e and f happen, then e precedes f ; e! f means
that if e occurs then f also occurs (before or after e). Again, these behave as propositional
logic with a temporal 
avor:

Example 2 Let D<
4 e _ f _ e � f . Let � 2 UE satisfy D<. If � satis�es both e and f ,

then e and f occur on � . Thus, neither e nor f can occur on � . Hence, � must satisfy e � f ,
which requires that an initial part of � satisfy e and the remainder satisfy f . That is, e must
precede f on � .

Example 3 Let D!
4 e _ f . Let � 2 UE satisfy D!. If � satis�es e, then e occurs on � .

Thus, e cannot occur on � . Hence, f must occur somewhere on � .

Example 4 Consider a work
ow which attempts to buy an airline ticket and book a hotel
for a traveler, such that the ticket is bought if and only if the hotel is booked. Mutual
commit protocols cannot be executed, since the airline and hotel are di�erent enterprises
and their databases may not have a visible precommit state.

Assume that (a) the booking can be canceled: thus cancel compensates for book, and (b)
the ticket is nonrefundable: buy cannot be compensated. Assume all subtasks have at least
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start, commit, and abort events, as in Figure 1. For simplicity, assume that book and cancel
always commit. This may be speci�ed as follows. (D1) sbuy_sbook (initiate book upon starting
buy); (D2) cbuy_cbook �cbuy (if buy commits, it commits after book|this is reasonable since buy
cannot be compensated and commitment of buy e�ectively commits the entire work
ow);
(D3) cbook _ cbuy _ scancel (compensate book by cancel); and (D4) scancel _ cbook ^ cbuy (start
cancel only if necessary, i.e., if book aborted or buy committed).

Note that D2 explicitly orders cbook before cbuy, but D1, D3, and D4 do not order
any events. However, to be triggered, the events should have the attribute triggerable|
introduced in [32]. The scheduler causes the events to occur when necessary, and may order
them before or after other events as it sees �t.

We now consider Leymann's spheres of joint compensation (SOJCs), and show how to
represent them [25]. An SOJC is a set of activities that either all commit or all are compen-
sated. The compensation happens in the reverse order of the order in which the activities
committed. We consider only the scheduling aspects of SOJCs.

Example 5 Let fT1; : : : ; Tng along with their compensating activities fR1; : : : ; Rng form
an SOJC. Let each Ti and Ri be a transaction as in Figure 1. This SOJC can be captured
by the following dependencies.

� (J1) sTi _ sTj (if one activity (Ti) starts, all the others must also start);

� (J2) cTi _ cTj _ sRj
(if Ti aborts, then each activity Tj that committed must be com-

pensated by Rj);

� (J3) sRl
_ sRm _ cTl � cTm _ cRl

� cRm (compensations commit in the reverse order of the
forward activities);

� (J 0
3
) sRl

_ sRm _ cTl � cTm _ sRl
� sRm (compensations start in the reverse order of the

commitment of the forward activities); and

� (J4) cTi _ cTj � cTi _ cTj (no activity commits after one of them aborts).

J1 may be eliminated if the activities will be started separately. J2 and J3 represent the
core of the SOJC. J3 may be replaced by J 0

3
, which states says that the compensates start

serially. J4 says that when an activity aborts, the others are aborted right away|this avoids
redundantly committing and then compensating them.

An advantage of a formal notation is that it forces one to decide on the desired meaning,
i.e., a speci�c subset of the dependencies in Example 5.

3.2 Residuation in Event Algebra

Events are scheduled|by permitting or triggering|to satisfy all stated dependencies. A
dependency is satis�ed when a trace in its denotation is realized. We characterize the state of
the scheduler by the traces it can allow. Initially, these are given by the stated dependencies.
As events occur, the allowed traces get narrowed down.
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Example 6 Consider Example 4. Suppose buy starts �rst. ThenD1 requires that book start
sometime; the other dependencies have no e�ect, since they don't mention sbuy or sbuy. Now
if buy were to commit next, D2 would be violated, because it states that buy can commit only
after book has committed. Suppose book starts, thereby satisfying the remaining obligation
from D1. After book starts, D2 would still prevent buy from committing. Eventually, if book
commits, buy can commit thus completing the work
ow (because of D2 and D4), or buy can
abort thus causing cancel to be started (because of D3).
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Figure 3: Scheduler states and transitions for D<

Intuitively, two questions must be answered for each event under consideration: (a) can
it happen now? and (b) what will remain to be done later? The answers can be determined
from the stated dependencies and the history of the system. One can examine the traces
allowed by the original dependencies, select those compatible with the actual history, and
infer how to proceed. Importantly, our approach achieves this e�ect symbolically, without
examining the traces.

Figure 3 shows how the states and transitions of the scheduler may be captured symbol-
ically. The state labels give the corresponding obligations, and the transition labels name
the di�erent events. Roughly, an event that would make the scheduler obliged to 0 cannot
occur.

Example 7 (Figure 3) If e or f happens, then D< is necessarily satis�ed. If e happens,
then either f or f can happen later. But if f happens, then only e must happen afterwards
(e cannot be permitted any more, since that would mean f precedes e).

The transitions of Figure 3 can be captured through an algebraic operator called resid-
uation. This operator (= : E � � 7! E) is not in E, since it is not used in the formulation
of dependencies, only in their processing. Dependencies are residuated by the events that
occur to yield simpler dependencies. The resultant dependencies implicitly contain the nec-
essary history. This proves e�ective, because the representations typically are small and the
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processing is simple. We motivate our semantics for the = operator and then present an
equational characterization of it.

The intuition embodied in Figure 3 is that to schedule a dependency D, the scheduler
�rst schedules an event e and then schedules the residual dependency D=e. Our formal
semantics re
ects this intuition|to satisfy D, the scheduler can allow any of the traces in
[[D]]. Similarly, to schedule e, the scheduler can use any of the traces in [[e]]. And, to schedule
D=e, the scheduler can use any of the traces in [[D=e]]. Thus the following must hold for
correctness. (We intersect the set with UE to eliminate ill-formed traces such as ��, where
� is in�nite.)

� (f�� : � 2 [[e]] and � 2 [[D=e]]g \UE) � [[D]]

Since we would like to allow all the traces that would satisfy the given dependency, we
require that [[D=e]] be the maximal set that satis�es the above requirement:

� (8Z : (f�� : � 2 [[e]] and � 2 Zg \UE � [[D]])) Z � [[D=e]])

Put another way, [[D=e]] is the greatest solution to the inequation

(�Z : f�� : � 2 [[e]] and � 2 Zg \UE � [[D]])

Alternatively, [[D=e]] is the set of traces that satisfy the above requirement:

Semantics 7 � 2 [[D=e]] i� (8� : � 2 [[e]]) (�� 2 UE ) �� 2 [[D]]))

Theorem 1 Semantics 7 gives the most general solution to the above inequation.
Theorem 1 states that given an occurrence of an event in a scheduler state corresponding

to a set of traces, residuation yields the maximal set of traces which could correspond to the
resulting state of the scheduler.

3.3 Symbolic Calculation of Residuals

Semantics 7 characterizes the evolution of the state of a scheduler, but o�ers no suggestions
as how to determine the transitions. Fortunately, a set of equations exists using which the
residual of any dependency can be computed.

We require that the expressions be in a form such that there is no ^ or _ in the scope
of the �. Such a representation of each expression is possible because the operators �, _, and
^ distribute over each other. Further, Lemma 17 shows that we can replace all sequences
by conjunctions of sequences of length 2, which is extremely convenient for processing, as
described in [32]. We assume that all expressions are in this Two-Sequence Form (TSF).

De�nition 3 �D gives the alphabet of expressionD. �04 �>4;. �E^F 4�E_F 4�E�F 4�E[
�F . �e 4 �e 4 fe; eg. Notice that e 2 �D i� e 2 �D.

Because of the restriction to TSF, in the equations below, D is a sequence expression,
and E is a sequence expression or > (the latter case allows us to treat a single atom as a
sequence, using f � f � >).
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Equation 1 0=e
:
= 0

Equation 2 >=e
:
= >

Equation 3 (E1 ^ E2)=e
:
= ((E1=e) ^ (E2=e))

Equation 4 (E1 _ E2)=e
:
= (E1=e _ E2=e)

Equation 5 (e � E)=e
:
= E, if e 62 �E

Equation 6 D=e
:
= D, if e 62 �D

Equation 7 (e0 � E)=e
:
= 0, if e 2 �E

Equation 8 (e � E)=e
:
= 0

We use the operator
:
= in the equations to highlight that it might not be interpreted

simply as �. Section 4.1 provides further explanation. The above equations are carefully
designed to guide the reasoning of a scheduler when it is considering whether to allow an
event e. They have some important properties, including

� dependencies not mentioning an event have no direct e�ect on it

� the reasoning with respect to di�erent dependencies can be performed modularly

� the history of the scheduler need not be recorded.

The dependencies stated in a work
ow thus fully describe the state of the scheduler;
successive states are computed symbolically through residuation.

Example 8 The reader can verify that the above equations yield all the transitions of
Figure 3.

Example 9 Consider Example 4 again. The initial state of the scheduler is given by S0 =
D1 ^ D2 ^D3 ^ D4. The scheduler can allow buy to start �rst, because the resulting state
S1 = S0=sbuy is consistent. This simpli�es to S1 = sbook^D2^D3^D4. The occurrence of cbuy
next would leave the scheduler in state sbook^0^>^scancel , which equals 0, i.e., is inconsistent.
However, since S2 = S1=sbook = >^D2 ^D3 ^D4 is consistent, sbook can occur in S1. In S2,
book can commit, resulting in the state S3 = >^ (cbuy _cbuy)^ (cbuy _scancel)^ (cbuy _scancel).
S3 allows either of cbuy and cbuy to occur. Since S3=cbuy = scancel, the work
ow completes if
buy commits. Since S3=cbuy = scancel, cancel must be started if buy aborts.

An advantage of TSF is that the dependencies are independently stated, and a work
ow
W corresponds to one (albeit large) dependency which is the conjunction of dependencies
in W. No additional processing is required in putting the dependencies into an acceptable
syntactic form for reasoning. Equation 3 enables the di�erent dependencies to be residuated
independently. Observation 2 means that events are independent of dependencies that do
not mention them.
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Observation 2 E=f
:
= E, if f 62 �E

We now give some additional results. We de�ne size(E) to be the number of nodes in the
parse tree of E. The following results show that the equations yield simpler results than the
input expression (Observation 3), are convergent (Lemma 5), and produce TSF expressions,
which can be input to other equations (Observation 6).

Observation 3 If D=e
:
= F is an equation, then size(D) � size(F ), �D � �F , and

fe; eg 6� �D

Lemma 4 The number of operations to compute D=e is linear in size(D).

Lemma 5 For D 2 E and e 2 �, our equations yield exactly one expression in E for D=e.

Observation 6 If D is in TSF, then D=e is in TSF.
The scheduler can take a decision to accept, reject, or trigger an event only if no de-

pendency is violated by that decision. By Observation 2, only dependencies mentioning an
event are directly relevant in scheduling it. However, we also need to consider events that
are caused by events that are caused by the given one, and so on|these might be involved
in other dependencies.

There are several ways to apply the algebra. The relationship between the algebra and
the scheduling algorithm is similar to that between a logic and proof strategies for it. For
scheduling, the system accepts, rejects, or triggers events to determine a trace that satis�es
all dependencies.

4 Correctness

Correctness involves proving that the equations are sound and complete. Some, but not all,
of our equations are sound in the above model. This is because some of our assumptions
are not properly re
ected in the model. We motivate enhancements in order to establish
soundness of all equations. We �rst formalize the notions of soundness and completeness.
De�nitions 4 and 5 formalize entailment and provability, respectively.

De�nition 4 D=e j= F i� [[D=e]] = [[F ]]

De�nition 5 D=e ` F i� D=e
:
= F0

:
= : : :

:
= Fn = F , using any of the above equations in

each of the
:
= steps.

The usual meaning of soundness is that whatever is provable is entailed (roughly, every-
thing that is proved is true) and the usual meaning of completeness is that all the entailments
are provable (roughly, everything true can be proved). These are captured as de�nitions 6
and 7. Since soundness can be proved piecemeal for each equation, we de�ne it in terms
of individual equations in de�nition 8. De�nition 8 interprets

:
= as �, i.e., equivalence or

equality of denotations. Lemma 7 follows.

De�nition 6 A system of equations is sound i� D=e ` F implies that D=e j= F
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De�nition 7 A system of equations is complete i� D=e j= F implies that D=e ` F

De�nition 8 An equation D=e
:
= F is sound i� D=e

:
= F implies that D=e j= F

Lemma 7 Equations 1{6 are sound.
But what about Equations 7 and 8? The following lemma appears discouraging at �rst.

However, it can be corrected when our assumptions are incorporated into the model.

Lemma 8 Equations 7 and 8 are not sound.

4.1 Admissibility

Equations 7 and 8, along with Equation 6, are especially troublesome to prove sound in
typical models. Individually, they can be satis�ed in di�erent models, but not together.
The present model satis�es Equation 6, but if we had de�ned the universe set to include
only the legal traces, then Equation 6 would not have been satis�ed. We de�ne a class of
nonstandard, but intuitively natural, models based on what we term admissibility.

Recall that assumptions 1 and 2 of section 3.1 de�ne legal traces. Admissible traces are
legal traces that are also maximal, as de�ned below.

Assumption 3 An event instance or its complement eventually occurs on a trace.

Intuitively, admissible traces characterize the maximal (and legal) behavior of the given
collection of tasks. Let A� be the set of all admissible traces on the alphabet �. (An
alphabet is closed under complementation, i.e., e 2 � i� e 2 �.) As before, we identify e
with e.

Admissibility is designed to formalize our special method of applying residuation to
scheduling decisions. Consider Equation 7. Assume the scheduler is enforcing a dependency
D = (e0 �E), where E is a sequence expression mentioning e. Suppose the scheduler is taking
a decision on e. We know that e0 has not occurred yet, or it would have been residuated
out already. Therefore, if we let e happen now, then either we must (a) prevent e0, or (b)
eventually let e0 happen followed by an instance of e or e. Option (a) clearly violates D,
since all traces in [[D]] must mention e0 (by Observation 23, see appendix A). Option (b)
violates admissibility. Thus, assuming admissibility, we can prove Equation 7 to be sound.
We formalize this argument next.

Technically, admissibility captures the context of evaluation, given by the state of the
scheduler. Two expressions are interchangeable with respect to a set of admissible traces
A if they allow exactly the same subset of A. As a result, two expressions with di�erent
denotations may be interchangeable in certain evaluation contexts.

Example 10 In general e 6� 0. However, after e or e has occurred, another occurrence of e
is impossible. Hence, e is e�ectively equivalent to 0.

De�nition 9 A is an admissible set i� A = A� for some alphabet �
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Initially the admissible set is the entire set of admissible traces for �. After event e
happens, the admissible set must be shrunk to exclude traces mentioning e or e, because
they cannot occur any more. Let A be an admissible set before e occurs. Then, after e, A
must be replaced by A " e, where A " e yields the resulting set of admissible traces. The
operator " thus abstractly characterizes execution.

De�nition 10 A"e 4 f� : hei� 2 Ag

Observation 9 A"e\ [[e]] = ; and A"e \ [[e]] = ;
We use admissible sets to de�ne equivalence (�A), which is coarser than equality of

denotations (�). Below, let � be a set of events, such that e 2 � i� e 2 �.

De�nition 11 For an admissible set A, E1 �A E2 i� A \ [[E1]] = A \ [[E2]].

Example 11 Let A = A�, such that e 62 �. Then, e �A e. Also, e �A 0.

Lemma 10 For all admissible sets A, �A is an equivalence relation.
We refer to �A as adm-equivalence. We now use it to de�ne a quotient structure on our

original models, which preserves all equalities, but only some of the inequalities. The quotient
construction would be valid only if we can establish that the behavior of the scheduler is not
a�ected by replacing one adm-equivalent expression for another. This is a crucial requirement
upon which our whole technical development hinges. Theorem 11 states that if E and E0

are adm-equivalent, then after event f occurs, their respective residuals due to e will also be
adm-equivalent.

Theorem 11 Let E �A E 0. Then, for all f 2 �, E=f �A"f E
0=f .

4.2 Soundness and Completeness

Theorem 11 justi�es adm-soundness, which (in contrast to De�nition 8) uses adm-equivalence
instead of equality. This notion also accommodates the change of state implicit in event
occurrence.

De�nition 12 D=e
:
= F is adm-sound i� for all admissible sets A, D=e �A"e F

We have thus established adm-soundness as a reasonable formal notion of correctness for
our equations. Since �A is re
exive, we also have the following.

Lemma 12 If D=e
:
= F is sound, then D=e

:
= F is adm-sound.

Lemma 13 Equations 7 and 8 are adm-sound.

Theorem 14 Equations 1{8 are adm-sound.
Theorem 14 thus establishes that all our equations are correct. It takes advantage of our

intuitive assumptions of how the scheduler behaves and how events occur. Theorem 14 is
important because it enables us to combine the bene�ts of most general solutions (Theorem 1)
with the bene�ts of e�cient computation (Lemma 4).

By Lemma 5, our equations yield just one answer for D=e. Although numerous ex-
pressions have the same denotation as [[D=e]], we can show that our equations will �nd an
expression that is equivalent to the desired result with respect to the desired behavior of the
scheduler.
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De�nition 13 A set of equations is adm-complete i� D=e j= F implies that D=e ` F 0 and
for all admissible sets A, F �A"e F

0

Theorem 15 Equations 1{8 are adm-complete.

5 Arbitrary Tasks

Although we require that event instances are not repeated, an event type may be instantiated
multiple times. Event symbols are interpreted as types; event instances are instantiated from
types through parametrization. The parameters in dependencies can be variables, which
are implicitly universally quanti�ed. When events are scheduled, all parameters must be
constants. The parameters must be chosen so that event instances are unique. Typical
parameters include transaction and task IDs, database keys, timestamps, and so on. We can
uniquely identify each event instance by combining its task ID with the value of a monotonic
counter that records the total number of instances of events of that task. Event IDs are
reminiscent of operation IDs used to uniquify log operations [18]. It is interesting that this
old idea can be adapted to work
ows.

We de�ne EP as the language generated by (a) substituting `EP ' for `E' in syntax rules 2
and 3, and (b) adding rules 4, 5, and 6 below. We assume a set V of variables and a set C
constants to use as parameters. Thus, � includes all (ground) event literals and � includes
all event atoms. The universe, UE , depends on �, and includes all traces formed from all
possible event instances. �(e) gives the number of parameters needed to instantiate e.

Syntax 4 � � EP

Syntax 5 e 2 �, �(e) = m, p1; : : : ; pm 2 C
implies e[p1 : : : pm]; e[p1 : : : pm] 2 �

Syntax 6 e 2 �, �(e) = m, p1; : : : ; pm 2 (V [ C)
implies e[p1 : : : pm]; e[p1 : : : pm] 2 �

The semantics of EP is given by replacing Semantic rule 1 by 8 and 9 below. Semantics 9
corresponds to universal quanti�cation. E(v) refers to an expression free in variable v (it
may also be free in other variables). E(v ::= c) refers to the expression obtained from E(v)
by substituting every occurrence of v by constant c.

Semantics 8 [[f [p1 : : : pm]]] =
f� 2 UE : � mentions f [p1 : : : pm]g, f [p1 : : : pm] 2 �

Semantics 9 [[E(v)]] =
T
c2C[[E(v ::= c)]]

We assume that (a) events from the same task have the same variable parameters, and
(b) all references to the same event type involve the same tuple of parameters. These
assumptions are reasonable because our focus is on intertask dependencies. They enable us
to interpret dependencies and schedule events properly.

Parameters can be used within a given work
ow to relate events in di�erent tasks. Typ-
ically, the same variables are used in parameters on events of di�erent tasks. Attempting
some key event binds the parameters of all events, thus instantiating the work
ow, and
scheduling it as before. We redo Example 4 below.
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Example 12 Now we use t as the trip or reservation id to parametrize the work
ow. The
parameter t is bound when the buy task is begun. The explanations are as before|now we
are explicit that the same customer features throughout the work
ow. The desired work
ow
may be speci�ed by making the trip id explicit in each dependency, e.g., (D0

1
) sbuy[t]_sbook[t].

Let t be bound to a natural number.
The above work
ow is satis�ed by in�nitelymany legal traces, e.g., (�6) sbuy[65]sbook[65]cbook[65]

cbuy[65], and (�7) sbuy[34] sbook[34] scancel[34]. The traces �6 and �7 are as before but with ex-
plicit parameters. Trace �8 shows how di�erent instantiations of the work
ow may interleave.

More interestingly, the di�erent events may have unrelated variable parameters. Such
cases occur in the speci�cation of concurrency control requirements across work
ows or
transactions.

Example 13 Let bi denote the event of task Ti entering its critical section and ei denote
the event of Ti exiting its critical section. Then, mutual exclusion between tasks T1 and T2
may be formalized as follows by stating that if T1 enters its critical section before T2, then
T1 exits its critical section before T2 enters.

DM (x; y) = (b2[y] � b1[x] _ b1[x] _ b2[y]_ e1[x] � b2[y])

Intuitively,DM (x; y) (M for mutual exclusion) states that is both tasks enter their critical
sections, then either T2 enters its critical section �rst, or T1 exits its critical section before T2
can enter it. For simplicity, we ignore the converse requirement, which applies if T2 enters
its critical section before T1.

By Semantics 9, the above dependency is interpreted as (8x; y : DM (x; y)). Suppose
that b1[x̂] for a speci�c and unique x̂ occurs. This instantiates and residuates the above
expression to (b2[y] _ e1[x̂] � b2[y]). Thus the overall dependency becomes (8x; y : x 6= x̂ )
DM (x; y))^(b2[y]_e1[x̂] �b2[y]). In other words, b2[y] is disabled for all y, because residuating
the above expression with b2[y] yields 0. However, residuating the above expression with e1[x̂]
yields (8x; y : x 6= x̂) DM (x; y))^>. Thus e1[x̂] can occur. Furthermore, anything allowed
by DM (x; y) (except another occurrence of b1[x̂] or e1[x̂]) can occur after e1[x̂].

For n tasks, we can state dependencies between each pair of tasks. When b1[x̂] occurs, it
causes all the other bi events to be disabled. In a centralized implementation, all the events
seek permission from the central scheduler, which allows no more than one of them at a
time. In a distributed implementation, the challenge is in exchanging information among
the events so that an event such as b1[x̂] happens only when it has prohibited the other
events. In either case, the mechanism is independent of the number of events.

We implicitly used the inference rule (8z : D(z)) � (8z : z 6= ẑ ) D(z)) ^ D(z ::=
ẑ), for any constant ẑ. By Observation 2, residuating with an event instance e[ẑ] returns
the �rst conjunct unchanged, conjoined with the result of residuating D(z ::= ẑ) by e[ẑ].
In this manner, dependencies \grow" to accommodate the appropriate instances explicitly.
When the given instantiation is satis�ed, it is no longer needed. By uniqueness of instances
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attempted, we can safely forget about past instances. Thus, in quiescense only the original
dependency may be stored.

To formalize the above reasoning, assume that ~v is a tuple of variables that parametrize
the occurrences of e in E. Similarly,~c is a tuple of constants with which the putative instance
of e is instantiated.

Equation 9 E(~v)=e[~c]
:
= E(~v) ^ (E(~v ::= ~c)=e[~c])

Lemma 16 Equation 9 is adm-sound.
Importantly, Example 13 makes no assumptions about the conditions under which the

two tasks attempt to enter or exit their critical sections. This turns out to be true in our
approach in other cases as well. Importantly, the event IDs need not depend on the structure
of the associated task, because our scheduler does not need to know the internal structure of
a task agent. An agent may have arbitrary loops and branches and may exercise them in any
order as required by the underlying task. Hence, we can handle arbitrary tasks correctly!

One might wonder about the value of parametrization to our formal theory. If we cared
only about intra-work
ow parametrization, parameters could be introduced extralogically,
i.e., by modifying the way in which the theory is applied. However, when we care about
inter-work
ow parametrization, it is important to be able to handle parametrization from
within the theory.

Since unbound parameters are treated as universally quanti�ed, enforceable dependencies
may become unenforceable when parametrized, e.g., when they require triggering in�nitely
many events after a single event occurrence. Determining the safe sublanguages is left to
future research.

6 Further Technical Properties

Lemma 17 shows that we need not represent sequences of length greater than 2. This is an
easy but important result, because it leads to great simpli�cation in processing, as described
in [32].

Lemma 17 e1 � : : : � en � e1 � e2 ^ : : : ^ en�1 � en
We show why some alternatives to our approach would not be appropriate. There are

subtle relationships between the operators ^ and �, and the constants > and 1. Sometimes,
e.g., [28], > is the unique maximal element of the algebra and 1 is the unit of the concate-
nation operator. That is, [[>]] = U (as here), whereas [[1]] = f�g. However, we have no
separate 1, e�ectively setting 1 � >. Intuitively, [[E1]] � [[E2]] means that E1 is a stronger
speci�cation than E2, because E1 allows fewer traces. Consequently, any reasonable seman-
tics should validate Lemma 18, which states that if the scheduler satis�es E followed by F ,
then it satis�es F (and E). Substituting 1 for F yields Observation 19.

Lemma 18 [[E � F ]] � [[F ]].
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Observation 19 1 � >.
Some approaches require 1 6= > to avoid the results that (e_e) �f � f and f � f �(e_e).

This would cause ordering information to be lost: f may be desired after e or e, but not
before them. But this result arises because those approaches require e_ e � >. Since in our
approach, e _ e 6= >, setting 1 � > does not have the counterintuitive rami�cation that it
might elsewhere.

By treating e as an event, we can record its occurrence before its task terminates. This
enables eager scheduling. We have [[e]]\ [[e]] 6= [[0]] and [[e]][ [[e]] 6= [[>]]. If instead we de�ned
[[e]] as the set complement of [[e]], we would obtain � 2 [[e]]. This would entail that e � e = e,
and e � e is satis�able. By contrast, e � e �A 0, for admissible A.

If the semantics used only maximal traces, we would not be able to represent event
ordering well, especially for complement events. If an event did not occur, we cannot state
that it did not occur before or after another event.

We assume a formal complement for each signi�cant event. Some events, e.g., start and
forget, are not typically thought of as having complements. A super
uous formal complement
causes no harm, because it is never instantiated. When a task agent has a multiway split
(instead of two-way between abort and commit), then the complement of an event is, in
e�ect, the join of all alternative events. Multiway splits are rare in practice.

The admissibility construction enables certain simpli�cations. Lemma 20 works because
the union and intersection of sets of maximal (and legal) traces are also sets of maximal (and
legal) traces. Surprisingly, Lemma 21 holds because � inherently assumes nonmaximal traces.
Thus the fact that its arguments were equal under maximality carries little signi�cance.

Lemma 20 E �A E0 implies that each of the following holds: (a) E ^ F �A E0 ^ F ; (b)
F ^ E �A F ^ E0; (c) E _ F �A E 0 _ F ; and (d) F _ E �A F _ E0.

Lemma 21 E �A E0 does not imply that either of the following holds: (a)
E � F �A E0 � F ; and (b) F � E �A F � E0.

Therefore, we can use Lemma 20 to simplify expressions provided we avoid simpli�cation
in the context of a �. Fortunately, since by Observation 6, our equations always yield TSF
output from TSF input, we never have to worry about an expression in which the � operator
is outside of a _ or ^. Thus, the simpli�cations prevented by Lemma 21 would never be
needed anyway. So nothing is lost!

7 Overview of the Literature

We consider only the transaction models and approaches that represent them in formal
frameworks. Execution environments are discussed in [32].

7.1 Models

Database Approaches Several extended transaction models have been proposed [10].
Sagas are composed of several subtransactions or steps [14], which can be optimistically
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committed, thereby increasing concurrency but reducing isolation. If a step fails, consis-
tency can be restored by compensating the previously committed steps in the reverse order.
The NT/PV (nested transactions with predicates and views) model is based on multiple co-
existing versions of a database [24]. Transactions are modeled as binary relations on database
states, rather than as functions. Speci�cations for transactions are given as precondition and
postcondition pairs. Several transaction models can be expressed in the NT/PV model.

ConTracts group a set of transactions into a multitransaction activity [34]. Each Con-
Tract consists of (a) a set of steps: sequential ACID transactions that de�ne the algo-
rithmic aspects of the ConTract, and (b) a script or execution plan: a (possibly parallel)
program invoking the steps that de�nes the structural aspects of the ConTract. ConTracts
are forward-recoverable through failures and interruptions. A long-running activity is a set
of transactions (possibly nested) and other activities [9]. Control and data 
ow may be
speci�ed in a script or with event-condition-action rules. Other important models include

ex transactions [4] and cooperating activities [30].

Organizational Approaches There is also increasing interest in the organizational as-
pects of work
ow management. [21] proposes \trigger modeling" as a technique to capture
some of the interrelationships among components of a work
ow from an organizational per-
spective. This model comprises the concepts of activities, events, and actors, and relates
them to each other. [5] also relate work
ows with organizational modeling.

Remarks on the Above Approaches We believe the above approaches are at a higher
level than our approach, which could provide a rigorous infrastructure in which to realize
them.

7.2 Representing Models

ACTA ACTA provides a formal framework to specify the e�ects of transactions on other
transactions and objects, but does not address scheduling [6]. In ACTA, an execution of a
transaction is a partial order|denoting temporal precedence|of the events of that trans-
action (the object events it invokes, plus its signi�cant events). A history of a concurrent
execution of a set of transactions contains all events of each of the transactions, along with a
partial order that is consistent with the partial orders for the individual transactions. e 2 H
means that e occurs in history H. e �! e0 (in history H) means that e and e0 occur in H,
and e precedes e0.

ACTA provides a formal syntax, but not a model-theoretic semantics. An important
semantic issue from our standpoint is the distinction between event types and instances.
ACTA's formal de�nitions appear to involve event instances, because they expect a partial
order of events. However, certain usages are less clear. For example, consider the statement:
\(when ti reads a page x that tj subsequently writes), if tj commits before ti, ti must reread
x after tj commits." ACTA captures this by the formula: (readti[x] �! writetj [x]) )
((Committj �! Committi) ) (Committj �! readti[x])) [6, p. 363]. This formula uses
readti[x] to refer to two di�erent event instances, one before Committj , and the other after
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Committj . Thus this formula can hold only vacuously. This is not a major error, but it
shows that ACTA is not designed for representing repeating events.

Rule-Driven Transaction Management Klein proposes two primitives for de�ning de-
pendencies [23]. In Klein's notation, e! f means that if e occurs then f also occurs (before
or after e). His e < f means that if both events e and f happen, then e precedes f . This
work describes a formalism and its intended usage, but gives no formal semantics. The
semantics is informally explained using complete histories, which are those in which every
task has terminated. Further, it is assumed that tasks are expressible as loop-free regular
expressions. Thus this approach is not applicable to activities that never terminate, or those
that iterate over their signi�cant events.

Temporal Logic Approaches Our previous approach [2] is based on a branching-time
temporal logic, CTL (or computation tree logic [12]). This approach formalizes dependencies
in CTL and gives a formal semantics. It synthesizes �nite state automata for the di�erent
dependencies. To schedule events, it searches for an executable, consistent set of paths, one
in each of the given automata. This avoids computing product automata, but the individual
automata in this approach can be quite large. Further, the CTL representations of the
common dependencies are quite intricate. This implementation was centralized. Another
temporal logic approach is that of G�unth�or [19]. G�unth�or's approach is based on linear
temporal logic, and gives a formal semantics. His implementation too is centralized and his
approach appears incomplete.

Action Logic This approach is a general-purpose theory of events, but is not designed
for specifying and scheduling work
ows [28]. Pratt proposes an algebra, and motivates
some potentially useful inferences that constrain the possible models for the algebra. Our
de�nitions of complements and admissibility are major extensions beyond [28]. Regular
languages, which correspond to linear histories of events, are a class of models. The branching
(partially ordered) histories well-known from serializability theory [3] (also formalized in
ACTA) can be expressed as sets of linear histories. We �nd this connection fruitful, although
we are not interested in con
icts among operations, or necessarily terminating computations.

Remarks on the Above Approaches The database approaches have useful features, but
are either informal and possibly ambiguous, or not accompanied by distributed scheduling
algorithms. ACTA and Klein's approaches are noncompositional, since the denotation they
give to a formula is not derived from the denotation of its operands. This makes it di�cult to
reason symbolically. The restriction to loop-free tasks and the lack of an explicit distinction
between event types and instances are the limiting properties common to all four approaches.
However, these approaches agree on the stability of events|an event once occurred is true
forever. This is a natural intuition, and one that we preserve for event instances. Pratt's
approach is formal and compositional, but lacks a scheduling algorithm|his inferences are
too weak to apply in scheduling. It too does not distinguish between event types and
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instances. Our approach goes beyond ACTA in characterizing the reasoning required for
scheduling. Roughly, it is to ACTA what uni�cation is to predicate logic.

8 Conclusions

We developed a model-theoretic semantics for events and dependencies that satis�es both
work
ow intuitions and formal semantics criteria. This semantics provides a basis for check-
ing the consistency and enforceability of dependencies. It abstractly generates eager sched-
ules from lazy speci�cations by symbolically computing the preconditions and postconditions
of an event. By using admissibility, our de�nition of residuation is specialized for use in
scheduling, and yields strong and succinct answers for various scheduling decisions.

We obtain succinct representations for many interesting dependencies|no worse and
often much better than previous approaches. For example, compensation dependencies are
given a representation of size 3 here, but of over size 40 in [2]. We have not analyzed the
complexity in detail.

More general logic programming techniques for reasoning about integrity constraints and
transactions are no doubt important, but the connection has not been explored yet. It
appears that we deal with lower-level scheduling issues, whereas the above approaches deal
with application-level constraints. We speculate that they could supply the dependencies
that are input to our approach. Our focus is on identifying the core scheduling and semantic
issues, which will be relevant no matter how the �nal implementation is achieved.

It has been recently argued that various transaction models can be expressed in existing
work
ow products, and therefore existing work
ow products are su�cient [1]. We reject
this position. Compilability into machine code does not make higher-level programming
languages irrelevant! Extended transaction and work
ow models provide a programming
discipline through which computations can be structured. If they could not be translated to
lower-level representations, they would not be useful! We agree with [35] that higher-level
abstractions are necessary for programming in complex environments.

Future work includes lifting the algebraic ideas and results to frameworks that explicitly
capture the structure of the computations and their user-de�ned semantics.
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A Proofs of Important Results

Auxiliary De�nitions and Results

Observation 22 � 2 [[E]] i� (8�; � : ��� 2 UE ) ��� 2 [[E]])
Observation 22 means that if a trace satis�es E, then all larger traces do so too. Con-

versely, if all traces that include � satisfy E, then � satis�es E too (essentially by setting �
and � to �).

Observation 23 If D is a sequence expression and � 2 [[D]] then
(8i : 1 � i � length(D)) � 2 [[ei]]).

Observation 24 If D is a sequence expression and � 2 [[D]] then length(� ) � length(D).

Proof of Lemma 5.

For D 2 E and e 2 �, D=e is a unique expression in E.

Proof. Consider any equation that applies on D. If this is equation 4 or equation 3, it
results in recursive calls on = but on expressions whose size is strictly smaller than D. If it
is any other equation, it produces an answer without making any recursive calls. Hence, the
equations terminate. Since exactly one equation applies at each stage, the �nal answer is
unique. Thus our equations are convergent.

Proof of Lemma 7.

Equations 1{6 are sound.

Proof. Equations 1 and 2 follow trivially from Semantics 7. Consider Equation 3. � 2 [[(E1^
E2)=e]] i� (8� : � 2 [[e]]) (�� 2 UE ) �� 2 [[E1^E2]])). This holds i� (8� : � 2 [[e]]) (�� 2
UE ) �� 2 [[E1]] \ [[E2]])), which is equivalent to (8� : � 2 [[e]]) (�� 2 UE ) �� 2 [[E1]]))
^ (8� : � 2 [[e]]) (�� 2 UE ) �� 2 [[E2]])). But this is equivalent to � 2 [[E1=e]] \ [[E2=e]].

Equation 4 is the hardest. We can show that [[(E1 _ E2)=e]] � [[E1=e]] [ [[E2=e]]. For the
opposite direction, if either E1 or E2 is 0 or >, then Equation 4 is trivially satis�ed. Let
� 2 [[(E1 _ E2)=e]]. Then, since hei 2 [[e]], the trace hei� 2 [[E1 _ E2]]. Assume, without loss
of generality, that hei� 2 [[E1]].

1. Let E1 be a sequence expression. There are two cases. (a) E1 = e�D. Now, hei� 2 [[e�D]]
implies that (using Observation 22) � 2 [[D]]. Then, by Semantics 4, (8� 2 [[e]] : �� 2
[[e � D]]). Hence, � 2 [[E1=e]]. (b) E1 = f � D and e 6= f . By Observation 23,
hei� 2 [[f �D]] implies that � 2 [[f �D]]. By Observation 22, (8� 2 [[e]] : �� 2 [[f �D]]).
Hence, � 2 [[E1=e]].
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2. Let E1 be a disjunction. The proof follows by structural induction.

3. Let E1 be a conjunction. The proof follows by an application of Equation 3.

Consider Equation 5. Let � 2 [[E]]. Then, by Semantics 4, (8� : � 2 [[e]] ) �� 2
[[e � E]]). Therefore, � 2 [[(e � E)=e]]. Hence, [[E]] � [[(e � E)=e]]. Conversely, let � 2 [[(e �
E)=e]]. Then hei� 2 [[e � E]]. By Observation 24, any trace satisfying e must be at least of
length 1. Therefore, by Semantics 4, there must a su�x � of � that satis�es E. Thus, by
Observation 22, � 2 [[E]]. Hence, [[(e � E)=e]] � [[E]]. Thus, [[(e �E)=e]] = [[E]].

Lastly, consider Equation 6. Let � 2 [[D=e]]. Then hei� 2 [[D]]. Since e; e 62 �D, � 2 [[D]].
Thus, [[D=e]] � [[D]]. Let � 2 [[D]]. Then, by Observation 22, (8� : � 2 [[e]] ) �� 2 [[D]]).
Thus, � 2 [[D=e]] or [[D=e]] � [[D]]. Hence, [[D=e]] = [[D]].

Proof of Lemma 8.

Equations 7 and 8 are not sound.

Proof. The proof is by simple counterexamples. For Equation 7, let e0 = f and E = e. We
can verify that hfei 2 [[(f � e)=e]]. Thus [[(f � e)=e]] 6= ;. Similarly, for equation 8, let E = f .
We can verify that hefi 2 [[(e � f)=e]]. Thus [[(e � f)=e]] 6= ;.

Proof of Theorem 11.

Let E �A E0. Then, for all f 2 �, E=f �A"f E
0=f .

Proof. Let � 2 (A " f \ [[E=f ]]). Then, hfi� 2 A. Also, (8� 2 [[f ]] : �� 2 [[E]]). Therefore,
since hfi 2 [[f ]], we have that hfi� 2 [[E]]. Thus hfi� 2 (A \ [[E]]). Since E �A E0,
hfi� 2 (A \ [[E0]]). By Observation 22, hfi� 2 [[E0]] implies that (8� 2 [[f ]] : �� 2 [[E0]]).
Thus � 2 [[E0=f ]]. Since � 2 A " f , we obtain � 2 (A " f \ [[E0=f ]]). Consequently, we have
established that (A"f \ [[E=f ]]) � (A"f \ [[E0=f ]]). By symmetry, (A"f \ [[E0=f ]]) � (A"
f \ [[E=f ]]). Thus, (A"f \ [[E=f ]]) = (A"f \ [[E0=f ]]). Or, E=f �A"f E

0=f .

Proof of Lemma 13.

Equations 7 and 8 are adm-sound.

Proof. Consider Equation 7. By Semantics 7, � 2 [[(e0�E)=e]] i� (8� : � 2 [[e]]) �� 2 [[e0�E]]).
Since hei 2 [[e]], this implies that hei� 2 [[e0 � E]]. By Observation 24, any trace that satis�es
e0 must be at least of length 1. Thus, by Semantics 4, a su�x � of � exists such that
� 2 [[E]]. By Observation 22, � 2 [[E]]. Since we convert expressions to TSF, E is a sequence
expression. It is given that e 2 �E . Therefore, � 2 [[e]]. Thus by Observation 9, � 62 A " e.
Consequently, A " e \ [[(e0 � E)=e]] = ;, which equals A " e \ [[0]]. Hence, Equation 7 is
adm-sound and similarly Equation 8.

Proof of Theorem 15.

Equations 1{8 are adm-complete.

Proof. By Lemma 5, D=e always evaluates to a unique expression. Let this be F 0. Thus,
D=e ` F 0 always holds for some F 0. Let D=e j= F . By Theorem 14, F 0 �A"e F .
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Proof of Lemma 16.

Equation 9 is adm-sound.

Proof. By Semantics 9, the denotation of an expression is the intersection of the denotations
of all its possible instantiations. By Observation 2, all instantiations except ~c are independent
of e[~c]. By admissibility, e[~c] or e[~c] cannot occur again.

Proof of Lemma 21.

E �A E0 does not imply that either of the following holds:
(a) E � F �A E0 � F
(b) F � E �A F � E0

Proof. Let � = fe; e; f; fg and � = �. Let E = e _ e, E0 = >, and F = f . Then, E �A E0,
for admissible A, but E � F 6�A� E0 � F . Similarly for the opposite order.

B Information Control Nets

In order to show how our approach can capture work
ows expressed in other approaches,
we consider a representative graphical notation called information control nets (ICN) [27].
ICN can express various control structures. ICN has a formal graphical syntax, but not a
model-theoretic semantics.

jA d6start sAd6�nish fAd

Figure 4: ICN: An activity

jB d6start sBd���AAK right rBleft lB

d d

Figure 5: ICN: A decision node

jB
6jA fA[x] _ fA[x] � sB[x]

Figure 6: ICN: Control 
ow

ICN allows two main kinds of nodes|activities: those that are modeled as having a sin-
gle start-�nish execution branch, and decision nodes: those that are conditional. Figures 4
and 5 show how we model activities and decision nodes. Using these, we can readily capture
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jC
�
�
��
jD

A
A
AK

j
6j
B

A

fA[x] _ (fA[x] � lB[x] � sC [x])_
(fA[x] � rB[x] � sD[x])

Figure 7: ICN: Disjunctive (out) branching

jC
�
�
��
jD

A
A
AK

j?
6j
B

A (fA[x] _ fA[x] � sC [x]) ^ (fA[x] _ fA[x] � sD[x])

Figure 8: ICN: Conjunctive (out) branching

Cj

A

A
A
AK

�
�
��
j6
j
B

Dj (fC[x] _ fC[x] � sA[x])^
(fD[x] _ fD[x] � sA[x])

Figure 9: ICN: Disjunctive (in) branching

Cj
?

A

A
A
AK

�
�
��
j6
j
B

Dj
fC [x]_ fD[x]_
(fC[x] � fD[x] � sA[x])_
(fD[x] � fC [x] � sA[x])

Figure 10: ICN: Conjunctive (in) branching

j6&%
'$

B

N

Ej
6
Aj

fN:E[x] _ fN:E[x] � sA[x]

Figure 11: ICN: Nesting Inbound
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j6&%
'$

B

N

Ej
6

Aj fA[x] _ fA[x] � sN:B[x]

Figure 12: ICN: Nesting Outbound

Aj���
j�@@I

B j��
��

A
A
AK

�

�

C Dj j
fA[x] _ fA[x] � sB[x 0]
(lB[x i] � sC [x]) _ (rB[x i] � sD[x i])
fD[x i] _ (fD[x i] � sB[x (i+ 1)])

Figure 13: ICN: Iteration

the meanings of the constructs for control 
ow (Figure 6), outbound disjunctive branch-
ing (Figure 7), outbound conjunctive branching (Figure 8), inbound disjunctive branching
(Figure 9), and inbound conjunctive branching (Figure 10).

ICN allows nodes to be nested. Without loss of generality, we restrict ourselves to nested
nodes with a single begin subnode and a single end subnode. For a nested node N , these are
referred to as N:B and N:E, respectively. Figures 12 and 11 show the translation. Lastly,
we consider iteration in Figure 13. The 
ow of control from A to B initializes the iteration.
The iteration ends when C is invoked. Each time D is invoked, it passes control back to
B. In the formal expressions, x represents the parameters of interest to the application; i
represents the loop counter, which helps uniquify events from di�erent iterations.
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