A Comparison of Workflow Metamodels*

Yu Lei and Munindar P. Singh
Department of Computer Science

North Carolina State University
Raleigh, NC 27695-7534, USA

ylei2@eos.ncsu.edu, singh@ncsu.edu

Abstract

Because of its immense promise in dealing with complex tasks in heterogeneous environ-
ments, workflow technology has drawn continuing interest from the research and commercial
communities. Although much attention has (rightly) been focused on techniques for scheduling
workflows and for interfacing them to legacy databases and applications, corresponding atten-
tion has not been directed toward their conceptual modeling. We believe that the success of
conceptual modeling will determine the eventual success of workflow technology.

Every workflow system implicitly incorporates a metamodel. Metamodels are the objects of
our study. We identify major categories of workflow metamodels, and a list of criteria to use as
evaluation dimensions. We model fragments of a workflow in the manufacturing domain in the
different metamodels, and compare their effectiveness in capturing the desired properties in a
modular, reusable fashion.

This evaluation is useful not only in helping one decide which metamodel to employ, but
also highlights some topics for future research.

*This research was supported by the National Science Foundation under grant TR1-9529179, IBM corporation, and
the NCSU College of Engineering. We are indebted to Manny Aparicio for useful discussions.

Contents

1 Introduction 1
2 Workflow Metamodels 1
2.1 Background Concepts 1
2.2 Major Types of Workflow Metamodels 2
2.3 Key Dimensions of Metamodels L L oo 3
3 SHIIP Example 4
4 Applying the Metamodels 5
4.1 FlowMarko 5
4.2 WIDE . . . 6
4.3 Statecharts L 7
4.4 Trigger Metamodel L 8
4.5 ActionWorkflow oL 8
5 Evaluation 9

6 Conclusions 11

1 Introduction

Briefly, workflows can be defined as composite tasks that comprise coordinated human and com-
putational subtasks. At the very least, workflows separate the control and coordination aspects of
the composite tasks from the details of the component tasks. They are frequently heterogeneous
and distributed over multiple systems. This facilitates the update and reuse of workflows, and has
led to much commercial and research interest in tools for constructing and managing them.

Much research attention has concentrated on techniques for workflow management, and not
enough on techniques for workflow modeling. Every approach implicitly carries in it some repre-
sentational language or metamodel, but the metamodels themselves have not been the objects of
study and evaluation in recent research. Recognizing that modeling issues will become increasingly
important as workflow technology attempts to expand its applications, we compare some of the
leading approaches to workflow modeling. We do so in the context of a simple application from the
manufacturing domain. This is a variation of the example scenario from the SHIIP (SHipbuilding
Information Infrastructure Protocol) project being conducted by the NIIIP (National Industrial
Information Infrastructure Protocol) consortium [SHIIP, 1997]. We are collaborating with one of
the leading industrial members of SHIIP, so our interest is not exclusively academic.

The potential benefits of this exercise are twofold. From an engineering standpoint, an eval-
uation, by presenting the strengths and shortcomings of different metamodels, helps us choose a
metamodel for our specific application. From a scientific standpoint, it highlights the opportunities
for further research.

The rest of this paper is organized as follows. Section 2 lays out our key terminology, identifies
four categories of metamodels and proposes a list of evaluation dimensions. Section 3 describes the
SHIIP example with a detailed scenario. Section 4 introduces several representative metamodels
and renders part of SHIIP representations in those metamodels. Section 5 carries out an overall
evaluation for those metamodels. Section 6 offers concluding remarks.

2 Workflow Metamodels

2.1 Background Concepts

Some basic terms are used extensively in the literature. We present a short description for some
important concepts. Although they are not formal definitions, these descriptions help clarify the
meanings we adhere to in this paper. Figure 1 illustrates the relationship of those concepts.:

o A task is a definite piece of work.

An actor is a human being or a machine which can perform a task.

A role is a logical abstraction of one or more physical actors, usually in terms of functionality.

e A process is a business process, which is composed of tasks structured in an appropriate
manner.

e A process model is an abstraction of business processes. It emphasizes the coordination of
tasks by highlighting their interdependence.

o An organization aggregates actors into groups, which are structured in some way.

@
———-w—Metamodel :
Organization il %, ___ Abstraction

Organization
Model

Assignment

Figure 1: Workflow Concepts

e An organizational model is an abstraction of organizations.

A workflow (instance) is a process combined with an organization, and assigns the tasks in
the process to actors in the organization.

A workflow model combines a process model and an organizational model.

A workflow metamodel is a representational language in which to express workflow models.

2.2 Major Types of Workflow Metamodels

Since the process model is central to the workflow model, we identify four categories of workflow
metamodel based primarily on their process metamodels.

Task flow Task is the fundamental element in the process metamodel of task-flow based workflow
metamodel. It emphasizes the analysis of all the potential sequences of tasks in the specification
phase. During model execution, an instance of the workflow decides which sequence to follow on the
basis of static specification and dynamic running context. In the graphical representation of process
model, typically a directed acyclic graph (DAG), tasks show up as the nodes, state information as
conditions attached to the edges.

State transition A state abstracts the context information at a particular time when a system
is running. A state transition occurs when a particular event or activity happens. The behaviors
of a workflow are represented as a sequence of state transitions. In the process model DAG, states
show up as a node, and tasks or events as conditions attached to an edge.

Relationship capturing Relationship-capturing based metamodel is founded at the view that
the workflow brings all the tasks together on the basis of certain relationship. The process model
is built by means of capturing this particular relationship. Example relationships can be triggers

[Joosten, 1994] or enabling or disabling conditions. The elements are typically tasks, so in certain
respects these resemble the task flow metamodels.

Communication based These approaches identify the communications among the various ac-
tors. They must also involve tasks, of course, but they present the tasks as occurring in the context
of the relationships and communications of the actors, not independently.

2.3 Key Dimensions of Metamodels

We propose a list of evaluation dimensions for workflow metamodels. We omit concerns such as
ease of use and compatibility with programming languages that are not related to metamodels.
The abbreviations in parentheses are used in Table 1.

Granularity Granularity indicates the abstraction level of the basic element examined by a
metamodel. A task represents a meaningful business action that is. A task might have a fine
structure among its constituent tasks [Leymann & Roller, 1994]. Coarse granularity simplifies
specification and increases flexibility, whereas fine granularity simplifies execution.

Control Flow (Control) Most metamodels support the basic (sequence, branch, and loop)
structures in order to be programatically complete. Some add constructs for synchronization,
parallel programming (e.g., fork and join). Some also add constructs to better support concurrency

[Chan & Vonk, 1997].

Data Flow (Data) Data flow represents potential paths followed by information exchange. Some
metamodels provide a separate representation for data flow; others merge it into control flow with
control flow; still others merge it but annotate it explicitly.

Organizational Model (Org) An organizational model consists of three parts: role description,
role relationships or groups, and an actor assignment policy [BuBler, 1994]. A model should provide
the users with the capability to customize actor types. The structure of role groups can be described
in terms of relational, hierarchical, and network models. Assignment policy accomplishes the
mapping between logical roles and physical actors.

Role Binding (Rol) Role binding is an important technique to enable dynamic actor assign-
ment by loosening the coupling between roles and actors. An actor can adopt the responsibility of
a role by binding corresponding run-time support. During execution, an actor can simultaneously
claim different roles; a role can simultaneously be embodied by different actors. Role binding some-
time includes support for role delegation, which betters the load balance by means of necessarily
delegating part of responsibilities taken by a busy role to others.

Exception Handling (Exc) An exception refers to the situation where unexpected behaviors
occur during the system execution. Exception handling concerns how to respond properly to excep-
tions when preserving the legality of system states in case any exception happens. There are two
major kinds of exceptions in workflow systems: execution exception and organizational exception.

An execution exception occurs when the system runs out of normal control flow; an organizational
exception is caused by illegal changes in the organizational structure. A common structure of the
specification of exceptions is made of a condition-reaction pair: when the condition is verified,
the corresponding reaction is executed [Casati et al., 1997]. Another rule-based formulation uses
nonmonotonic reasoning to handle exceptions [Singh & Huhns, 1994].

Transaction Support (Trn) A transaction is defined as a set of operations that satisfy ACID
properties, namely, atomicity, consistency, isolation, and durability [Gray & Reuter, 1993]. It is
crucial to enforce the satisfaction of ACID properties for all the transactions in order to preserve
consistency all the time. However, traditional transaction support, like 2-phase lock protocol, are
not suitable for heterogeneous environments. Despite this, a good workflow metamodel should
provide some support for structuring tasks and guaranteeing some of the properties of their joint
execution.

Commitment Support (Com) Several subtle forms of commitment can arise in workflows.
These can be specific to different actors, and reflect the organizational structure of the workflow.
An actor may commit to another to notify him of any changes he effects, without committing to
inform everybody. The challenge is to build new support mechanism to attain more flexibility
compared to traditional support while maintaining the robustness of workflow systems.

3 SHIIP Example

One of the SHIIP scenario involves a shipyard Foreman requesting a configuration group to re-
configure or upgrade a prefabricated combinational part [SHIIP, 1997]. We adapt this scenario to
better support our goal of comparing different approaches.

We define the scenario as follows:

1. Foreman fills out a report for reconfiguration and submits to Configuration Group

2. Manager of Configuration Group checks the report. Manager may accept or reject the report.
For instance, if she finds that the problem could be fixed by means of modifying the old
installation procedure, Manager would return the report to Foreman with helpful comments.

3. If the report is returned, the process terminates. Otherwise, it proceeds.

4. Manager makes a financial budget to estimate the cost of performing the reconfiguration.
After the budget is forwarded to Account Office, Manager awaits the decision from Account

Office.

5. If the budget fails to pass in Account Office, the process terminates. Otherwise, it proceeds.

6. Manager delegates a Design Team to work out a design scheme for the requested reconfigu-
ration.

7. Manager, along with Foreman, checks the scheme from Design Team. If the scheme is not
satisfactory, it is returned to Design Team with helpful comments for redesign. Otherwise, it
proceeds.

8. Manager sends out the approved scheme to Fabricator asking for fabrication.

9. Fabricator identify the parts needed to carry out the fabrication. For those parts unavailable
in stock, Fabricator sends out a order form to Supplier.

10. Fabricator proceeds to fabricate when all the parts are available. The finished combinational
part is forwarded to Configuration Group.

11. Manager, along with Design Team, checks the fabricated part from Fabricator. If the part
exactly embodies their design scheme, the part is delivered to Foreman. Otherwise, the part
is returned to Fabricator with helpful comments to request refabrication.

12. Foreman accepts the reconfigured part and applies it to the project he is working on.

The above scenario describes the normal execution sequence. However, some unexpected situa-
tions might happen in the real world. For the purpose of illustration, we consider three exceptions:

e An exception will occur when a Manager actor does not exist to receive the request from
Foreman.

o Manager checks the format of the report when he receives a reconfiguration request from
Foreman. If some required items—e.g., the part number to be reconfigured—are missing, an
exception procedure would be initiated to ask for a corrected report.

e When the parts delivered by the Supplier are not what Fabricator expected, an exception
procedure would be initiated to have the parts exchanged for correct ones.

The dividing line between normal execution and exceptions is not absolute. We can integrate an
exception handler as a part of normal sequence. For instance, we can add the procedure as a routine
for Fabricator to check the parts from Supplier and request a resupply if necessary. However, the
separation of handling unexpected situations, which do not happen often, helps us to focus on the
central control flow and modularize requirement capture.

4 Applying the Metamodels

We choose several representative metamodels as the subjects with which we proceed our evaluation.
These metamodels cover the categories described in section 2.2 and are well-known. We introduce
each metamodel briefly. To save space, we only represent snippets of the above scenario—mostly
about the design subprocess of step 7—in each metamodel.

4.1 FlowMark

FlowMark is a product developed by IBM corporation [Leymann & Roller, 1994]. The metamodel
of FlowMark is task-flow based. It includes the following syntactic elements: activity, control con-
nector, transition condition, container, data connector, exit condition, synchronization condition,
and task. In the graphical representation, activities are basic nodes. Control connectors are directed
edges which bind tasks together to represent the control flow. Transition conditions are boolean

»._> ‘lk failed

check_passed

Figure 2: FlowMark

expressions associated with control connectors. Only control connectors with true transition condi-
tions are followed at run-time. Containers are attached to tasks as the holders of input and output
parameters. Like control connectors, data connectors make links between containers to indicate
the data flow. Since the termination of a task does not entail that it has been finished successfully,
because it may have an unexpected interrupt. Therefore, the exit condition records the success or
failure of a task. Synchronization conditions specify when the execution can continue in case that
several connectors point to the same target. Coupling each activity with an actor results in a pair
called task. The design subprocess is illustrated in Figure 2.

4.2 WIDE

-
+

report approved or
| ast design failed

DESI GN

The report is subnmitted
to design team

get Desi gnSchene

CHECK

The design schene is
submtted to nanager

get CheckResul t

i CheckResul t =Fai |

CheckResul t :Pas%

Figure 3: WIDE

WIDE (Workflow on Intelligent and Distributed database Environment) is an ESPRIT project of
the European Commission [Casati et al., 1997]. The WIDE metamodel is task-flow based. Each
task is specified by the following components: precondition, action, postcondition, role constraint,
and exception handler. precondition and postcondition have to be satisfied when the task starts and
ends. Role constraint expresses the task assignment policy that declares the qualification of the roles
that can perform this task. Besides the support for a strong organizational model, WIDE model
enables dynamical role-binding. Fzception handler includes two parts: condition and reaction.
The reaction part is activated when the condition part are satisfied. Efficient exception handling
has been achieved with active rules. A number of connectors— total fork, total join, conditional
fork, and partial join—are provided to represent the potential control sequences of tasks. Besides,
from the perspective of methodology, WIDE emphasizes the integration with external databases
and provides strong transaction support by the coordination between a global and multiple local
transaction managers. The design subprocess is illustrated in Figure 3.

4.3 Statecharts

Desi gn Team

Wi t For Request

q
Wi t For Check

CheckPassed

Figure 4: Statechart

CheckFai | ed

Statecharts are a typical state-transition based metamodel [Harel & Gery, 1997]. A statechart is a
traditional state transition diagram with three extensions of hierarchy, concurrency, and communi-
cation between concurrent tasks. Hierarchy facilitates modular development by means of capturing
a system at different levels of abstraction. The support of concurrency is crucial for modeling most
reactive systems. Cooperative concurrent tasks work together by exchanging information with each
other. A system starts from a start state and terminates at a final state. State transitions are as-
sociated with events or tasks, where a transition happens as the result of the occurrence of a task.

Following state transition paths, we can get potential sequences of tasks by means of linking tasks
associated with state transitions together. The design subprocess is illustrated in Figure 4.

4.4 Trigger Metamodel

MANAGER DESI GN TEAM
(oo)

Figure 5: Triggers

The Trigger metamodel is relationship capturing [Joosten, 1994]. A task is defined as a set of
events that occur under the responsibility of one actor. This definition is important to represent
those tasks that are otherwise considered to be performed by multiple cooperative actors. An
event triggers a task if the occurrence of the event causes the task to be performed. A workflow
is defined as a system whose elements are tasks, related to one another by a trigger relation, and
triggered by external events. The trigger metamodel can distribute one trigger over several others,
or synchronize several triggers into one. The trigger metamodel is easily translated to a petri-net
model, and thus it can be readily used for workflow automation. A separate communication model
is provided to capture the data flow structure. The design subprocess is illustrated in Figure 5.

4.5 ActionWorkflow

Design Team

Design Team

Figure 6: ActionWorkflow

ActionWorkflow is a product developed by ActionTech [Medina-Mora et al., 1992; Winograd, 1988;
Denning, 1992]. In its metamodel, any task is regarded as a closed loop composed of four phases:
proposal, agreement, performance, and satisfaction. There is always an identified customer and
performer. The performer completes actions leading to the satisfaction of the customer by going
through the following phases: (a) the customer makes a request for some work to be done; (b)
the customer and the performer reach an agreement on the work specification; (c) the performer

takes actions to complete the work; and (d) the customer accepts the completion with satisfaction.
Three kinds of relationships are identified among task loops. A loop might be part of another loop,
trigger another loop, or resolve another loop. In other words, a task loop may complete a part of
work of another loop, cause the initiation of another loop or help make the decision as to which
action to take in another loop. ActionWorkflow provides three connectors—conditional, splitter,
and rendezvous—to refine the trigger relationship. The first enables the branch trigger. A branch
is taken only if the associated condition is true. The latter two connectors are used to deal with the
concurrent trigger. We use a splitter when a task loop triggers multiple other loops at a time and
a rendezvous when multiple loops trigger one loop together. The design subprocess is illustrated
in Figure 6.

5 Evaluation

Different metamodels are constructed from different perspectives. It would not be accurate to
assert that one approach is superior to another in all circumstances. However, there are always
some trade-offs. A metamodel might miss some aspects when it concentrates on others. The
purpose of our evaluation is to highlight those trade-offs.

We first make an evaluation at the level of major types of metamodels. Among the four types of
metamodels, task-flow based metamodel is the most straightforward in the sense that people make
a schedule in about the same way. Since they focus on how to bring tasks into order with little
concern for their location, almost all of the task-flow based metamodels have centralized schedules.

In contrast, state-transition based metamodels lead to a distributed control logic. Although we
can consider the state transitions from the perspective of the whole system, most state-transition
based metamodels have individual state-transition diagrams for each role, which can communicate
with each other as necessary. In a sense, such metamodels examine the system with a distributed
viewpoint.

Relationship-capturing metamodels propose a novel perspective to represent a workflow system.
However, such metamodels are built on the basic assumption that the system behaviors can be fully
captured by certain relationship. The assumption is somewhat restrictive, This might explain why
only few of such metamodels are available.

Communication-based metamodels offer an interesting approach for workflows. These are es-
pecially suited to groupware settings, and not so much to data-intensive applications. They have
the advantage of identifying the actors for each task, but this can also be a disadvantage when
multiactor tasks are considered,

Now we turn to the metamodels used in our examples. Table 1 summarizes the features of these
metamodels in terms of the dimensions introduced in Section 2.3. In this table, together indicates
that data flow is represented in the same model as control flow, but with different markings for
distinction; separate means that data flow is modeled separately; implicit means that there is no ex-
plicit data flow representation. Note that implicit data flow can be reasonable, since data exchange
may be accomplished by communications carried out for control flow. However, explicit data flow
is clearer. The granularity of Statechart and Triggers is event, because transitions and triggers
can be thought as forms of events. To support synchronization, ordinary branching operators are
often extended by, for instance, introducing exclusive OR/AND join operators in FlowMark and
WIDE. WIDE further introduces a multitask operator for concurrency support [Chan & Vonk,
1997]. FlowMark and WIDE both support an organizational model. WIDE has achieved greater

‘ Approach ‘ Granularity ‘ Control ‘ Data ‘ Org ‘ Rol ‘ EXC‘ Trn ‘ Com‘

FlowMark | task basic, together | yes | no | yes | no | no
synchronization

Action task basic, implicit | no | — yes | no | yes
synchronization

WIDE task basic, separate | yes | yes | yes | yes | no
synchronization
concurrency

Statecharts | event, task | basic implicit | no | — no | no |no

Triggers event, task | basic separate | no | — no | no |no

Table 1: Evaluation Dimensions for Different Metamodels

flexibility with the dynamic task assignment supported by role-binding. ActionWorkflow does not
support organizational exception handling because it does not have an organizational model at
all. However, ActionWorkflow provides some rudimentary commitment support. Transaction and
commitment support receive little attention in current approaches, with the exception of WIDE,
which provides transaction support through the cooperation between a global transaction manager
and local transaction managers.

Let us consider the approaches in more detail. First, the task-flow based metamodels, FlowMark
and WIDE, bear much similarity from the viewpoint of conceptual modeling. Both models take
tasks as atomic. They schedule tasks by capturing their temporal interdependence and then build
an organizational model to assign those tasks to actors for organizational constraints. In contrast,
ActionWorkflow considers task as divisible. It captures the static task hierarchy by the relationship
that one task loop could be part of another one. Also, a task is always associated with a requester
and performer.

Second, the state-transition based metamodel, Statecharts face a central issue about how to
define the states. Too fine a definition leads to a large number of states, which might be intractable
in some cases; too coarse to a composite activation part, where Statecharts do not provide an
efficient mechanism to describe the internal structure of the activation. Also, although Statecharts
allow the communication between two state diagrams, little concern has been paid to mechanisms
to support such communication.

Third, the Trigger metamodel is a perfect example of relationship-capturing metamodel. The
correspondence between the Trigger metamodel and Petri-nets contributes the most significant
feature, which enables workflow automation and distributed control logic. However, the Trigger
metamodel requires identifying a responsible role for any task. This requirement is not suitable
for some cooperative tasks because such cooperative information is lost in the representation of
the Trigger metamodel. For our example, the check procedure looks like a task of Manager in
the graphical representation of Trigger metamodel, even though it is performed by Manager and
Foreman together in our scenario. Also, the Trigger metamodel does not provide any conditional
branch, which does not seem reasonable for the practical application.

Fourth, the construction of models in ActionWorkflow is more complicated than in FlowMark
or WIDE. However, more information is captured in ActionWorkflow. On the one hand, the
coordination behavior between the requester and performer represented in Action Workflow model
facilitates the support of commitment. On the other hand, the emphasis on the coordination of

10

tasks causes some problems for ActionWorkflow. It does not appear appropriate to name a requester
and performer for local tasks. Another problem is that the sequential control relationships are not
well-defined among the components of a composite task.

6 Conclusions

Although we considered only a few products and projects, the ideas cover many of the cases of
interest. A large number of workflow products exist, but they are not based on radically differing
metamodels. Some of the metamodels already have associated enactment tools; such tools are
under development for some of the others. This is encouraging, since it is only by enacting the
workflow models can we be sure that the desired behavior is being obtained.

The various models have strong similarities in how they handle tasks and control flow among
them. However, they differ the most in advanced features such as concurrency, role-binding, and
transaction and commitment support. In fact, their coverage of these features still leaves much to
be desired. This is probably because the workflow research community still has not come to a good
understanding of what these issues entail. However, these limitations have hindered the deployment
of workflow technology in managing tasks in large-scale, open, heterogeneous enterprises.

We expect that the near future will witness the following developments. First, more formal
methodologies will be developed. We believe that metamodels ought always to be accompanied by
methodologies for how to use them in practice. However, presently, the methodologies for workflow
metamodels have not been very well worked out. Methodologies will seek closer integration with
external database schemas [Casati et al., 1997]. Databases provides excellent persistent storage
and strong local transaction support. The open issues for such integration include how to effi-
ciently access external, typically heterogeneous, databases and how to make the extension of global
transaction and commitment support.

Second, metamodels will facilitate naturally decentralized models and environments. This con-
trasts with extant metamodels, which typically presuppose a centralized control structure. In
general, there are two alternatives to achieve distributed solutions. One is to use distributed pro-
gramming technology, like COBRA, to make multiple servers transparent from users. Another way
is to remove client/server architecture by means of distributing the control logic itself. The second,
more radical, approach requires more expressive metamodels in which to capture the distributed
control aspects.

Third, we envisage the widespread application of the agent metaphor. Agents provide a major
step beyond distributed control. This is the use of higher-level abstraction. One such abstrac-
tion is commitments—more advanced than ActionWorkflow’s—which we have begun for use in a
potentially more powerful approach to workflows [Singh, 1997; Jain & Singh, 1997].

References

[BuBler, 1994] BufBler, C. J.; 1994. Policy resolution in workflow management systems. Digital
Technical Journal 6(4):26-49.

[Casati et al., 1997] Casati, F.; Grefen, P.; Pernici, B.; Pozzi, G.; and Sanchez, G.; 1997. WIDE
workflow model and architecture. http://www.sema.es/projects/WIDE/Documents/.

11

[Chan & Vonk, 1997] Chan, Daniel K. C. and Vonk, Jochem; 1997. A specification language for
the WIDE worklow model. http://www.sema.es/projects/ WIDE/Documents/.

[Denning, 1992] Denning, Peter J.; 1992. Work is a closed-loop process. American Scientist 80:314—
317.

[Gray & Reuter, 1993] Gray, Jim and Reuter, Andreas; 1993. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, San Mateo.

[Harel & Gery, 1997] Harel, David and Gery, Eran; 1997. Executable object modeling with state-
charts. IEFE Computer 31-42.

[Jain & Singh, 1997] Jain, Anuj K. and Singh, Munindar P.; 1997. Using spheres of commitment
to support virtual enterprises. In Proceedings of the jth ISPE International Conference on
Concurrent Fngineering: Research and Applications (CF). International Society for Productivity
Enhancements (ISPE).

[Joosten, 1994] Joosten, Stef; 1994. Trigger modelling for workflow analysis. In Proceedings of
CON: Workflow Management, Munich. R. Oldenbourg Verlag.

[Leymann & Roller, 1994] Leymann, Frank and Roller, Dieter; 1994. Business process management
with flowmark. In Proc. of COMPCON Spring 1994. IEEE.

[Medina-Mora et al., 1992] Medina-Mora, Raul; Winograd, Terry; Flores, Rodrigo; and Flores,
Fernando; 1992. The Action Workflow approach to workflow management technology. In ACM,
Proceedings of the Conference On Computer-Supported Coooperative Work.

[SHIIP, 1997] About SHIIP. http://shiip.npo.org/about-SHIIP.html.

[Singh & Huhns, 1994] Singh, Munindar P. and Huhns, Michael N.; 1994. Automating workflows
for service provisioning: Integrating Al and database technologies. IEEE Ezxpert 9(5):19-23.

[Singh, 1997] Singh, Munindar P.; 1997. Commitments among autonomous agents in information-
rich environments. In Proceedings of the 8th Furopean Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW). 141-155.

[Winograd, 1988] Winograd, Terry; 1988. A language/action perspective on the design of cooper-
ative work. Human-Computer Interaction 3(3-30).

12

