
Formal Aspects of Workow Management

Part 2: Distributed Scheduling�y

Munindar P. Singh z

Department of Computer Science

North Carolina State University

Raleigh, NC 27695-8206, USA

singh@ncsu.edu

June 18, 1997

Abstract

Workows are composite activities that achieve interoperation of a variety of system
and human tasks. Workows must satisfy subtle domain-speci�c integrity and orga-
nizational requirements. Consequently, exibility in execution is crucial. A promising
means to achieve exibility is through declarative speci�cations (Part 1) with automatic
distributed scheduling techniques (Part 2).

We address the problem of scheduling workows from declarative speci�cations
given in terms of intertask dependencies and event attributes. Our approach involves
distributed events, which are automatically set up to exchange the necessary mes-
sages. Our approach uses symbolic reasoning to (a) determine the initial constraints
on events or guards, (b) preprocess the guards, and (c) execute the events. It has been
implemented.

workows, temporal logic, scheduling.

�This is a greatly extended and revised version of a paper that appears in the Proceedings of the Inter-
national Conference on Data Engineering (ICDE), held in New Orleans in February 1996.

ySome of the preliminary work of this paper was performed in the Carnot Project at MCC. I partici-
pated in discussions with Paul Attie, Greg Meredith, and Chris Tomlinson. Many signi�cant revisions and
enhancements|including a new formal semantics, all proofs, most de�nitions, and most theorems|were
made at NCSU. I have bene�ted from discussions with Neerja Bhatt, Anuj Jain, and Chubin Lin, and
comments from Krithi Ramamritham.

zPartially supported by the NCSU College of Engineering, by the National Science Foundation under
grants IRI-9529179 and IRI-9624425, and by IBM.

1

1 Introduction

Part 1 [15] motivated a language for specifying workows, gave a formal semantics for it, and
showed how to reason about schedules through an algebraic operator. Here we carry that
approach further to obtain a generic distributed scheduler. Scheduling a workow means
coordinating its constituent tasks by causing, delaying, or preventing \events" based on the
events of other tasks, and the state of the environment. Workow scheduling is challenging
because the tasks retain some autonomy in execution and design, and subtle correctness and
organizational requirements are involved. Distributed scheduling is desirable, because work-
ows arise in distributed, heterogeneous, open environments, whereas centralized approaches
are not scalable.

We follow the execution model of [15, section 2], which postulates a task agent for each
task, each agent representing the events signi�cant for coordination. We now show how that
model can be instantiated in a distributed manner, and how the executions of the di�erent
agents can be orchestrated based on the stated speci�cations. This involves compiling the
declarative speci�cations into representations that can be executed eagerly by each event
with few unnecessary interactions among events.

Architecture and Operation

The object for an event maintains its current guard and manages communications. The
guard is a temporal logic expression de�ning the condition under which that event may
occur. In the simplest case, when a task agent is ready to make a transition, it attempts
the corresponding event. If the guard is true, the event occurs; if false, it is rejected; else,
it waits. When an event happens, messages announcing its occurrence are sent to actors of
other relevant events. Upon receiving an event announcement, an actor simpli�es its guard
to incorporate this information. If the receiving actor's guard becomes true or false, then a
decision is made on any waiting event.

Additional complexity is introduced in some situations. One, the events may have mutual
constraints, which naively may lead to deadlock. Two, the events may have to be proactively
triggered, or may be allowed to occur immediately. Three, some events may be instantiated
multiple times|all and only the right instances must occur. Our approach has the following
main steps:

1. dependencies are asserted, specifying a workow

2. events are created (as objects)

3. guards are installed (based on the dependencies)

4. guards are preprocessed to detect mutual constraints, and messages are set up to
achieve correct behavior

5. events are activated, thus enacting the workow.

The designer does step 1. The system does steps 2, 3, and 4 at compile-time, and step 5 at
run-time.

M. P. Singh 2 11 May 1997

Contributions

We develop a distributed approach for workow scheduling. Our approach includes a tem-
poral language, which can express the knowledge necessary to execute events eagerly. This
language requires a di�erent formal semantics than previous temporal logics. We show how
guards are compiled from workow speci�cations. Our formal de�nition yields technical re-
sults about correctness and independence properties that facilitate compilation of the guards
and enable concurrent execution. Our approach is formal, and handles ongoing or iterative
activities in a simple manner.

Organization

Section 2 introduces our temporal logic, and shows how guards can be compiled. Section 3
shows how workows can be executed in a distributed manner that respects the \attributes"
of the events. Section 4 establishes correctness and justi�es e�ciency-enhancing transfor-
mations. Section 5 discusses some enhancements, including how to handle arbitrary tasks.
Section 6 reviews the relevant literature. Appendix A gives the proofs.

2 Guards on Events

A naive implementation of [15] would represent all dependencies in one place, but su�er
from the problems of centralization. Distribution requires that information be placed locally
on each event. Our, or any, implementation requires (a) determining the conditions, i.e.,
guards, on the events by which decisions can be taken on their occurrence, (b) arranging for
the relevant information to ow from one event to another, and (c) providing an algorithm
by which the di�erent messages can be assimilated.

2.1 Temporal Logic

Intuitively, the guard of an event is the weakest condition that guarantees correctness if
the event occurs. Guards must be temporal expressions so that decisions made on di�erent
events can be sensitive to the state of the system, particularly with regard to which events
have occurred, which have not occurred but are expected to occur, and which will never
occur. Typically, guards are succinct.

T is the formal language in which the guards are expressed. This language captures the
above distinctions. Syntax rules 1, 2, and 3 are exactly as for the dependency language E
[15]. Rule 4 adds the new operators. Intuitively, 2E means that E will always hold; 3E
means that E will eventually hold (thus 2e entails 3e); and :E means that E does not
(yet) hold. E1 � E2 means that E2 has occurred preceded by E1. For simplicity, we assume
the following binding precedence (in decreasing order): :; �; 2 and 3; ^; _.

Syntax 1 � � T

Syntax 2 0;> 2 T

Syntax 3 E1; E2 2 T implies E1 _ E2, E1 ^ E2, E1 � E2 2 T

M. P. Singh 3 11 May 1997

Syntax 4 E 2 T implies 2E, 3E, :E 2 T

The semantics of T is given with respect to a trace (as for E) and an index into that
trace. Whereas the semantics of E distinguishes good traces from bad traces|precisely what
a speci�er cares about, the semantics of T characterizes the progress along a given trace|
precisely what is needed to determine the scheduler's action at each event. The semantics
of T has important di�erences from common linear temporal logics [5]. One, our traces are
sequences of events, not of states. Two, most of our semantic de�nitions are given in terms
of a pair of indices, i.e., intervals, rather than a single index. For 0 � i � k, u j=i;k E means
that E is satis�ed over the subsequence of u between i and k. For k � 0, u j=k E means
that E is satis�ed on u at index k|implicitly, i is set to 0. � 4 h i is the empty trace.

De�nition 1 A trace, u, is maximal i� for each event, either the event or its complement
occurs on u.

De�nition 2 UT 4 the set of maximal traces.

We assume � 6= ;; hence, � 6= ;. Semantics 1, which involves just one index i, invokes
the semantics with the entire trace until i. The second index is interpreted as the present
moment. Semantics 3, 4, 6, and 7 are as in traditional formal semantics. Semantics 8 and 9
involve looking into the future. Semantics 2 and 5 capture the dependence of an expression
on the immediate past, bounded by the �rst index of the semantic de�nition. Semantics 5
introduces a nonzero �rst index.

Semantics 1 u j=i E i� u j=0;i E

Semantics 2 u j=i;k f i� (9j : i � j � k and uj = f), where f 2 �

Semantics 3 u j=i;k E1 _ E2 i� u j=i;k E1 or u j=i;k E2

Semantics 4 u j=i;k E1 ^ E2 i� u j=i;k E1 and u j=i;k E2

Semantics 5 u j=i;k E1 � E2 i� (9j : i � j � k and u j=i;j E1 and u j=j+1;k E2)

Semantics 6 u j=i;k >

Semantics 7 u j=i;k :E i� u 6j=i;k E

Semantics 8 u j=i;k 2E i� (8j : k � j) u j=i;j E)

Semantics 9 u j=i;k 3E i� (9j : k � j and u j=i;j E)

Example 1 Let u = hefg : : :i be a trace in UT . One can verify that (a) u j=0 3g; (b)
u 6j=0 3(g � f); (c) u j=1 2e ^ :f ^ :g; (d) u 6j=1 (e � g); and (e) u j=3 (e � g) (i.e., (e � g) is
satis�ed when it is in the past of the given index). The order of the arguments to � remains
important even in the context of a 3.

M. P. Singh 4 11 May 1997

2.2 Important Properties

We describe some results, which are used in compiling and processing guards.

De�nition 3 E �= F 4 (8i; k : u j=i;k E i� u j=i;k F), where E;F 2 T .

De�nition 4 [15] E � F i� [[E]] = [[F]], where E;F 2 E.

Thus, �= means equivalence for T and � means equivalence for E. The relations are not
in E or T . Observations 1 and 2 indicate a fundamental di�erence between E and T .

Observation 1 (8e : > 6�= e _ e) and (8e : 0 �= e ^ e). Also, (8e : > �= 3e _3e).

Observation 2 (8e : > 6� e _ e) and (8e : 0 6� e ^ e).

De�nition 5 An event e is stable i� if e is satis�ed at a given index, then it is satis�ed at
all future indices.

Observation 3 means that events are stable. However, Observation 4 shows that the
temporal operators cannot always be eliminated. Intuitively, :e means \not yet e." Obser-
vation 5 states that if the last event of a sequence has occurred, then the entire sequence
has occurred. Similarly, Observation 6 states that if the �rst event of a sequence has not
occurred, then the next event has not occurred either.

Observation 3 2e �= e.

Observation 4 2:e 6�= :e.

Observation 5 3(e1 � e2) ^2e2 �= 2(e1 � e2).

Observation 6 3(e1 � e2) ^ :e1 �= 3(e1 � e2) ^ :e1 ^ :e2.

Example 2 The possible maximal traces for � = fe; eg are fhei; heig. On di�erent traces,
e or e may occur. Initially, neither e nor e has happened, so traces hei and hei both satisfy
:e and :e at index 0. Trace hei satis�es 3e at 0, because event e will occur on it; similarly,
trace hei satis�es 3e at 0. After event e occurs, 2e becomes true, :e becomes false, and 3e
and :e remain true. Hence

� 2e _2e 6�= >: neither e nor e may have occurred at certain times, e.g., initially

� 3e _3e �= >: eventually either e or e will occur

� 3e ^3e �= 0: both e and e will not occur

� 3e _2e 6�= >: initially, e has not happened, but e may not be guaranteed

� :e _2e �= > and :e ^2e �= 0: :e is the boolean complement of 2e

� :e _2e �= :e: 2e entails :e.

For larger alphabets, the set of traces is larger, but the above results hold. These and allied
results were our main motivation in designing the formal semantics of T .

M. P. Singh 5 11 May 1997

2.3 Compiling Guards

We now use T to compile guards from dependencies. For expository ease, we begin with a
straightforward approach, which is intuitively correct, but not very e�ective. Section 3.2 dis-
cusses additional features. Section 4.2 exploits the special properties of our formal approach
to give a series of formal results that improve elegance and e�ciency.

The guards must permit precisely the traces that satisfy the given dependencies. We
associate a set of paths with each dependency D. A path � is a sequence of event symbols
that residuate D to >|the dependency is satis�ed if the events in the path occur in that
order. We require that �� � �D, i.e., all events in D (or their complements) feature in �.
Each path is e�ectively a correct execution for its dependency. A path may have more events
than those explicitly mentioned in a dependency. This is not a problem: section 4.2 develops
an equivalent approach that only looks at the dependency itself, not the paths.

De�nition 6 D=� 4 ((D=e1)= : : :)=en.

De�nition 7 � = he1 : : : eni is a path i� the events ei are distinct, and not complements of
each other.

De�nition 8 �(D) is the set of paths satisfying D. �(D) 4 f� : � is a path and �� � �D

and D=� = >g.

Lemma 7 means that the paths satisfy the given dependency. Lemma 8 establishes that
there is a unique dependency corresponding to any set of paths.

Lemma 7 � 2 �(D) i� � is a path and �� � �D and � j= D.

Lemma 8 D �
W
�2�(D) �.

Recall that dependencies are expressions in E. Since each path � in a dependency D
satis�es D, if an event e occurs on �, it is clearly allowed by D, provided e occurs at the
right time. In other words, e is allowed when

� the events on � up to e have occurred in the right sequence (this is given by pre(�; e)),
and

� the events of � after e have not occurred, but will occur in the right sequence (this is
given by post(�; e)).

De�nition 9 pre(�; e) 4 if e = ei, then 2(e1 � : : : � ei�1), else 0.

De�nition 10 post(�; e) 4 if e = ei, then :ei+1 ^ : : : ^ :en ^3(ei+1 � : : : � en), else 0.

We de�ne a series of operators to calculate guards as G : E � � 7! T . Gb(�; e) denotes
the guard on e due to path � (b stands for basic). Gb(D; e) denotes the guard on e due to
dependency D. To compute the guard on an event relative to a dependency D, we sum
the contributions of di�erent paths in D. Gb(W; e) denotes the guard due to workow W
and is abbreviated as Gb(e) when W is understood. This de�nition redundantly repeats
information about the entire path on each event. Later, we shall remove this redundancy to
obtain a semantically equivalent, but superior, solution.

M. P. Singh 6 11 May 1997

De�nition 11 Gb(�; e) 4 pre(�; e) ^ post(�; e).
Gb(D; e) 4

W
�2�(D) Gb(�; e).

Gb(W; e) 4
V
D2W Gb(D; e).

Observation 9 u j=k Gb(D; e)) (9� 2 �(D) : u j=k Gb(�; e)).

�
�

�
�

�
��	

@
@
@
@
@
@@R

�
�
�
�
�
���

C
C
C
C
C
CCW

@
@
@
@
@
@@R

�
�

�
�

�
��	

C
C
C
C
C
CCW

�
�
�
�
�
���

:e ^ :e ^ :f ^ :f

2e
2e 2f

2f

>

e; e

f f

e

e

f; f

f ; f

e

Figure 1: Guards with respect to D< = e _ f _ e � f

Figure 1 illustrates our procedure for the dependency of [15, Example 2]. The �gure
implicitly encodes all paths in �(D<). By combining the paths into a graph, we reect
the \state of the scheduler" intuition of [15, section 3.2], and relate better to the results of
section 4. Each path contributes the conjunction of pre and post for that event and path.
The initial node is labeled :e ^ :e ^ :f ^ :f to indicate that no event has occurred yet.
The nodes in the middle layer are labeled 2e, etc., to indicate that the corresponding event
has occurred. To avoid clutter, labels like 3e and :e are not shown after the initial state.

Example 3 Using Figure 1, we can compute the guards for the events in D<.

� Gb(D<; e) = (:f ^:f ^3(f _ f))_ (2f ^>). But 3(f _ f) �= >. Hence, Gb(D<; e) =
(:f ^ :f) _ 2f , which reduces to :f _2f , which equals :f .

� Gb(D<; e) = (:f ^ :f ^3(f _ f)) _ (2f ^ >) _ (2f ^ >), which reduces to >.

� Gb(D<; f) = >.

� Gb(D<; f) = (:e ^ :e ^ 3e) _2e _2e, which simpli�es to 3e _2e.

Thus e can occur at any time, and e can occur if f has not yet happened (possibly
because f will never happen). Similarly, f can occur any time, but f can occur only if e has
occurred or e is guaranteed.

3 Scheduling with Guards

Execution with guards is straightforward. When an event e is attempted, its guard is eval-
uated. Since guards are updated whenever an event mentioned in them occurs, evaluation
usually means checking if the guard evaluates to >. If e's guard is satis�ed, e is executed;
if it is 0, e is rejected; else e is made to wait. Whenever e occurs, a noti�cation is sent to

M. P. Singh 7 11 May 1997

each pertinent event f , whose guards are updated accordingly. If f 's guard becomes >, f is
allowed; if it becomes 0, f is rejected; otherwise, f is made to wait some more. Example 4
illustrates this. More complex cases follow.

Example 4 Using the guards from Example 3, if e is attempted and f has not already
happened, e's guard evaluates to >. Consequently, e is allowed and a noti�cation 2e is sent
to f (and f). Upon receipt of this noti�cation, f 's guard is simpli�ed from 3e _ 2e to >.
Now if f is attempted, it can happen immediately.

If f is attempted �rst, it must wait because its guard is 3e _ 2e and not >. Sometime
later if e or e occurs, a noti�cation of 2e or 2e is received at f , which simpli�es its guard
to >, thus enabling f . Events e and f have their guards equal to >, so they can happen at
any time.

3.1 Mutual Constraints Among Events

The execution mechanism should avoid potential race conditions and deadlocks. It should
also ensure that the necessary information ows to an event when needed. Certain problems
that may arise with the above naive approach can be averted through preprocessing the
guards so as to detect and resolve potential deadlocks. We discuss these issues conceptually
here; we formalize them in section 4.

Prohibitory Relationships

During guard evaluation for an event e, a subexpression of the form :f may need to be
treated carefully. We must allow for situations where the message announcing f occurrence
could be in transit when :f is evaluated, leading to an inconsistent evaluation. A message
exchange with f 's actor is essential to ensure that f has not happened and is not happening.

Example 5 Following Example 3, e should not occur unless we can be sure that f has not
occurred.

This is a prohibitory relationship between events, since f 's occurrence can possibly disable
e (depending on the rest of the guard of e). Theorem 26 shows how prohibitory messages
can sometimes be avoided.

Promissory Relationships

If the guard on an event is neither > nor 0, then the decision on it can be deferred. The
execution scheme must be enhanced to prevent mutual waits in situations where progress
can be consistently made.

Example 6 Consider W1 = fD<;D!g. Gb(W1; e) = 3f ^ :f and Gb(W1; f) = 2e _ 3e.
Roughly, this means that e waits for 3f , while f waits for 2e.

The guards given in Example 6 do not reect an inconsistency, since f is allowed to
occur after e. This relationship is recognized during preprocessing. The events are set up so
that when f is attempted, it promises to happen if e occurs. Since e's guard only requires
that f occur sometimes, before or after e, e is then enabled and can happen as soon as it is
attempted. When news of e's occurrence reaches f , f discharges its promise by occurring.

M. P. Singh 8 11 May 1997

3.2 Incorporating Event Attributes

Any acceptable schedule must respect the intrinsic properties or attributes of the events that
occur in it. The following attributes were introduced in [2]: (a) forcible: events that the
system can initiate; (b) rejectable: events that the system can prevent; and (c) delayable:
events that the system can delay. A nondelayable event must also be nonrejectable, because
it happens before the system learns of it. Intuitively, such an event is not attempted: the
scheduler is noti�ed of its occurrence after the fact.

To facilitate reasoning, it is useful to introduce the attributes immediate and inevitable
as combinations of the above. We believe that triggerable is a more appropriate name for
forcible events, because of its actual e�ect during execution. Thus our attributes are as
follows (see [15, Figure 1] for the events mentioned):

� Normal: (�n) delayable and rejectable, e.g., commit

� Immediate: (�m) nondelayable and nonrejectable, e.g., abort

� Inevitable: (�v) delayable and nonrejectable, e.g., forget|forget (not shown) corre-
sponds to a task clearing its bookkeeping data and releasing locks

� Triggerable: (�t) forcible, e.g., start.

For triggerable events, the dependencies are not modi�ed, although the execution mech-
anism must be proactive. For other attributes, the dependencies must be modi�ed|to elim-
inate traces that violate some event attribute| although the execution mechanism remains
unchanged. The approach of section 2.3 applies to normal events; we consider inevitable and
immediate events below.

3.2.1 Inevitable Events

An inevitable event must remain permissible on every trace until it or its complement (if
attempted) has happened. Thus we eliminate paths on which there is a risk of violating the
inevitability of the given event.

�
�

�
�

�
��	

@
@
@
@
@
@@R

�
�
�
�
�
���

C
C
C
C
C
CCW

@
@
@
@
@
@@R

�
�

�
�

�
��	

C
C
C
C
C
CCW

�
�
�
�
�
���

:e ^ :e ^ :f ^ :f

2e
2e 2f

2f

>

e; e

f
f

e

e

f; f

f ; f

e

��
��
��
��
��
��
��
��

@@
@@
@@
@@
@@
@@

Figure 2: Guards from D< assuming e is inevitable

M. P. Singh 9 11 May 1997

Figure 2 shows the dependency of Figure 1. The path hfei is deleted because if f occurs
�rst, e must not occur. We can verify that Gb(D<; e) is unchanged but Gb(D<; f) is stronger:
since e cannot be rejected, we cannot let f happen unless e or e has already happened.

3.2.2 Immediate Events

An event that is immediate must be permissible in every state of the scheduler. Thus the
scheduling system must never take an action that leaves it in a state where the given event
cannot occur immediately unless the event or its complement has happened.

Example 7 Figure 2 still holds when e is immediate. Thus the same guards are obtained
as before.

@
@
@
@
@
@@R

�
�
�
�
�
���

C
C
C
C
C
CCW

�
�

�
�

�
��	

C
C
C
C
C
CCW

�
�
�
�
�
���D6 = e _ f � e

:e ^ :e ^ :f ^ :f

2e 2f

2f

>

e; e

f
f

e
f ; f

e

��
��
��
��
��
��
��
��

@@
@@
@@
@@
@@
@@

��
��
��
��
��
��
��
��
XX
XX
XX
XX
XX
XX
XX
XX

XX
XX
XX
XX
XX
XX
XX
XX
��
��
��
��
��
��
��
��

Figure 3: Extreme example of an immediate event (e)

Example 8 Referring to Figure 3, we can readily see that the guards for all the events are
0!
However, if e is inevitable, then the guards are nonzero, as can be readily checked (see
Figure 4 below).

3.2.3 Enforceability of Dependencies

A dependency is enforceable if, given the event attributes, its denotation is nonempty. En-
forceability must be checked when dependencies are asserted. Individual dependencies may
become unenforceable if the asserted attributes are overconstraining. Examples 9 and 10
show how the enforceability of dependencies can vary based on the event attributes that are
asserted. Example 11 shows dependencies that are individually, but not jointly, enforceable.

Example 9 D< (in Figure 2) is enforceable if e is immediate and f is inevitable, because f
can be delayed until e or e occurs. However, D< is unenforceable if e is inevitable and f is
immediate, because the inevitability of e removes the path beginning with f from the initial
state.

M. P. Singh 10 11 May 1997

D6 = e _ f � e

@
@
@
@
@
@@R

�
�
�
�
�
���

C
C
C
C
C
CCW

�
�

�
�

�
��	

C
C
C
C
C
CCW

�
�
�
�
�
���

:e ^ :e ^ :f ^ :f

2e 2f

2f

>

e; e

f
f

e
f ; f

e

��
��
��
��
��
��
��
��

@@
@@
@@
@@
@@
@@

Figure 4: Unenforceable when e and f are inevitable

Example 10 D6 = e_f � e (diagramed in Figure 4) is unenforceable when e and f are both
inevitable, because there is no path on which they both occur.

Example 11 Let D7 = f _ e. The dependencies D! = e_f and D7 are jointly enforceable,
although Gb(D<; e)^Gb(D7; e) = 3f ^3f , which reduces to 0. This just means that e must
always be rejected. However, if e is inevitable, then D6 and D7 are jointly unenforceable.

3.2.4 Triggerable Events

Triggerable events do not a�ect the guards, only their processing. A naive approach will
cause e to wait forever if f is triggerable. A solution is to set up a promissory message from
the potential trigger event to the triggerable event, and to arrange the execution mechanism
so that triggerable events can be scheduled even though they are not explicitly attempted.

Example 12 Consider D! = e _ f when f is triggerable. Now when e is attempted, it
promises 3e to f . Since f 's guard was already >, it remains >, but the interrupt, i.e., the
receipt of a message from e, serves to trigger f . f produces a noti�cation to e, which causes
e's guard to become >. Thus e can also happen.

A more complex case arises when the guards are as in Example 6, but the later event is
to be triggered.

Example 13 Let Gb(e) = 3f ^ :f and Gb(f) = 2e _ 3e. Let f be triggerable. When e
is attempted, it sends a promise of 3e to f . f 's guard can change to 2e as a result|still
not enough to execute f , so f promises back. e's guard can change to >, so it happens. Its
noti�cation satis�es the condition in f 's promise, so f happens.

4 Formalization

A careful formalization can help in proving the correctness of an approach and in justifying
improvements in e�ciency. Correctness is a concern when (a) guards are compiled, (b)
guards are preprocessed, and (c) events are executed and guards updated.

Correctness depends on the evaluation strategy, which determines how events are sched-
uled. We formalize strategies by stating what initial values of guards they use, and how they

M. P. Singh 11 11 May 1997

update them. We begin with a strategy that is simple but correct and produce a series of
more sophisticated, but semantically equivalent, strategies.

Given workowW, S yields a function S(W), which captures the evolution of guards and
execution of events. Given an event e, a trace v, and index j in v, S(W; e; v; j) equals the
current guard of e at index j of v. Here v corresponds to the trace being \generated" and j
indicates how far the computation has progressed.

De�nition 12 An evaluation strategy is a function S : }(E) 7! (� �UT �N 7! T).

Formally, an evaluation strategy S(W) generates trace u 2 UT if for each event e that
occurs on u, u satis�es e's current guard due to S(W) at the index preceding e's occurrence.
We write this as S(W); u.

De�nition 13 S(W);i u i� (8j : 1 � j � i) u j=j�1 S(W; uj)).

De�nition 14 S(W); u 4 (8i : i � juj) S(W);i u).

Although the guard is veri�ed at the designated index on the trace, its veri�cation might
involve future indices on that trace. That is, the guard may involve 3 expressions that
happen to be true on the given trace at the index of e's occurrence. Because generation
assumes looking ahead into the future, it is more abstract than execution.

In order to establish model-theoretic correctness of the initial compilation procedure
given by De�nition 11, we begin with a trivial strategy, Sb. Sb sets the guards using Gb

and never modi�es them. Theorem 11 establishes the soundness and completeness of guard
compilation.

De�nition 15 (8v; j : Sb(W; e; v; j) = Gb(W; e)).

Observation 10 Sb(W); u i� (8j : 1 � j � juj) u j=j�1 Gb(W; uj)).

Theorem 11 Sb(W); u i� (8D 2 W : u j= D).

4.1 Evaluation

The operator � captures the processing required to assimilate di�erent messages into a
guard. This operator embodies a set of \proof rules" to reduce guards when events occur
or are promised. Table 1 de�nes these rules. Because of two-sequence form (TSF) [15], we
need not consider longer sequences.

When the dependencies involve sequence expressions, the guards can end up with se-
quence expressions, which indicate ordering of the relevant events. In such cases, the infor-
mation that is assimilated into a guard must be consistent with that order. For this reason,
the updates in those cases are more complex. Lemma 12 means that the operator � preserves
the truth of the original guards.

Lemma 12 (9k � j : u j=k M and u j=j G�M)) u j=j G.

M. P. Singh 12 11 May 1997

Old Guard G Message M New Guard G�M

G1 _G2 M G1 �M _ G2 �M

G1 ^G2 M G1 �M ^ G2 �M

2e 2e >

2e 2e or 3e 0

3e 2e or 3e >

3e 2e or 3e 0

2(e1 � e2) 2(e1 � e2) >

2(e1 � e2) 2(e2 � e1) 0

2(e1 � e2) 2ei or 3ei 0

3(e1 � e2) 2(e1 � e2) or 3(e1 � e2) >

3(e1 � e2) 2(e2 � e1) or 3(e2 � e1) 0

3(e1 � e2) 2ei or 3ei 0

:e 2e 0

:e 2e or 3e >

G M G, otherwise

Table 1: Assimilating Messages

The repeated application of � to update the guards corresponds to a new evaluation
strategy, S�. This strategy permits possible traces on which the guards are initially set
according to the original de�nition, but may be updated in response to expressions veri�ed
at previous indices.

De�nition 16 S�(W; e; u; 0) 4 Gb(W; e).
S�(W; e; u; i+1) 6= S�(W; e; u; i)) (9k � i : u j=k M and S�(W; e; u; i+1) = (S�(W; e; u; i)�
M)).

S� does not require that every M that is true be used in reducing the guard. Lemma 12
enables us to accommodate message delay, because noti�cations need not be incorporated
immediately. This is because when 2e and 3e hold at an index, they hold on all future
indices.

Theorem 13 establishes that the evaluation of the guards according to � is sound and
complete. All traces that could be generated by the original guards are generated when
the guards are updated (completeness) and that any traces generated through the modi�ed
guards would have been generated from the original guards (soundness).

Theorem 13 Replacing Sb by S� preserves correctness, i.e., S�(W); u i� Sb(W); u.
The main motivation for performing guard evaluation as above is that it enables us

to collect the information necessary to make a local decision on each event. Theorem 13
establishes that any such modi�ed execution is correct. However, executability requires in
addition that we can take decisions without having to look into the future. The above

M. P. Singh 13 11 May 1997

theorem does not establish that the guards for each event will be reduced to 2 and :
expressions (which require no information about the future). That depends on how e�ectively
the guards are processed.

4.2 Simpli�cation

We now show how guards as given in De�nition 11 can be computed more e�ciently. Theo-
rems 14 and 15 show that the computations during guard compilation can be distributed over
the conjuncts and disjuncts of a dependency. Since our dependencies are in TSF, this means
the constituent sequence terms can be processed independently of each other. Theorem 15
is also important for another reason, namely, because it essentially equates a workow with
the conjunction of the dependencies in it.

Theorem 14 Gb(D _ E; e) = Gb(D; e) _ Gb(E; e).

Theorem 15 Gb(D ^ E; e) = Gb(D; e) ^ Gb(E; e).

We introduce the basis of a set of paths as a means to show how guards can be compiled
purely symbolically, and to establish some essential results regarding the independence of
events from dependencies that do not mention them. Intuitively, 	, the basis of �(D), is the
subset of �(D) that involves only those events that occur in D. �(D) can be determined
from 	(D) and vice versa. Lemma 17 means that the guard compilation essentially uses
	(D)|the other paths in �(D) can be safely ignored. Theorem 18 shows that the guard on
an event e due to a dependency D is simply 3D. This means that, for most dependencies
and events, guards can be quickly compiled into a succinct expression.

De�nition 17 	(D) 4 fw : w 2 �(D);�w = �Dg.

Lemma 16 D �
W
�2	(D) �.

Lemma 17 If e 2 �D, then Gb(D; e) =
W
w2	(D) Gb(w; e).

Theorem 18 Gb(D; e) = 3D, if e 62 �D.

4.2.1 Relaxing the Past

De�nition 18 allows us to replace certain sequences in the past component of De�nition 11
by conjunctions. Intuitively, the original guards place redundant information on each event,
even when the other events would ensure that no spurious traces are realized. G�p gives a
relaxed de�nition of guards, where � is a set of events for which the non-relaxed de�nition
is applied (� is used when the event attributes are formalized; it is omitted when it equals
;).

De�nition 18 G�p (W; e) 4 in Gb(W; e) substitute 2(e1 �e2) by 2e1^2e2, if fe1; e2g\� 6= ;

Terms such as 2(e1 � e2) are produced in the guards by an application of Observation 5.
S�p is the evaluation strategy corresponding to G�p , in which updates happen as before.
Theorem 19 establishes the correctness of S�p .

Theorem 19 For all �, replacing S�(W) by S�p (W) preserves correctness.

M. P. Singh 14 11 May 1997

4.2.2 Relaxing the Past and the Future

Can we do any better than the above? Yes and No. In some cases, we can replace all
sequences in guards with conjunctions The idea is that each event would locally capture
what comes before and what comes after. S�^ is the evaluation strategy corresponding to
G�^ .

De�nition 19 G�^ (W; e) 4 in G�p (W; e) substitute :e1^3(e1 �e2) by :e1^3e1^:e2^3e2,
if fe1; e2g \� 6= ;

But Lemma 20 holds, because De�nition 19 allows the traces validly generated from the
given dependency to be combined into spurious traces.

Lemma 20 Replacing S�(W) by S�^ (W) does not preserve correctness.

However, we obtain a positive result by restricting the syntax of dependencies. A 3-
dependency is in \3-clausal" form, which means that it has no conjunctions and each sequence
expression has no more than 3 events. A 3-workow is a single 3-dependency, i.e., has been
combined into a single 3-dependency to show that it does not \hide" a sequence of more
than 3 events. 3-workows cover many of the cases of interest, including [15, Example 4],
and Examples 15 and 16 of section 4.5. Lemma 21 shows the present formulation applies to
3-workows.

Syntax 5 0;> 2 E3

Syntax 6 e1 � : : : � en 2 E3 if ei 2 � and n � 3

Syntax 7 E1; E2 2 E3 implies that E1 _ E2 2 E3

Lemma 21 If W is a 3-workow, then replacing S�(W) by S�^ (W) preserves correctness.
Given a 3-workow, we can compile the guards modularly from the original dependen-

cies using De�nition 19. However, to determine whether a given workow is a 3-workow
requires combining the dependencies to check that no sequence is longer than 3 events. This
computation can, in the worst case, be exponential in the number of dependencies, but is
often tractable. It only needs to be performed once at compile-time, and may be avoided if
one decides to forego possible simpli�cation.

4.2.3 Eliminating Irrelevant Guards

Theorem 22 shows that the guard on an event e due to a dependency D in which e does
not occur can be set to >, provided D is entailed by the given workow|an easy test of
entailment is that D is in the workow. Thus dependencies in the workow that don't
mention an event can be safely ignored! This makes sense because the events mentioned in
D will ensure that D is satis�ed in any generated trace. Thus at all indices of any generated
trace, we will have 3D anyway. Below, G�> replaces the irrelevant guards for events not in
�; S�> is the corresponding strategy.

M. P. Singh 15 11 May 1997

De�nition 20 G�>(D; e) = >, if e 62 �D and D 2 W, where e 62 �; G�>(D; e) = G�p (D; e)
otherwise.

Theorem 22 Replacing S�p (W) by S�>(W) does not violate correctness.
Theorems 15 and 22 establish that the guard on an event e due to a conjunction of depen-

dencies is the conjunction of the guards due to the individual dependencies that mention e.
Thus, we can compile the guards modularly and obtain expressions that are more amenable
to processing.

4.3 Formalizing Event Attributes

We formalize the event attributes inevitable and immediate in terms of how they strengthen
a given dependency. We de�ne a transformation, �, of a set of paths into a set of \safe"
paths that satisfy the event attributes. That is, � eliminates paths that violate one of the
attributes. Since this depends on what other paths are legal, we must apply � iteratively in
order to obtain the desired set. The number of iterations depend on the length of the longest
path in the input set. For this reason, we begin the process from 	(D), in which the paths
are limited to length j�Dj=2.

De�nition 21 �0(D) 4 	(D).
�i+1(D) 4 �i(D) \ fw : �(w; �i(D))g, where �(w;P) i�

� if e 2 �D\�v , then (8w1; w2 : w = w1w2) e 2 w1, or e 2 w1, or (9w3; w4 : w1w3ew4 2
P)).

� if e 2 �D \�m, then (8w1; w2 : w = w1w2) e 2 w1, or e 2 w1, or (9w3 : w1ew3 2 P)).

De�nition 22 �(D) 4 �dj�Dj=2e(D).

�(D) gives the set of safe paths in D that do not risk violating the given attributes.
�(D) is D strengthened to accommodate the event attributes. Once the safe paths in a
dependency relative to the event attributes have been identi�ed, we can compute �(D) as
the disjunction of the safe paths. Lemmas 23 and 24 show that the formal de�nition behaves
as desired. Lemmas 23 and 24 mean that if �(D) 6= 0, each inevitable event will remain
possible along each path in �(D) and each immediate event will remain possible at each
index of each path in �(D).

De�nition 23 �(D) 4
W
w2�(D)w.

�(W) = f�(D) : D 2 Wg.

Lemma 23 If [[�(D)]] 6= ; and u �k �(D) and e 2 �m and (8j : 1 � j � k) uj 6= e), then
(9v : u �k v and vk+1 = e and v �k+1 �(D)).

Lemma 24 If [[�(D)]] 6= ; and u �k �(D) and e 2 �v and (8j : 1 � j � k) uj 6= e), then
(9v; l : u �k v and vl = e and v �l �(D)).

Example 14 We can verify that if �v = feg, then �(e_ f) is equivalent to e � f _ e � f _ e �
f _ f � e _ f � e, which simpli�es to e � f _ f , slightly stronger than the original dependency.
Similarly, referring to Figure 3, we can check that if �m = feg, then �(e _ f � e) = 0.

M. P. Singh 16 11 May 1997

Scheduling with Event Attributes

If e 2 �v is attempted, it is made to wait until the opportune moment. When its guard
becomes >, it can happen. 3e must hold on any generated trace, because only traces with
e can be allowed. Thus, 3e is communicated to the relevant events so that spurious traces
can be prevented.

The guard on an immediate event may not be >. Yet, such an event must be allowed im-
mediately. When events must be mutually ordered, the guards redundantly attach ordering
information on all events that are ordered. Since an immediate event f can and must happen
without regard to its guard, it cannot be made responsible for ensuring its mutual ordering
with any other event. Any other event e that relies on f 's non-occurrence must explicitly
check if f has not yet occurred. If not, e can proceed; otherwise not. (If e is also immediate,
�(D) must allow each order of e and f .) Sm is the strategy that enables immediate events
to happen immediately.

De�nition 24 Sm(W; e; u; i) 4 (if e 2 �m, then >, else S�m: (W; e; u; i)).

Theorem 25 Replacing S�: by Sm does not violate correctness.

Avoid Prohibitory Messages

For any two ordered events, the guards of both include information about their ordering.
This can be exploited by letting the event which comes �rst in the given order to occur
anyway, and making the event which comes later to be responsible for the ordering. In other
words, while evaluating guards, subexpressions of the form :f can be treated as >, unless f
is immediate. Theorem 26 shows that this simpli�cation does not violate correctness. Thus
events can be executed with greater decoupling. Expressions such as :f are not equivalent
to >, because they can reduce to 0 when a 2f message arrives. S�: is the evaluation strategy
that reduces 2f to 0 and :f to >, provided f 62 �. The guards update according to S�>|the
reduction kicks in independently at each moment.

De�nition 25 S�: (W; e; u; i) =
S�>(W; e; u; i)j(8f2�n�:2f ::=0;:f ::=>).

Theorem 26 For all �, replacing S�> by S�: does not violate correctness.

4.4 Preprocessing and Execution

Generation is abstract in that a trace may be generated based on future events. In actual
execution, we cannot look into the future. Sections 3.1 and 3.2.4 discussed some approaches
through which the desired computations may be realized by sending additional messages.

These approaches set up the exchange of certain messages based on relationships among
the events. These heuristics are obviously sound, because they merely call for the exchange of
messages that contain true assertions. Completeness, however, requires that if the guards are
mutually satis�able, then at least one event must have a guard of >. We defer completeness
issues to future research.

M. P. Singh 17 11 May 1997

Heuristic 1 [Example 15 below] If e is triggerable, but not submitted, then execute e at
any index where G(e) = >. In other words, a triggerable event may proactively be executed
when it meets the usual requirements for execution, i.e., when its guard is >. �

Heuristic 2 [Example 6] If G(e) 6= >, G(e)�2f = >, G(f) 6= >, G(f)�3e = >, then e
and f will send a promise to the other if they are the �rst to be attempted. �

Heuristic 3 Heuristic 2 does not apply in the case where n > 2 events have a cyclic depen-
dency. For such cases, we can use the present heuristic. Let fe0; : : : ; en�1g be a set of events
such that (8i : 0 � i < n) G(ei) �3(ei+1modn) = >), then set up a promise from ei to
ei+1modn when ei is attempted and a promise has not already been received that updates its
guard to >. �

Heuristic 4 If G(e) � 2f = 0 and G(f) � 2e = 0, then e and f will prohibit the other
before proceeding. �

Theorem 27 Heuristics 1, 2, 3, and 4 are sound.
We assume that the underlying message transport layer guarantees message ordering.

We also assume that the events are ordered at the appropriate granularity of time.

4.5 Examples

We can compile and preprocess the guards on the di�erent events in the workow of [15,
Example 4] to achieve the desired e�ect. In the following, we assume that the abort events,
cbook and cbuy, are immediate. All other events, in particular, the commit events, cbook and
cbuy, are normal. The start events, sbuy , sbook, and scancel, are triggerable. For simplicity,
Example 15 considers the workow fD1;D2;D3g; Example 16 adds back D4. For simplicity,
dependencies are given in 3-clausal form rather than TSF.

Example 15 Because of the above attributes, dependency D3 is strengthened to �(D3) =
cbook_scancel_cbuy �cbook �scancel_cbook �cbuy �scancel_cbuy �scancel �cbook_scancel �cbuy �cbook. There is
no change in D1 or D2. We obtain the following guards from the workow fD1;D2; �(D3)g:

� G(sbuy) = 3sbook

� G(cbook) = :cbuy ^ (3scancel _2cbuy _ :scancel ^ 3cbuy)

� G(cbuy) = > (instead of 3cbook _3scancel)

� G(scancel) = >

We can enact this workow as follows. Suppose sbuy is attempted. It is accepted immediately,
because its guard would be satis�ed by a triggerable event with a true guard. Thus, sbook
is triggered. Suppose cbook is attempted. It too is accepted because its guard would be
satis�ed by a triggerable event with a true guard. G(scancel)�2cbook = 2cbuy . Suppose cbuy
is attempted. It is too is accepted (being an immediate event). Since G(scancel)�2cbuy = >,
scancel must be triggered now.

M. P. Singh 18 11 May 1997

Example 16 In Example 15, scancel may be triggered unnecessarily, because its guard is >.
This means the speci�cation allows superuous events. To make the workow more realistic,
we add dependency D4 back, which ensures that scancel executes only if necessary. Under
the above attributes, this strengthens to �(D4) = scancel _ cbook � scancel � cbuy _ cbook � cbuy �
scancel _ cbuy � cbook � scancel. We obtain di�erent guards on the events cbook, cbook, cbuy, cbuy,
scancel, and scancel.

This proceeds similarly to Example 15. The main di�erence is in the guard of the
triggerable scancel not being >. When cbook is attempted, it is accepted, because if the
immediate events referred to in its guard occurs, its guard reduces to 3scancel, which can be
triggered. When cbuy is attempted, it is accepted, because it is immediate. Now the guard
on scancel is >. Thus, scancel is triggered.

5 Enhancements

Our approach can accommodate simple real-time dependencies. We model clock values or
timer interrupts simply as immediate events. Thus, we can strengthen the dependencies
involving such events, and compile guards as above. Timer events a�ect the enforceability
of dependencies in the same manner as other immediate events.

General real-time scheduling involves reasoning about timer events before they occur, so
as to allow enough time for various activities. Such reasoning might be performed while
designing e�ective workows. This is beyond the scope of this paper.

5.1 Dynamic Modi�cation of Workows

Modi�cations can take the form of dependencies being added or removed, or attributes being
modi�ed. Checking violation of any dependency or attribute requires maintaining the entire
history of the computation, and may not be practical.

When dependencies are removed, their contributions to the guards should be removed
to avoid over-constraining the workow. For this purpose, we can recompile the guards, or
maintain the contribution of each dependency to each guard to facilitate updates.

When a dependency D is added, D's contribution to the guard on each event is compiled
as usual, but before it is assigned to the event, it is updated using the � operator. The �nal
guard reects all the events that have occurred or promised in the correct order.

Modifying event attributes is unintuitive, since it means a change in the inherent struc-
ture of the component tasks of a workow, and should not occur during execution. However,
adding or removing the attributes of normal, immediate, and inevitable translates into cor-
responding updates on the dependencies. Triggerable events can be triggered whenever their
guard becomes true. If we care about the past, we must check not only the dependencies, but
also whether an inevitable event has not already been rejected, an immediate event rejected
or delayed, or a non-triggerable event triggered.

5.2 Parametrization

So far, we considered speci�c event instances. We consider languages EP [15, section 5] and
TP to interpret events as types, and parametrize them to create unique event instances. TP

M. P. Singh 19 11 May 1997

uses the parametric forms introduced in EP , just as T used E.
We assume that (a) events from the same task have the same variable parameters, and (b)

all references to the same event type involve the same tuple of parameters. These assumptions
are reasonable because our focus is on intertask dependencies. When dependencies are stated,
some of the parameters can be variables, which are implicitly universally quanti�ed. When
events are scheduled, all parameters must be constants.

Common parameters include task ids, database keys, and other unique ids. Since the
event IDs need not depend on the structure of the task, the scheduler behaves independently
of the structure. An agent may have arbitrary loops and branches and may exercise them in
any order as required by the underlying task. Hence, we can handle arbitrary tasks correctly!

V is a set of variables and C a set of constants. Members of V and C can be used as
parameters. Intuitively, � includes all (ground) event literals and � includes all event atoms.
Since the universe depends on �, it is automatically rede�ned to include all traces formed
from all possible event instances. We add a semantic rule for TP :

Semantics 10 u j=i E(v) i� (8c 2 C : u j=i E(v ::= c))

The guard de�nitions are unchanged. The variables are instantiated to the appropriate
constants when an event is attempted or triggered. The updates on guards due to event
occurrences of promises are still performed using the � operator, enhanced to accommodate
parameters.

De�nition 26 G(~v)�M(~c) 4 G(~v) ^ G(~v ::= ~c)�M(~c).

Parametrized Workows

Parameters are used within a given workow to relate events in di�erent tasks. Typically,
the same variables are used in parameters on events of di�erent tasks. Attempting some
key event binds the parameters of all events, thus instantiating the workow afresh. The
workow is then scheduled as described in previous sections. We redo Example 15.

Example 17 Now we use t as the trip or reservation id to parametrize the workow. The
parameter t is bound when the buy task is begun. The explanations are as before|now we
are explicit that the same customer features throughout the workow. The resulting guards
are as in Example 15, but with an explicit parameter, which is bound when the event is
attempted or a message received from another event. Suppose sbuy [33] is attempted. As
before, it is accepted, and a noti�cation of 2sbuy [33] is produced, which triggers sbook[33],
and so on. Thus the bound parameter is passed along as the workow is enacted.

Arbitrary Interacting Tasks

The di�erent events may have unrelated variable parameters. Such cases occur in the spec-
i�cation of concurrency control requirements across workows or transactions. Example 18
shows how mutual exclusion may be captured in our approach.

M. P. Singh 20 11 May 1997

Example 18 Let the bi event denote a task Ti's entering its critical section and the ei
event denote Ti's exiting its critical section. Then, mutual exclusion between tasks T1 and
T2 may be captured by stating that if both b1 and b2 occur, then if b1 precedes b2, e1
must also precede b2. This holds for independent variable parameters x and y on T1 and
T2, respectively. Thus, we have D10(x; y) = (b2[y] � b1[x] _ b1[x] _ b2[y] _ e1[x] � b2[y]) and
D11(x; y) = (b1[x] � b2[y] _ b1[x] _ b2[y] _ e2[y] � b1[x]).

We observe that e1 and e2 are immediate events, since the tasks may unilaterally exit
their critical sections. Interestingly, �(D10) = D10 and �(D11) = D11. Thus, from the
workow fD10;D11g, we obtain the following guards:

� G(b1[x]) = (2b2[y] _3b2[y] _3(e1[x] � b2[y]))^ (:b2[y] _2e2[y])

� G(e1[x]) = >

� G(b2[y]) = (2b1[x] _3b1[x] _3(e2[y] � b1[x])) ^ (:b1[x]_ 2e1[x])

� G(e2[y]) = >

When b1[x̂] is attempted for a constant x̂, G(b1[x]) is instantiated to G(b1[x̂]). Intuitively,
G(b1[x̂]) means that for all y (a) either b2[y] has occurred, b2[y] will not occur, or b2[y] will
occur after e1[x̂], and (b) either b2[y] has not occurred or e2[y] has occurred. These are
precisely the conditions under which b1[x̂] can be allowed to proceed. The presence of the
variable parameters leads to an interesting phenomenon during execution:

� Assume that initially, none of the events has occurred. When b1[x̂] is attempted, it
prohibits b2[y] for all y, and is accepted.

� G(b2[y]) is updated to G(b2[y]) ^ (G(b2[y])�2b1[x̂]). Since G(b2[y])�2b1[x̂] = 2e1[x],
we obtain that G(b2[y]) = (2b1[x]_3b1[x]_3(e2[y] �b1[x]))^ (:b1[x]_2e1[x])^2e1[x̂].

� Suppose b2[ŷ] is attempted. Because its guard includes 2e1[x̂], it is made to wait.

� Later, when e2[x̂] occurs, G(b2[y]) is updated to its original form. Now b2[ŷ] can be
accepted, appropriately prohibiting b1[x] for all x.

In this manner, the guard expression can grow to accommodate the relevant instances,
and later shrink when those instances are no longer relevant.

Thus parameters add naturally to our approach and support the usual semantics. Al-
though individual workows can be parametrized in a straightforward manner, interactions
between independent workows require greater subtlety. Although it took no signi�cant
e�ort in our approach to do so, this is conceptually an important step|the simplicity only
shows the intuitiveness of our approach. We believe that extralogical parameters can be
added to the previous approaches, but to do it logically would be a challenge for them.

M. P. Singh 21 11 May 1997

6 Overview of the Literature

Some related literature is discussed in [15]. Several execution environments have been pro-
posed, which support speci�cation and execution of transactions. An actor-based environ-
ment is developed in [8]. The DOM project includes a programmable environment (TSME)
in which several transaction models can be speci�ed [6]. However, TSME de�nes correctness
criteria based on transaction histories, like in traditional approaches. The task speci�ca-
tion languages for interactions [12] and METEOR [11] are similar in intent. ASSET is a
programming facility for specifying transactions in the Ode environment [3]. This facility
borrows intuitions, but not the formalism, from ACTA (discussed below). [9] develops a
capability-based framework for activity management. This is a promising approach, which
combines ideas from problem-solving agents and activity decomposition. Event-condition
action rules are derived from activity graphs. These rules are then executed. The framework
is general. Like our approach, it does not look into the details of the tasks. Unlike our
approach, however, it is centralized and cannot yet handle concurrency.

ACTA was the �rst attempt at formalizing the semantics of extended transaction models
[4]. It introduced signi�cant events of database transactions. ACTA provides a history-
based formalism for specifying intertask dependencies. It is similar in spirit to [15], although
the latter also develops equations and model-theory for residuation, which characterizes the
most general transitions in an abstract scheduler. The latter idea is the basis for the present
paper.

Klein's approach is also event-centric and distributed [10]. However, it is limited to loop-
free tasks, and doesn't handle event attributes generically. G�unth�or's approach is based
on temporal logic, but is centralized [7]. These approaches are somewhat ad hoc and do
not properly handle complementary events. Also, they do not consider all the attribute
combinations that we motivated above. Lastly, our previous approach, which constructs
�nite automata for dependencies, is centralized [2]. It uses pathset search to avoid generating
product automata, but the individual automata can be quite large. Neither of the above
approaches can express or process complex dependencies as easily as the present approach.
Recently, a distributed prototype was proposed, but it is not given a formal basis [13].

In our system, events variously wait, send messages to each other, and thereby enable
or trigger each other. This appears intuitively similar to Petri nets, which can be applied
to workows [17]. However, our goal was to �nd a way to characterize workows that may
be weaker than general Petri nets, but which has just enough power to do what we need
and is declaratively speci�ed. Indeed, in a sense we \synthesize" Petri nets automatically by
setting up the appropriate messages. By symbolic reasoning during preprocessing, we also
ensure that the \net" will operate correctly, e.g., by not deadlocking at mutual waits, but
generating appropriate promissory messages instead.

7 Conclusions and Future Work

Our approach is provably correct, and applies to many useful workows in heterogeneous,
distributed environments. Much of the required symbolic reasoning can be precompiled,

M. P. Singh 22 11 May 1997

leading to e�ciency at run-time. Although we begin with speci�cations that characterize
entire traces as acceptable or unacceptable, we set up our computations so that information
ows as soon as it is available, and activities are not unnecessarily delayed. A prototype of
our system was implemented in an actor language. It is being reimplemented in Java. [1]
report an alternative implementation of our approach in which they restrict the language
to capture some commonly occurring workow patterns. This is a promising approach to
optimize important patterns.

Future work includes exploring connections with constraint languages so as to restrict the
parameters in useful ways. Other potential extensions to the present work include research
into the real-time aspects of workow scheduling and improved characterization of the syn-
tactical restrictions with which greater e�ciency may be achieved. We are considering an
alternative implementational approach in which no preprocessing is performed, but promises
are always generated. It remains to be seen if this will prove acceptable.

Our approach formalizes some of the reasoning required in scheduling workows. It
assumes intertask dependencies as given. An important problem that is beyond the scope
of this paper is how may one actually come up with the necessary intertask dependencies to
capture some desired workow. This is the focus of a follow on research project.

References

[1] M. Altinel, E. Gokkoca, I. Cingil, E. Nesime, P. Koksal, and A. Dogac. Design and
Implementation of a Distributed Workow Enactment Service. In Proc. Conf. on Intell.
& Coop. Info. Syst. (CoopIS), 1997.

[2] P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and enforcing intertask
dependencies. In Proc. 19th VLDB Conference, 134{145, 1993.

[3] A. Biliris, S. Dar, N. Gehani, H. Jagadish, and K. Ramamritham. ASSET: A system
for supporting extended transactions. In Proc. ACM SIGMOD Conf., 1994.

[4] P. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models using
ACTA. ACM Trans. Database Syst., 19(3):450{491, 1994.

[5] E. Emerson. Temporal and modal logic. In J. van Leeuwen, ed., Handbook of Theoretical
Computer Science, vol. B. North-Holland, Amsterdam, 1990.

[6] D. Georgakopoulos, M. Hornick, and F. Manola. Customizing transactions models and
mechanisms in a programmable environment supporting reliable workow automation.
IEEE TKDE, 8(4):630{649, 1996.

[7] R. G�unth�or. Extended transaction processing based on dependency rules. In Proc.
RIDE-IMS Wkshp, 1993.

[8] M. Haghjoo, M. Papazoglou, and H. Schmidt. A semantics-based nested transaction
model for intelligent and cooperative information systems. In Proc. Conf. on Intell. &
Coop. Info. Syst. (CoopIS), 1993.

M. P. Singh 23 11 May 1997

[9] K. Karlapalem, H. Yeung, and P. Hung. CapBasED-AMS: A Framework for Capability
Based and Event Driven Activity Management System. In Proc. Conf. on Intell. &
Coop. Info. Syst. (CoopIS), 1995.

[10] J. Klein. Advanced rule driven transaction management. In Proc. IEEE COMPCON,
1991.

[11] N. Krishnakumar and A. Sheth. Managing heterogeneous multi-system tasks to support
enterprise-wide operations. Dist. & Par. Databases, 1994.

[12] M. Nodine, N. Nakos, and S. Zdonik. Specifying exible tasks in a multidatabase. In
Proc. 2nd Conf. Coop. Info. Syst. (CoopIS), 1994.

[13] A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch,
and I. Shevchenko. Supporting state-wide immunization tracking using multi-paradigm
workow technology. In Proc. 22nd VLDB Conf, 1996.

[14] M. Singh. Semantical considerations on workows: Algebraically specifying and schedul-
ing intertask dependencies. In Proc. DB Prog. Lang. (DBPL), 1995.

[15] M. Singh. Formal Aspects of Workow Management, Part 1: Seman-
tics. TR-97-04, Computer Science, NCSU, Raleigh, May 1997. Ex-
tends [14]. http://www.csc.ncsu.edu/ faculty/ mpsingh/ papers/ databases/

wf_semantics.ps.

[16] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The extensible services switch
in Carnot. IEEE Par.& Dist. Tech., 16{20, 1993.

[17] W. van der Aalst. Petri-net-based workow management software. In Proc. NSF Wkshp.
Workow and Process Automation in Info. Syst., 1996.

A Proofs of Important Results

Auxiliary De�nitions 1

De�nition 27 (v w w) 4 v contains the events of w in the same relative order.

Observation 28 If v w w, then w 2 �(D)) v 2 �(D).

Observation 29 �(D ^ E) = �(D) \�(E).

Observation 30 D � E 6) �(D) = �(E).
For traces u and v, u �i v means that u agrees with v up to index i. u �i D means that

u agrees with dependency D up to index i. Lemma 31 relies on the maximality of u.

De�nition 28 u �i v 4 i � juj and i � jvj and (8j : 1 � j � i) uj = vj).

M. P. Singh 24 11 May 1997

De�nition 29 u �i D 4 (9v 2 [[D]] : u �i v).

Lemma 31 u �juj D) u 2 [[D]].

Lemma 32 If u j=k�1 Gb(w; uk), then u w w.

Proof. Let uk = wl (for otherwise, Gb(w; uk) = 0). Then, pre(u; uk)) pre(w; uk) and
post(u; uk)) post(w; uk). Therefore, hu1; : : : ; uk�1i w hv1; : : : ; vl�1i and
huk+1; : : :i w hvl+1; : : :i. Hence, u w w.

To simplify the notation, we adopt the convention that metatheory expressions of the
form u j=i S(W; e; v; j) can be abbreviated to u j=i S(W; e), wherein we implicitly set v = u
and j = i.
Proof of Theorem 11

Sb(W) ; u i� (8D 2 W : u j= D).

Proof. Consider any dependency E 2 W. By Observation 10, (8j : 1 � j � juj) u j=j�1

Gb(E; uj)).
By Observation 9, u j=0 Gb(E; u1) implies that (9w : w 2 �(E) and u j=0 Gb(w; u1)). By

Lemma 32, u w w. By Observation 28, u 2 �(E). Therefore, by Lemma 7, u j= E. This
holds for all dependencies in W.

Consider a dependency D 2 W. Since u j= D and �u � �D (because u is maximal),
u 2 �(D). Thus, (8j : 1 � j � juj) (Gb(u; uj)) Gb(D;uj))). We have (8j : 1 � j �
juj) u j=j�1 Gb(D;uj)). Hence, by Observation 10, Sb(W); u.
Proof of Lemma 12

(9k � j : u j=k M and u j=j G �M)) u j=j G.

Proof. The proof is by induction on the structure of expressions. The base cases can be
veri�ed by inspection. Let (9k � j : u j=k M and u j=j (G1�M_G2�M)). If u j=j G1�M ,
then u j=j G1 (inductive hypothesis). Therefore, u j=j G1_G2, and similarly for G2. G1^G2

is analogous.
Proof of Theorem 13

Replacing Sb by S� preserves correctness, i.e., S�(W); u i� Sb(W); u.

Proof. From De�nition 16, it is possible to have a trace u, such that (8i : S�(W; e; u; i) =
Gb(W; e)). Therefore, S�(W) generates all the traces that Sb(W) generates. Thus complete-
ness is established.

Let S�(W) ;i u. Then, (8j : 1 � j � i) u j=j�1 S�(W; uj)). We prove by induction
that (8j : 1 � j � i)
u j=j�1 Sb(W; uj)). Since S�(W; u1; u; 0) = Sb(W; u1; u; 0), we have u j=0 Sb(W; u1). Thus,
Sb(W);1 u.

Assume that the inductive hypothesis holds for 1 � l � i, i.e., (8j : 1 � j � l)
u j=j�1 Sb(W; uj)). We show that u j=l Sb(W; ul+1). S�(W) ;l+1 u holds only if u j=l

S�(W; ul+1; u; l+ 1).
If S�(W; ul+1; u; l+ 1) = S�(W; ul+1; u; l), then

S�(W; ul+1; u; l+1) = Sb(W; ul+1; u; l) = Sb(W; ul+1; u; l+1). Therefore, u j=l Sb(W; ul+1; u; l+
1), which (since Sb(W);l u) holds i� Sb(W);l+1 u, as desired.

M. P. Singh 25 11 May 1997

If S�(W; ul+1; u; l+1) 6= S�(W; ul+1; u; l), then (9k � l : u j=k M and S�(W; e; u; l+1) =
(S�(W; e; u; l)�M)). By Lemma 12, (9k � l : u j=k M and u j=l S�(W; e; u; l)�M) implies
that u j=l S�(W; e; u; l). Thus, u j=l Sb(W; ul+1; u; l + 1), which holds i� Sb(W) ;l+1 u, as
desired.
Auxiliary De�nitions 2

The next theorems rely on additional auxiliary de�nitions and results. I(w;�0) gives all
the superpaths of w that include all interleavings of w with the events in �0. We assume that
(8e : e 2 �0 i� e 2 �0). Lemma 33 states that the guard contributed by a path w equals the
sum of the contributions of the paths that extend w, provided all possible extensions relative
to some �0 are considered. For each event e in �0, e and e can occur anywhere relative to
w, and thus they essentially factor out. Lemma 34 shows that the guards are well-behaved
with respect to denotations.

De�nition 30 I(w;�0) 4 fv : �v = �w [�0 and v w wg.

Lemma 33 If e 2 �w, then Gb(w; e) =
W
v2I(w;�0) Gb(v; e).

Lemma 34 D � E) Gb(D; e) = Gb(E; e).
Proof of Theorem 14

Gb(D _ E; e) = Gb(D; e) _ Gb(E; e).

Proof. Gb(D _E; e) =
W
w2�(D_E)Gb(w; e). Since �(D _E) � �(D) and �(D _E) � �(E),

Gb(D _ E; e))
W
w2�(D) Gb(w; e) _

W
w2�(E)Gb(w; e), which equals Gb(D; e) _ Gb(E; e).

In the opposite direction, let w 2 �(D). w contributes to Gb(w; e) only if e occurs in
w. Instantiate De�nition 30 as I(w;�D_E n �w), which contains all interleavings of w with
events in �D_E that aren't in �w. By Observation 28, I(w) � �(D). Also, I(w) � �(D_E).
By Lemma 33, Gb(w; e) =

W
v2I(w;�D_En�w) Gb(v; e). Thus the contribution of w to Gb(w; e) is

covered by paths in �(D _ E).
Proof of Theorem 15

Gb(D ^ E; e) = Gb(D; e) ^ Gb(E; e).

Proof. Gb(D ^ E; e) =
W
w2�(D^E)Gb(w; e). By Observation 29, �(D ^ E) = �(D) \ �(E).

Therefore, Gb(D ^ E; e))
W
w2�(D) Gb(w; e) ^

W
w2�(E) Gb(w; e), which equals Gb(D; e) ^

Gb(E; e).
In the opposite direction, consider the contribution of a pair v 2 �(D) and w 2 �(E)

to Gb(D; e) ^ Gb(E; e). If e does not occur on both v and w, the contribution is 0. Let
e = vi = wj. Then Gb(v; e) = 2(e1 � : : : � ei�1) ^ :ei+1 ^ : : : ^ :ejvj ^ 3(ei+1 � : : : � ejvj) and
Gb(w; e) = 2(e1 � : : : � ej�1) ^ :ej+1 ^ : : : ^ :ejwj ^3(ej+1 � : : : � ejwj).

Gb(v; e) ^ Gb(w; e) 6= 0 implies that there is a path x, such that x w v and x w v and
Gb(x; e) = Gb(v; e) ^ Gb(w; e). By Observation 28, x 2 �(D) \ �(E). By Observation 29,
x 2 �(D ^ E). Thus, x 2 �(D) \ �(E). Hence, any contribution Gb(v; e) ^ Gb(w; e) to
Gb(D; e) ^ Gb(E; e) due to paths in �(D) and �(E) is matched by a contribution by a path
in �(D ^ E). Therefore, Gb(D; e) ^ Gb(E; e)) Gb(D ^ E; e).

Lemma 35 Gb(D; e) = Gb(D ^ e; e).

M. P. Singh 26 11 May 1997

Lemma 36 Gb(e1 � e2; e) = 3(e1 � e2), if e; e 62 fe1; e2g.

Proof. Let De = (e1 � : : : � en)^ e. By Lemmas 17 and 35, Gb(D; e) =
W
w2	(De) Gb(w; e). Let

w = he1; : : : ; ek; e; ek+1; : : : ; eni 2 	(De). Then
Gb(w; e) = 2(e1 � � � : : : � � � ek) ^ :ek+1 ^ : : : ^ :en ^3(ek+1 � : : : � en). There is one such w for
each position of e, i.e., for 0 � k � n. Thus,
Gb(D; e) =

W
0�k�n 2(e1 � � � : : : � � � ek) ^ :ek+1 ^ : : : ^ :en ^3(ek+1 � : : : � en). It is easy to

verify that for any trace u and index i, u j=i Gb(D; e) i� u j=i 3D.
Proof of Theorem 18

Gb(D; e) = 3D, if e 62 �D.

Proof. The proof is by induction on the structure of dependencies. For the base case,
consider 0, >, and event f , where f 6= e. For the inductive step, consider dependencies
of the form e1 � : : : � en. By Lemma 36, Gb(D; e) = 3D. Since D 2 E, we can show
3(D1 _D2) �= 3D1 _ 3D2, and 3(D1 ^D2) �= 3D1 ^3D2.

De�nition 31 S�p (W; e; u; 0) = G�p (W; e).
S�p (W; e; u; i+ 1) 6= S�p (W; e; u; i))

e 62 � and (9k � i : u j=k M and S�p (W; e; u; i+ 1) = (S�p (W; e; u; i)�M)).

Proof of Theorem 19

For all �, replacing S�(W) by S�p (W) preserves correctness.

Proof. Because S�p (W)) S�(W) (i.e., S�p weakens the guards), it does not prevent any
traces that would have been generated. Thus it preserves completeness.

Let S�p (W); u, such that S�(W) 6; u. Clearly, S�(W);1 u. Let D 2 W. Thus, there
exists w 2 �(D), such that u j=0 Gb(w; u1). By Lemma 32, u w w. Thus, u j= D. Thus no
additional spurious traces are allowed by S�p (W).

De�nition 32 S�^ (W; e; u; 0) = G�^ (W; e).
S�^ (W; e; u; i+ 1) 6= S�^ (W; e; u; i))

(9k � i : u j=k M and S�^ (W; e; u; i+ 1) = (S�^ (W; e; u; i)�M)).

Proof of Lemma 20

Replacing S�(W) by S�^ (W) does not preserve correctness.

Proof. Consider a dependency D = (e � f � g � h) _ (f � e � h � g). S�^ (D) ; hfeghi, which is
not in [[D]]. S�(D) 6; hfeghi.
Proof of Lemma 21

If W is a 3-workow, then replacing S�(W) by S�^ (W) preserves correctness.

Proof. If trace u containing a subsequence hefgi is generated (with f = uk), then there
must be a path w, such that u j=k�1 G

�
^ (w; f). This entails that if either e and g occur on

w, they are in the correct order with respect to f . Thus hefgi does not represent a violation
of any dependency in W.

De�nition 33 S�>(W; e; u; 0) = G�>(W; e).
S�>(W; e; u; i+ 1) 6= S�>(W; e; u; i))

(9k � i : u j=k M and S�>(W; e; u; i+ 1) = (S�>(W; e; u; i)�M)).

M. P. Singh 27 11 May 1997

Proof of Theorem 22

Replacing S�p (W) by S�>(W) does not violate correctness.

Proof. Since S�>(W) is weaker than S�p (W), completeness is preserved.
Consider D 2 W and e 62 �D. Let f 2 �D. By De�nition 20 and Lemma 17, we have

that G�>(D; f) =
W
w2	(D) G

�
p (w; f). Consequently, e and e do not occur in Gp(D; f). Thus

the occurrence or non-occurrence of e or e has no e�ect upon f .
Let S�>(W) ; u. If u 6j=j S

�
p (D;uj+1) and u j=j S

�
>(D;uj+1), then uj+1 62 �D. Let

B(u) = fui : u 6j=i�1 S
�
p (D;ui)g. Let v be such that u w v and �v = �u n B(u). Since the

guards for events in �D do not depend on uj+1, we have that (8k; l : 1 � k and 1 � l and
uk = vl) u j=k�1 G

�
p (D;uk) i� v j=l�1 G

�
p (D; vl)). Hence, S�p (W) ; v. By Theorem 19,

v j= D. By Observation 28, u j= D.
Proof of Theorem 26

For all �, replacing S�> by S�: does not violate correctness.

Proof. Because S�: (W)) S�>(W) (i.e., S�: weakens the guards), it does not prevent any
traces that would have been generated. Thus it preserves completeness.

For soundness, our proof obligation is S�: ; u) S�> ; u. We establish this by induction.
Clearly, S�: ;1 u) S�> ;1 u. Let D 2 W. By the inductive hypothesis, assume S�: ;k u
and S�> ;k u and u 6j=k S

�
>(W; uk+1).

Assume S�: ;k+1 u. Therefore, (9w : w 2 �(D) and u j=k S�: (w; uk+1) and u 6j=k

S�>(w; uk+1)). If uk+1 does not occur on w, then S�: (w; uk+1) = 0, i.e., u 6j=k S
�
: (w; uk+1).

Let uk+1 = wl. Then, there must be a :f or 2f term in S�>(w; uk+1), such that :f is
spuriously evaluated as > (or 2f as 0) in S�: (w; uk+1). Let f = up, where 1 � p � k. Since,
u j=p�1 G

�
>(D;up), there is a v 2 �(D), such that u j=p�1 G

�
>(v; up). Let up = vm. Then,

fv1; : : : ; vm�1g � fu1; : : : ; up�1g and hup+1; : : :i w hvm+1; : : :i. Consequently, uk+1 occurs on
v and u j=k G

�
>(v; uk+1). Thus, S

�
> ;k+1 u. Therefore, S�: ; u i� S�> ; u.

Proof of Theorem 25

Replacing S�: by Sm does not violate correctness.

Proof. S�: (W) is correct for all sets of events �. Because Sm(W) only weakens the guards
for some events, it does not prevent any traces that would have been generated. Thus it
preserves completeness.

Let Sm(W) ; u. Let uj 2 �m. Consider D 2 W. If all ui belong to �m, then by
Lemma 23 u 2 [[D]]. Let uk 2 �D n �m. Clearly, u j=k�1 G

�m
p (D;uk). This means there

is a v 2 �(D), such that u j=k�1 G(v; uk). By Lemma 32, u w v. Thus, u j= D. Hence,
S
�
: (W); u.
Consequently, Sm(W); u i� S�m: (W); u.

M. P. Singh 28 11 May 1997

