Commitments Among Autonomous Agents
in Information-Rich Environments*

Munindar P. Singh**

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract. Commitments are crucial to understanding and designing
autonomous agents and multiagent systems. We propose a definition of
commitments that applies especially well to agents in information-rich
applications, such as electronic commerce and virtual enterprises. Our
approach has a number of important features, including
— mnot gratuitously translating social concepts to psychological concepts
— distinguishing between satisfied and inapplicable commitments
— incorporating social policies to handle the creation, satisfaction, and
cancelation of commitments
— relating commitments to organizational structure in a multiagent
system
— showing how commitments are acquired by agents as a consequence
of adopting a role.

1 Introduction

Commaitments are central to DAL In this paper, “commitment” refers to social,
not psychological, commitment. Commitments have drawn much research atten-
tion because they are an important abstraction for characterizing, understand-
ing, analyzing, and designing multiagent systems. Commitments help coordinate
and structure multiagent systems to achieve coherence in their actions.

Multiagent systems are finding increasing application in heterogeneous and
open information environments—such systems are called cooperative informa-
tion systems (CISs) [Singh & Huhns, 1995]. CISs have increased expectations
of robustness and guarantees of the atomicity, durability, and recoverability of
actions. Our ongoing research program seeks to develop abstractions for building
flexible CISs to the standards of robustness of traditional systems.

* This is an extended and revised version of a paper presented at the ICMAS-96
Workshop on Norms, Obligations, and Conventions. I would like to thanks Rosaria
Conte, Christian Lemaitre, and the anonymous reviewers for their comments. I have
benefited from discussions with several people over the years, most notably Nicholas
Asher, Cristiano Castelfranchi, Les Gasser, Michael Georgeff, and Michael Huhns.

** This work is supported by the NCSU College of Engineering, the National Science
Foundation under grants TRI-9529179 and TRI-9624425, and IBM corporation.

Technical Motivation Commitments arise not only in the study of agents, but
also in distributed databases. However, databases (DB) implement a procedu-
rally hard-wired and irrevocable form of commitment. Modern DB applications,
which involve heterogeneity, flexibility, and human collaboration, do not fit the
traditional mold. Some of these applications have been addressed using agent-
based techniques, e.g., [Wittig, 1992; Singh & Huhns, 1994]; others with ad-
vanced database techniques, e.g., [Bukhres & Elmagarmid, 1996]; and still others
by combining in organizational techniques, e.g., [Papazoglou et al., 1992].

The DB and DATI strands of research into commitments have progressed
without much cross-fertilization. The DB ideas have tended to be rigid, but
in a manner that facilitates robustness. The DAI ideas have been more flexible.
However, with respect to information systems, they do not guarantee correctness
properties comparable to the DB approaches. We submit that a conceptually
well-founded synthesis can yield abstractions for effectively programming CISs.

We view CISs as recursively composed loci of commitments. These commit-
ments can be about actions, but in database settings they are typically about
results that are released or “published” by different components. Whereas the
traditional database approach is to release outputs only when they are definite,
in the case of nonterminating computations, we cannot afford to wait till they
end! In general, we must allow outputs to be released prematurely. This is also
essential, for example, in cases where the given activities must cooperate, so they
may exchange their partial results before they terminate.

The construction of effective CISs involves the careful synthesis of three kinds
of concerns:

— data integrity: correctness of data despite concurrent access and failures;

— control and data flow: how triggering, i.e., control, information and data
flows through the system; and

— organizational structure: how the various components relate to each other
in achieving coherent behavior, e.g., whether a control signal is expected
and would not be ignored depends on the organizational structure of the
components.

Traditional nested transactions provide integrity, but restrict the other aspects.
Extended Transaction Models (ETMs) also focus on integrity, but allow freer
control and data flow at the cost of relaxing the integrity requirements. Database
workflow approaches ignore the integrity aspects, but deliver the control and
data flow required by specific applications. Workflows in groupware also provide
application-specific control and data flow without regard to integrity.

In contrast with the above, our approach focuses on how the different com-
ponents achieve coherence in their interactions. Control and data flow serve
to achieve coherence, and integrity is a consequence of it. By organizational
structure, we mean not only the roles that different agents play, but also the
commitments that they may enter into based on their roles.

In our approach, each recursively composed CIS provides a context in which
its constituent agents interact. In particular, the agents respect certain commaut-
ment polictes and cancelation policies, which determine when they may adopt

or drop commitments. In some cases, these policies might help achieve a cor-
rect data state; in others, they may only guarantee that the CIS as a whole is
behaving properly.

Organization. Section 2 describes traditional ways of structuring computations.
Section 3 discusses our approach to commitment, shows how it handles social
policies and the structure of multiagent systems, and discusses its formal aspects
and implementation. Section 4 reviews the pertinent literature from three main
areas.

2 Problem: Structuring Computations in Open
Information Systems

We introduce our running example, which involves a simplified form of electronic
commerce and virtual enterprises.

GT

v-id | idia pdia h-id dia
a |21 21 h12 21
z 43 21 h14 43
b |43 43

N N

Fig.1. Traditional (Closed) Transactions

FEzample 1. Suppose we need to purchase two interdependent parts—a valve and
two hoses, with the requirement that their diameters match (otherwise, each is
useless). Consider a composite activity that attempts to purchase a shipment of
valves from Valvano & Co and matching hoses from Hoosier Inc., thus accessing
the databases as shown in Figure 1 (please ignore GT, LT1, and LT2, for now).
Let these subactivities be called val and hos, respectively. We imagine that Val-
vano and Hoosier form a virtual enterprise to provide a higher level of service to
their common customers, but continue to run autonomous databases. The key
requirement for the purchase is that either (a) both val and hos have an effect,
or (b) neither does. I

Traditionally, it would be up to the application program to enforce this re-
quirement. Although traditional database transactions have been used exten-
sively in homogeneous settings, it now well-known that they are inappropriate
for heterogeneous environments. We show why next. To avoid terminological
confusion, we use the term “succeed” instead of the database term “commit”
where only the success of an individual transaction is implied.

2.1 Traditional Database Transactions

Traditional transactions are computations that satisfy a number of useful prop-
erties, in particular the so-called ACID properties [Gray & Reuter, 1993].

— atomucity: all or none of a transaction happens

— consistency: a transaction preserves the consistency of the database

— 1solation: intermediate results of a transaction are not visible externally

— durability: when a transaction concludes successfully, its effects are perma-
nent.

If the individual transactions are programmed correctly, the system guar-
antees consistency for any arbitrary concurrent mix of transactions. Atomicity
is essential to ensure that the integrity of distributed data is preserved. Conse-
quently, the actions or subtransactions that constitute a transaction must either
(a) all happen, thereby transforming the database from a consistent state to a
new consistent state, or (b) each fail to happen, thereby leaving the database in
its original (consistent) state.

Ezample 2. Continuing with Example 1, we can obtain database support for
maintaining consistency as shown in Figure 1. GT is a global, closed-nested
transaction corresponding to the purchase activity. It consists of local subtrans-
actions, LT1 and LT2, corresponding to val and hos. GT preserves consistency
(either both LT1 and LT2 succeed or neither does), and allows only correct
purchases to be visible. |

Unfortunately, the above formulation proves highly undesirable. To ensure
transaction atomicity, the system must ensure that both val and hos succeed,
or neither does. To ensure transaction isolation, the system must ensure that no
other transaction sees the intermediate results of val or hos. Further, if a transac-
tion that runs on the same databases sees the final results of one subtransaction
(e.g., val), then it also sees the final results of the other subtransaction (e.g.,
hos). The above requirements are stronger than our informal requirement that
both or neither subtransaction should have an effect.

To realize the above transactional properties requires a mutual commit proto-
col, e.g., two-phase commit, to be executed. However, that might be impossible,
since Valvano and Hoosier are independent enterprises and their databases may
not even have visible precommit states, essential to execute a mutual commit
protocol. Even if the precommit states are visible, it is seldom acceptable to lock
resources while communicating with a remote site. Thus traditional transactions
are unacceptable in heterogeneous environments.

2.2 Extended Database Transactions

Extended transaction models (ETMs) take some steps toward overcoming these
limitations. However, they typically address only a part of the problem, chiefly by
allowing results to be released prematurely. Failure recovery is typically achieved
by compensating the subtransactions that erroneously recorded success (even
though other related transactions did not)—the compensations are of course
domain-specific. Consider the following example, which uses a simplified version

of the DOM ETM [Buchmann et al., 1992].

| | LTet| | LT2!

" vaves | LTL LT2 ||~ hoses
VL———— Jv

v-id | idia pdia h-id dia
a |21 21 h12 21
z 43 21 h14 43
b |43 43

N N

Fig. 2. Extended (Open) Transactions

FEzample 3. Continuing with Example 2, we now define a purchase activity as
in Figure 2. Here, GT is an open-nested global transaction consisting of the val
(LT1) and hos (L'T2) subtransactions. GT executes LT1 and LT2 concurrently.
The results of LT1 and LT2 are visible even before GT has completed. If both
or neither succeed, consistency is preserved. If one succeeds and one fails, then
either (a) the one that succeeded can be compensated through LT17! or LT27!,
e.g., by canceling the its order, or (b) the one that failed can be retried. I

This assumes that (a) compensating actions are defined for some of the sub-
transactions, and (b) it is acceptable to allow temporary inconsistencies. Ex-
tended transaction models do not provide perspicuous means to specify and
schedule activities, nor means to coordinate them. Scheduling techniques are
hard-coded separately for each transaction model.

2.3 Agents

Agents can perform several functions in enterprise integration scenarios. They
can capture the semantic constraints and apply them in order to execute or

enact workflows in an integrity-preserving manner. In this way, agents can carry
out the business processes in an enterprise. For example, although database
consistency is assured even if both transactions fail, the agent might encode
that some progress is essential from the purchaser’s standpoint.

Ezample 4. In the scenario of Examples 1 and 2, a purchasing agent can be used.
This agent initiates val and hos concurrently. If both succeed, the purchase suc-
ceeds. However, if one or both fail, the agent can (a) retry the failed transactions
a certain number of times, (b) search for alternative sources and attempt the
transactions there, or (c¢) negotiate with the user’s agent and with database
agents to enable progress. I

The agents can thus realize workflows that correspond to generalized forms
of extended transaction models. More importantly, however, the agents can form
a CIS and interact with each other in an effective manner. For example, agents
can coordinate workflows so that the unavoidable interactions among those work-
flows do not violate data integrity or prevent progress. Further, the requirements
for each workflow can be locally captured by the resource administrators most
familiar with the resources that the workflow involves. The formal specifications
are kept modular and small, which facilitates their acquisition and verification.

Ezample 5. Consider ongoing activities to repeatedly stock inventory, ship goods
to customers, receive purchase orders, and forecast the market demand. These
activities must be coordinated. (a) Stocking up replenishes the inventory for
shipping. The stocking up and shipping agents must agree whether to build up
large inventories or break up large purchase orders. (b) A purchase order must be
received before it is shipped. (¢) Market forecasting can either trigger stocking
up, or disable it. I

But how can we ensure that the agents behave properly? Surely, we need
better abstractions than having the application programmer supply hardcoded
solutions.

2.4 The Problem

Thus the main problem is to structure activities in a manner that can respect
the autonomy of the information resources. The database approaches are restric-
tive. The agent approaches are flexible, but there is need for tools and formal
approaches for designing them. In particular, there is need for a notion of com-
mitment that flexibly reflects the organizational structure of how agents interact.

3 Solution: Spheres of Commitment

We define commitments in a manner that satisfies the above requirements. We
dub our approach spheres of commitment (SoCom). SoComs involve not only
the data integrity issues, but also reflect the organizational structure associated

with CISs, which constrains the control and data flow as well. Each SoCom is
autonomous, and has authority over some information resources, on the basis of
which it can enter into commitments about those resources.

3.1 Spheres of Control

To best appreciate our approach, it is instructive to see how spheres of control
(S0Cs) work. SoCs, which were proposed about two decades ago [Davies, 1978],
capture some of the same intuitions as the extended transaction models. The
database community is seeing a resurgence of interest in SoCs as the limitations
of traditional transactions are being realized [Gray & Reuter, 1993, pp. 174—
180]. Intuitively, SoCs attempt to contain the effects of an action as long as
there might be a necessity to undo them. Ordinarily, a result is released only
when it is established that it is correct (and will remain correct). However, if a
result may later have to be undone, i1t can be released only if an SoC can be set
up that encloses the activities that consume the result. When the result needs
to be undone, the enclosing SoC can undo the activities that used that result.

FEzample 6. Continuing with Example 2, we can define an SoC that contains the
val and hos subtransactions. The results of these subtransactions can be made
visible only to those activities that are also within the given SoC. If the results
of val and hos are inappropriately released, they can be undone, possibly by also
undoing the activities that consumed those results. I

SoCs generalize transactions by essentially requiring the entire execution his-
tory to be maintained. SoCs require rolling back the execution to undo the effects
of erroneously committed activities, followed by rolling forward the execution to
redo the necessary computations. Unfortunately, despite their generality in some
respects, in a fundamental sense SoCs remain almost as restrictive as traditional
transactions. This is because SoCs are also data-centric, and attempt to pre-
serve or restore data integrity. Specifically, we believe that the problem lies in
two facts.

— SoCs are not active entities, and

— SoCs view commitments in the traditional DB sense, which is as depending
solely on the computation that commits, not on the interplay between the
computation that commits, and the computations that take advantage of
that commitment.

3.2 Commitments

Despite its shortcomings, we find the SoC concept useful in motivating SoComs.
SoComs provide a means for organizing agents and CISs. We begin by eliminating
the distinction between agents and multiagent systems. We view agents as being
either individuals or groups, which are recursively composed of agents. In this
sense, a CIS is an agent and is potentially composed of agents. We augment

our initial definition of agents to additionally require them to be loci of social
commitments. Thus, each agent or CIS can be a SoCom.

Agents interact by forming commitments toward one another. We use the
term commuter to refer to the agent that makes a commitment, and the term
commitee (not “committee”) to refer to the agent who receives the commit-
ment. Commitments are formed in a context, which is given by the enclosing
CIS (or, ultimately, by society at large). We refer to this as the context group.
Concomitant with a commitment is a specification of how it may be satisfacto-
rily discharged, and a specification of how it may be canceled. We define three
main kinds of social actions, which are instantiated by the following operations
on commitments.

— create
— (satisfactorily) discharge
— cancel

Based on the above intuitions, we motivate the following logical form for com-
mitments.

Definition1. A commitment is an expression of the form C(z, y, p, G, d), where
z 1s the commiter, y the commitee, G the context group, p the discharge condi-
tion, and d the cancelation condition (formally a proposition).

It is convenient to define the operations of notify and release as follows.
notify(z,y,q) mean that z notifies y of ¢, and release(y, ¢) means that y “re-
leases” the commiter of commitment ¢, essentially agreeing to its success. In a
sense, these are low-level operations, which can be used to implement the above
social actions. They are however, quite natural and common to a number of
domains.

Where necessary, we include the release requirements in the discharge condi-
tion. For example, it is possible to commit to “making the sky green,” or “making
the sky appear green to the commitee” (these are different commitments, with
different chances of satisfiability). We now discuss some possible cancelation
conditions, which relate to different situations. Let the given commitment be
c¢ = C(z,y,p,G, d). (Explicitly naming the commitment itself enables setting up
mutual commitments.)

P1. d = false: the commitment is irrevocable.

P2. d = notify(z,y, q): the commiter is only obliged to notify the commitee,
where ¢ means that the commitment ¢ is being canceled.

P3. d = true: the commitment can be given up at will, and is effectively not a
commitment at all.

P4. d = release(y, ¢): the commitee must explicitly release the commiter.

P5. d = release(G, ¢): the context group must explicitly release the commiter.

Ezample 7. Consider the situation of Example 2 after val has successfully com-
pleted its internal processing, but not yet officially published its results. This
can be modeled as ¢; = C(val, hos, succeed(val), G, cannot_succeed(hos)). Here

G corresponds to the global transaction. The above commitment means that if
val can succeed, it will unless hos cannot succeed. Additional commitments are
need to capture the entire specification, e.g., to ensure that val does not succeed
unless hos succeeds. |

13

\ Vendor = Virtual Enterprise SoCom /
E Customer
K Electronic Commerce SoCom J

Fig. 3. Nested Spheres of Commitment

FEzample 8. Continuing with Example 2, we define two SoComs—shown in Fig-
ure 3—with authority over the Valvano and Hoosier databases, respectively.
These SoComs execute the corresponding subtransactions. There is also a So-
Com corresponding to the Valvano-cum-Hoosier virtual enterprise (VE). As in
Example 4, a customer agent carries out the desired workflow. This agent might
itself be a SoCom with authority over purchases in its enterprise. A possible set
of commitments could be as follows.

— The Valvano and Hoosier SoComs inform other agents as to how many units
of a valve or hose they have in stock.

— If stock is available, they will “lay-away” up to a certain number of units for
a (potential) customer; if stock is not available, they will notify the customer.

— However, if the stock falls low, the SoComs can ask a customer to decide or
pay a nonrefundable deposit.

— The customer commits to releasing a lay-away if he decides against the pur-
chase.

— The customer can request to apply the deposit for another purchase, at the
selling SoCom’s discretion.

— The customer can request a refund from the VE SoCom. The entire deposit
of purchase price is refunded if a matching item (hose or valve) was not
available.

In this setup, val or hos in general cannot be undone—customers can’t expect
full refunds after the purchase. However, if val and hos are being performed as a
package, i.e., in the Valvano-cum-Hoosier VE, the VE SoCom ensures that cus-
tomers will get refunds if one of the subtransactions fails. Other customers who
were told that stock was not available will be notified, and given an opportunity
to retry their purchase. Lastly, negotiation and exceptions are allowed, although
after commitments have been made, the decision might reside with one of the
participants. I

3.3 Social Policies

Social policies are policies that govern the social actions—they characterize when
the associated action occurs. It is helpful to define the order of a commitment
as follows.

Definition2. Consider a commitment ¢ = C(z,y,p,G,d). ¢ is 0-order iff p
makes no reference to any commitments. ¢ is (i + 1)-order iff the highest or-
der commitment referred to in p is z-order.

Social policies are formally represented as conditional expressions. Policies
for i-order commitments are (7 + 1)-order commitments. Even for policies, our
fundamental correctness condition remains: if a commitment is created, then it
must satisfactorily discharged, unless it is canceled in time. A variety of policies
can be defined, with applicability in different settings.

Policies also have a computational significance, which is that they can lead
to commitments being created, discharged, or canceled without reference to the
context group. It is the locality of policies that makes them useful in practice.
Consider a simple example.

Ezample 9. Continuing with Example 8, consider a customer who makes an
Ecash deposit for some valves, but later decides not to get them. He might
avoid losing his deposit by finding another purchaser for those valves. The sell-
ing SoCom would have to accept an alternative purchaser if the applicable social
policies allow that, unless they were explicitly overridden by the contract. There
is no need to invoke the context group, i.e., complain to the VE SoCom, or to
file a lawsuit. I

In the above the actions are performed by the constituent CISs. Sometimes,
however, it is useful to perform actions at a higher level CIS. Such actions might
be necessary when the actions of the member agents need to be atomically
performed or undone.

10

Frample 10. Continuing with Example 8, suppose an order for matching valves
and hoses 1s successfully placed. It turns out later that the valve manufacturer
discontinued the model that was ordered, but recommends a substitute. The
substitute valve takes a different hose diameter than the original choice. Suppose
the VE SoCom knows the relevant constraint, and is authorized to update the
order. It would be better to undo and rerun both val and hos before notifying the
customer, than to notify the customer about each subtransaction individually.
This strategy assumes that the VE SoCom is responsible for performing actions
to correct orders. I

3.4 Social versus Psychological Primitives

Some previous approaches, e.g., [Levesque et al., 1990; Grosz & Sidner, 1990], at-
tempt to reduce social constructs to psychological constructs. They do not have
an explicit construct for commitments, but postulate mutual beliefs among the
committing agents. However, Mutual beliefs require the agents to hold beliefs
about each other to unbounded levels of nesting, which can be tricky [Singh,
1996a). Also, mutual beliefs cannot be implemented except through additional
simplifying assumptions, which is why the direct approach of using social con-
structs is more appealing. In fact, it is known that in settings with asynchronous,
unreliable or unboundedly delayable communication, mutual beliefs can be ob-
tained only if they are there from the start—i.e., the mutual beliefs are the
invariants of the system [Chandy & Misra, 1986].

We conjecture that named groups and named commitments, which are rem-
iniscent of contract numbers in business dealings, provide the necessary connec-
tions among the agents. This is a reasonable conjecture, because commitments
and the groups they exist in can provide the requisite context that is copresent
with all of the agents. Membership in a group can require mutual commitments,
which can refer to each other (by using each other’s names). Thus, the effect that
traditional theories attempt to achieve by using mutual beliefs can be achieved
without mutual beliefs, and without reducing social primitives to psychological
primitives. We believe that with further technical development, this will prove
to be an important point in favor of social commitments.

3.5 Implementation

The above view of commitments can thus lead to CISs that behave flexibly. In
order to make the construction of such CISs equally flexible, we are developing
a generic facility for commitment specification and management. This facility
would allow the specification of CISs along with the social policies that apply
within them. We provide a generic set of Java classes through which abstract
CISs can be specified. These specifications include the different roles in a given
CIS, and the capabilities and resources required to instantiate each role. These
specifications also include the social policies—expressed in terms of roles—that
apply within the abstract CIS. Essentially, these are the commitments that the

11

role comes with. For example, the seller role presupposes that the seller will
respond to requests for price quotes, and honor its quotes.

The abstract CISs are instantiated with concrete agents filling each role. The
concrete agents may be individuals or groups. Recalling [Gasser, 1991], a concrete
agent may fill in more than one role in an abstract CIS, and participate in more
than one abstract CIS concurrently. The act of joining a CIS corresponds to
creating commitments. The commitments associated with a role are schematic.
Upon instantiation of the roles, these are instantiated into commitments by and
toward concrete agents. Thus agents can thus autonomously enter into SoComs.
Agents must make sure they have the capabilities and resources required to take
on any additional role, and its concomitant commitments. Some of the inherited
commitments might require overriding some prior commitments. For example,
the Valvano agent must relax its refund policy when joining the above-mentioned
VE.

Once the concrete CISs have been instantiated, any of the member agents
can initiate an activity, which can trigger additional activities. The facility pro-
vides primitives through which agents can instantiate a CIS, create commitments
within the context of a CIS, and satisfy or cancel commitments. The facility takes
care of the bookkeeping required for these operations, and to ensure that the
correctness condition is met. The underlying means of execution is based on a
temporal logic approach, which extends the results of [Singh, 1996b], to provide
primitives for coordinating heterogeneous activities.

4 Comparisons with the Literature

DAI Approaches. Gasser describes some of the sociological issues underlying
multiagent systems [Gasser, 1991]. His notion of the multiple simultaneous roles
played by social agents inspired part of our discussion above. Castelfranchi stud-
ies concepts similar to those here [Castelfranchi, 1993]. Our context groups gen-
eralize his notion of a witness. Castelfranchi distinguishes a notion of collective
commitment, which is subsumed by our concept of commitment (through the
orthogonal representation of the structure of multiagent systems). Tuomela de-
velops an interesting theory of joint action and intention that bears similarities
to collective commitments [Tuomela, 1991]. [Sichman et al., 1994] develop a the-
ory and interpreter for agents who can perform social reasoning. Their agents
represent knowledge about one another to determine their relative autonomy
or dependence for various goals. Dependence leads to joint plans for achieving
the intended goals. This theory does not talk about commitments per se, so it
is complementary to our approach. We also believe that our approach with its
emphasis on structure and context can be married with that of [Sichman et al.,
1994] to lead to more sophisticated forms of social reasoning.

The approach of [Levesque et al., 1990] requires the agents to have a mutual
belief about their goals. Further, it hardwires a specific approach to cancel-
ing commitments (for joint intentions)—the participating agents must achieve
a mutual belief that the given commitment has been canceled. The approach of

12

[Jennings, 1993] is closer in spirit to the present approach. Jennings postulates
conventions as ways in which to reason about commitments. Thus, he can gen-
eralize on [Levesque et al., 1990]. However, for teams, he requires a “minimum”
convention, which recalls the approach of [Levesque et al., 1990]. Jennings also
requires a mental state as concomitant with a joint commitment. While we share
many of the intuitions and motivations of [Jennings, 1993] (including applica-
tions involving heterogeneous information systems), we attain greater generality
through the explicit use of the structure of multiagent systems. The agents al-
ways enter into commitments in the context of their multiagent system, and
sometimes to that system. This has the pleasant effect that social concepts are
not made dependent on psychological concepts. The multiagent system serves
as the default repository for the cancelation and commitment policies, although
these can, in several useful cases, be assigned to the member agents. We be-
lieve the relationship of our approach to open-nested transaction models and
workflows will lead to superior multiagent systems for information applications.

Distributed assumption-based [Mason & Johnson, 1989] or justification-based
[Huhns & Bridgeland, 1991] truth maintenance systems (DTMSs) are also ger-
mane. These systems help a group of agents revise their beliefs as a consequence
of messages received. On the one hand, DTMSs can be given a knowledge-level
characterization in terms of commitments; on the other hand, they can be used
to implement some of the reasoning required in maintaining commitments.

DB and Groupware Approaches. A number of extended transaction models have
been proposed, e.g., [Bukhres & Elmagarmid, 1996]. The extended transaction
models allow partial results to be released, and then attempt to restore consis-
tency through actions to compensate for the effects of erroneously completed
actions. Some workflow scheduling approaches exist that provide functionality
to capture control flow among tasks. The database approaches don’t provide
much support for the organizational aspects. For example, they ignore social
commitments altogether.

Some of the groupware approaches, which study organizational structure, do
not consider quite as rich a form of commitments as here. For example, infor-
mation control nets are primarily geared toward control and data flow aspects

[Nutt, 1993).

The notion of commitments finds applicability in some groupware tools. For
example, [Medina-Mora & Cartron, 1996] shows how the flow of work in an or-
ganization is expressed through commitments in the ActionWorkflow tool. This
tool comes with a fixed set of specifications from which the developer can choose.
Although the participants can decide whether a given task was successfully per-
formed, there i1s no notion of failure recovery, of commitments being canceled,
or of commitment and cancelation policies. Still, we believe, this is an interest-
ing system that shows how much can be achieved through the careful use of
commitments.

13

5 Conclusions and Future Work

We sought to present the unifying principles behind commitment for single-agent
and multiagent systems. Our approach marries insights from DB and DAI, to
yield a framework for flexible, yet robust, cooperative information systems. Our
approach makes the following contributions. It

— does not require translating commitments to psychological concepts, such as
beliefs

— distinguishes between satisfied and inapplicable commitments

— incorporates policies to handle the creation, satisfaction, and cancelation of
commitments

— relates commitments to organizational structure in a multiagent system

— shows how commitments are acquired by agents as a consequence of mem-
bership in a group.

A practical challenge is determining classes of commitments and policies
that are more relaxed than the traditional approaches, yet can be efficiently
implemented. Two other technical challenges are introducing temporal aspects
into the language, and relating the development of commitments to decision
theoretic analyses of rational behavior.

References

[Buchmann et al., 1992] Buchmann, Alejandro; ézsu, M. Tamer; Hornick, Mark; Geor-
gakopoulos, Dimitrios; and Manola, Frank A.; 1992. A transaction model for active
distributed object systems. In [Elmagarmid, 1992]. Chapter 5, 123-158.

[Bukhres & Elmagarmid, 1996] Bukhres, Omran A. and Elmagarmid, Ahmed K., edi-
tors. Object-Oriented Multidatabase Systems: A Solution for Advanced Applications.
Prentice Hall.

[Castelfranchi, 1993] Castelfranchi, Cristiano; 1993. Commitments: From individual
intentions to groups and organizations. In Proceedings of the AAAI-93 Workshop on
Al and Theories of Groups and Organizations: Conceptual and Fmpirical Research.

[Chandy & Misra, 1986] Davies, K. M. and Jayadev Misra; 1986. How Processes
Learn. Distributed Computing 1:40-52.

[Davies, 1978] Davies, Charles T. Jr.; 1978. Data processing spheres of control. IBM
Systems Journal 17(2):179-198.

[Elmagarmid, 1992] Elmagarmid, Ahmed K., editor. Database Transaction Models for
Advanced Applications. Morgan Kaufmann.

[Gasser, 1991] Gasser, Les; 1991. Social conceptions of knowledge and action: DAI
foundations and open systems semantics. Artificial Intelligence 47:107-138.

[Gray & Reuter, 1993] Gray, Jim and Reuter, Andreas; 1993. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann.

[Grosz & Sidner, 1990] Grosz, Barbara and Sidner, Candace; 1990. Plans for dis-
course. In Cohen, P.; Morgan, J.; and Pollack, M., editors, SDF Benchmark Series:
Intentions in Communication. MIT Press, Cambridge, MA.

[Huhns & Bridgeland, 1991] Huhns, Michael N. and Bridgeland, David M.; 1991. Mul-
tiagent truth maintenance. IFEFE Transactions on Systems, Man, and Cybernetics
21(6):1437-1445.

14

[Jennings, 1993] Jennings, N. R.; 1993. Commitments and conventions: The founda-
tion of coordination in multi-agent systems. The Knowledge Engineering Review
2(3):223-250.

[Levesque et al., 1990] Levesque, H. J.; Cohen, P. R.; and Nunes, J. T.; 1990. On act-
ing together. In Proceedings of the National Conference on Artificial Intelligence.
[Mason & Johnson, 1989] Mason, Cindy L. and Johnson, Rowland R.; 1989. DATMS:
A Framework for Distributed Assumption-Based Reasoning. In Gasser, L. and
Huhns, M. N., editors, Distributed Artificial Intelligence, Volume II. Pitman/Morgan

Kaufmann, London. 293-318.

[Medina-Mora & Cartron, 1996] Medina-Mora, Rail and Cartron, Kelly W.; 1996.
ActionWorkflow™ in use: Clark County department of business license. In Proceed-
ings of the 12th International Conference on Data Engineering (ICDE). 288-294.

[Nutt, 1993] Nutt, Gary J.; 1993. Using workflow in contemporary IS applications.
Technical Report CU-CS-663-93, University of Colorado.

[Papazoglou et al., 1992] Papazoglou, Mike P.; Laufmann, Steven C.; and Sellis, Tim-
othy K.; 1992. An organizational framework for cooperating intelligent information
systems. International Journal on Intelligent and Cooperative Information Systems
1(1):169-202.

[Sichman et al., 1994] Sichman, Jaime Simao; Conte, Rosaria; Demazeau, Yves; and
Castelfranchi, Cristiano; 1994. A social reasoning mechanism based on dependence
networks. In Proceedings of the 11th European Conference on Artificial Intelligence.

[Singh & Huhns, 1994] Singh, Munindar P. and Huhns, Michael N.; 1994. Automating
workflows for service provisioning: Integrating Al and database technologies. IEEFE
FEzpert9(5). Special issue on The Best of CAIA 94 with selected papers from Proceed-
ings of the 10th IEEE Conference on Artificial Intelligence for Applications, March
1994.

[Singh & Huhns, 1995] Singh, Munindar P. and Huhns, Michael N.; 1995. Coopera-
tive information systems. Tutorials notes from conferences including the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Montreal, 1995; the IEEE
International Conference on Data Engineering (ICDE), New Orleans, 1996; and the
European Conference on Artificial Intelligence (ECAT), Budapest, 1996.

[Singh, 1996a] Singh, Munindar P.; 1996a. A conceptual analysis of commitments in
multiagent systems. Technical Report TR-96-09, Department of Computer Science,
North Carolina State University, Raleigh, NC. http://www.csc.ncsu.edu/ faculty/
mpsingh/ papers/ mas/ commit.ps.

[Singh, 1996b] Singh, Munindar P.; 1996b. Synthesizing distributed constrained events
from transactional workflow specifications. In Proceedings of the 12th International
Conference on Data Engineering (ICDE).

[Tuomela, 1991] Tuomela, Raimo; 1991. We will do it: An analysis of group-intentions.
Philosophy and Phenomenological Research LI(2):249-277.

[Wittig, 1992] Wittig, Thies, editor. ARCHON: An Architecture for Multi-agent Sys-
tems. Ellis Horwood Limited, West Sussex, UK.

This article was processed using the INTRpX macro package with LLNCS style

15

