Multiagent Workflow Management

Feng Wan, Sudhir K. Rustogi, Jie Xing, and Munindar P. Singh
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7534, USA
singh@ncsu.edu

Abstract

Workflows are composite computations that in-
volve a number of tasks, usually executed on
diverse information resources. Workflows arise
in virtually all applications of computing. Al-
though workflows are important, present work-
flow technology is quite poor. For program-
ming, it offers few abstractions beyond activ-
ity charts. During enactment, it cannot han-
dle exceptions and revisions properly, both of
which are important concerns where workflows
are useful. Previous Al-based techniques have
been better, but they too lack the high-level
abstractions for engineering workflows. We de-
velop a multiagent architecture for workflow
management. This requires abstractions such
as commitments, a metamodel that accommo-
dates commitments and allied concepts, a be-
havior model to specify agents, and an execu-
tion architecture that handles persistent and
dynamic (re)execution.

1 Introduction

A workflow is a composite, long-lived activity that spans
across heterogeneous information systems and engages
several humans carrying out a variety of tasks. Tra-
ditional approaches to computing have led to islands of
automation. With the expansion of computing and com-
munications, users increasingly expect that related infor-
mation systems will interact properly with each other.
This means that we need to be able to specify and man-
age workflows not only in traditional and virtual enter-
prises, but also in modern settings such as electronic
commerce.

Current software technology, based on distributed
computing and databases and dealing exclusively with
low-level abstractions, is woefully inadequate for the
proper treatment of workflows. This is because the as-
sociated abstractions—remote methods and distributed

transactions—address only the simpler challenges in in-
tegrating heterogeneous systems. Remote methods of-
fer no conceptual abstractions for composing activities,
whereas transactions require a tighter coupling of ac-
tivities than is appropriate. Even the extended trans-
action models require the specification of compensatory
methods or transactions, which are usually impossible to
guarantee.

Two major challenges are not properly addressed by
any existing approach:

o FExceptions. Because workflows exist in heteroge-
neous environments, their execution frequently runs
into exceptions, which are notoriously difficult to
handle.

e Rewvisions. Because workflows are long-lived, poten-
tially lasting forever, they must release their results
prematurely. This means that results ought to be
able to be revised.

Because of the interest in workflows, scores of workflow
tools exist, and a number of research approaches for
workflows continue to be proposed. Typically, these sug-
gest new ways of structuring activities by specifying how
tasks may be ordered or whether they may be concur-
rently executed. Bluntly put, these are little more than
flowcharts, and have little to offer in terms of abstrac-
tions for addressing the above challenges. For instance,
adding all exceptional flows would clutter up the chart
beyond recognition. Some of these approaches are ex-
ecuted on rule systems, rather than procedurally, but
they are often conceptually modeled as flowcharts.

The importance of workflows to computing and the
poverty of existing approaches suggests a great opportu-
nity for AT. We discuss several AI approaches below.

Approach in Brief. We apply agents to workflow
management in a way that naturally addresses the above
challenges. We rely on two crucial properties of agents.
First, the agents must interact at a high level, which
is how they form and manage commitments to one an-
other. These commitments are about the information

they exchange, about changes to that information, and
about each other’s needs. For example, an agent would
not only send results to others, but may commit to sat-
isfying its consumers or to notifying its consumers if it
ever modifies those results. Second, the agents must be
persistent. This is essential, so the agents may form,
manage, and act according to their commitments. For
example, an agent may retry a task until it produces re-
sults acceptable to it and to its peers. It would receive
updates and send updated results to its consumers. If
the agents didn’t outlast their tasks, such actions would
be impossible.

The agents reason about the formation and manip-
ulation (including revocation) of social commitments.
This reasoning is constrained through specified meta-
commitments. Although, in principle, an infinite vari-
ety of metacommitments can be defined, it would not be
conceptually appropriate to allow all of them. Accord-
ingly, we limit this variety through a small set of carefully
engineered commitment patterns through which a given
workflow can be structured. The commitment patterns
are translated into a set of rules, which are assigned to
different agents based on their roles.

The commitment patterns are conceptualized as stat-
echarts and can be directly composed. These statecharts
are based on a single uniform template, which speci-
fies the general behavior model for all our agents. This
model abstracts out the main capabilities that agents
must have to carry out their assigned tasks. It includes
states denoting important stages in the life of an agent
that can explicitly reason about its commitments to con-
tinually entertain new inputs and reconsider its results.
Transitions among these states capture the specific com-
mitment patterns that apply.

The agents must have memory of their commitments
to others and others’ commitments to them. This might
seem to require significant storage and overhead, but in
real-life settings, the situation is much better. This is
because wherever a workflow is carried out, even with
current approaches, some record is kept of the commit-
ments. For example, in a university registration system,
most of the data reflects commitments by the univer-
sity to the students or by the faculty to the university.
In an airline reservation system too, most data is about
commitments. Consequently, our architecture includes a
commitment data interface, using which the agents can
retrieve and modify their commitments from some un-
derlying database. The commitments themselves, there-
fore, add no storage overhead; the agents only addition-
ally represent the applicable commitment patterns.

The workflow is specified generically in terms of the
roles that would enact it. The agents volunteer to play
different roles. However, they may play a role only if (1)
they have the capabilities to perform the tasks required

of that role and (2) are willing to adopt the commitments
specified for that role. The assignment of agents to roles
happens dynamically. An agent may play more than one
role. The roles can be nested when the agents must agree
on their solutions in order to satisfy a mutual customer.

Running Example.
example.

We now introduce our running

Example 1 This workflow involves four kinds of agents.
A customer comes up a need to travel to a certain city
on a certain date. She contacts her travel agent who in
turn requests an airline and a hotel clerk to make appro-
priate reservations. The clerks are to send confirmations
to the traveler. The customer may have some additional
requirements. For example, the hotel may not be close
to the airport chosen by the airline clerk and for a late
flight, that is an important constraint of the customer. If
the customer’s requirements are not met, she complains
to her travel agent. He would then make a revised re-

quest to the clerks, let’s say by trying for an earlier flight.
|

Although small, Example 1 is not trivial. A number of
roles are involved, and communication among them does
not follow a simple nesting of requests and responses.
Even a task that executes successfully may need to be
revisited.

Contributions. To our application area, we con-
tribute a novel approach that involves specifying, con-
figuring, and executing a team of agents to enact a
workflow. Our approach includes a rich metamodel that
captures the essential properties of a workflow through
a small set of connectors and commitment patterns.
Our execution framework enacts these specifications in a
reentrant manner. Thus, our approach exploits the key
features of the agent metaphor.

Our approach applies outside the realm of information
systems. It provides a generic means of creating and
managing teams of agents. The metamodel is a knowl-
edge representation framework for complex, distributed
activities. It is important that we provide an operational
characterization of it through the behavioral model for
agents and its realization in a rule-based system.

Organization. Section 2 describes our workflow meta-
model and presents its key concepts. Section 3 intro-
duces an operational characterization of the commitment
patterns, and Section 4 shows how they can be mapped
to a rule-based execution framework. Section 5 gives our
system architecture and discusses our implementation.
Section 6 discusses the literature and future directions.

Event Action Condition | qg_* 0.x| DataContainer Resource
1.* 1.* 0. input | |output 0.*
1.%) Capability |11 P
1.* 1.* 1.5 0.* 0.%
Commitment debtor - 0.* —souree
Pattern —1 Role Task Connector
A creditor 1.1 1.* target
. . . Entertai Entertai .
Notify Satisfy Renotify Spedr;en Rneglrjslstn OO | Negotiate

Figure 1: Workflow metamodel

2 Workflow Metamodel

A workflow management system (WFMS) controls
the execution of workflows based on their specifications.
Consequently, each WFMS implicitly comes with a meta-
model, a language for specifying workflows that can be
managed by the WFMS. Typical WFMSs are based on
some kind of a flowchart metamodel, which isn’t much
help in handling the complex situations where workflow
technology would be the most beneficial. A lot of the
effort goes into coding the procedures or scripts through
which the workflow is executed. While some of the com-
plexity of the scripts arises from accessing legacy data,
much of it is because of the ad hoc manner in which
exceptions in the workflow are handled. Because the
present research deals with the challenges of exceptions
and revisions, we assume that data access can be sup-
ported through techniques developed by others [Bayardo
et al., 1997].

However, our use of agents and commitments entails
that we develop a metamodel using which the WFMS
can ensure that the agents interact properly, but without
violating their autonomy or heterogeneity. This meta-
model is quite small and elegant, but includes some ad-
ditional concepts and relationships. Figure 1 presents
our metamodel in UML notation [Fowler, 1997]. We dis-
cuss the key ingredients of this metamodel next.

Tasks

A task identifies a definite piece of work. Tasks may
be atomic or compound. We model a task as taking
inputs and producing results, both of which map to the
resources (such as databases) that must be available. A
task is executed only if it is triggered; upon completion it
produces an event, which (through the connectors) can
be used to trigger other tasks.

Capabilities
Capabilities implement tasks. Through an abstract in-
terface, a capability defines the primary processing re-

quired of a task.

Connectors

The connectors capture the control flow among the tasks
in a workflow. Connectors also provide the context in
which data flow among tasks may be captured by map-
ping the outputs of one to the inputs of the other. A con-
nector may have multiple inputs and outputs. We allow
a more or less standard set of connectors: Start, End,
Linear, Fork, Branch, Or-join, and And-join. However,
their operational semantics goes beyond the traditional
by allowing reentrance with or without synchronization
(Section 4.1).

Roles

A role is an abstract performer of tasks. A role must
provide the capabilities required of any tasks assigned to
it. A role may perform several tasks concurrently. Dur-
ing workflow execution, a concrete agent with matching
capabilities is bound to each role. Importantly, roles are
used to specify the commitments that apply in a work-
flow. Thus, roles capture the underlying organizational
structure.

Commitments

A commitment C(z,y,p,G) relates a debtor role z, a
creditor role y, and a condition p, in the scope of a con-
text group G. This means that x is obliged to y to sat-
isfying p. The context group is the organization within
which the workflow is executed. Having it as an explicit
entity allows us to further control the evolution of the
commitments—the details are beyond the present paper.
The condition p may involve relevant predicate. Un-
like in databases, these commitments are flexible. They
can be revoked or modified. Almost always, the revo-
cation or modification is constrained through metacom-
mitments, which are commitments where the condition p
itself involves commitments. In many cases, the commit-
ment patterns apply in conjunction with the connectors,

which carry the information about which commitments
are made. However, the connection is not always direct
and commitments may be specified even without an ac-
companying connector.

Agents

Agents are persistent active entities that can perceive,
reason, act and communicate. Agents are autonomous
and can volunteer to assume certain roles that would re-
quire them to perform certain tasks by executing their
capabilities. Thus, an agent playing a role must imple-
ment all the capabilities that the role provides. When an
agent adopts a role, it acquires the metacommitments of
that role.

Example 2 Figure 2 illustrates the metamodel applied
on Example 1. The rectangles represent tasks to each
of which a role is assigned; the customer role is assigned
to two tasks. Each task has associated resources. The
connectors capture the essential control and data flow.
Along with each connector is a commitment from the
source role to a target role. The single-dashed lines cor-
respond to commitments against the orientation of the
given connector; the double-dashed line corresponds to
a commitment independent of the connectors. The com-
mitments are that the roles will notify other roles, enter-
tain requests and updates, and satisfy their customers.
These commitments are precisely described below. I

3 Commitment Patterns Operationally

The commitments help the agents behave in a coher-
ent manner to realize the robustness and flexibility that
we desire. Specifying and managing commitments is at
the heart of our approach. If we just go by the formal
definitions, we could make up an endless variety of com-
mitments. But such arbitrary commitments would not
be easy to understand and would indeed lapse into an ad
hoc means for capturing inappropriate workflow designs.
Indeed, constraining the specifications is the major pur-
pose of metamodeling.

For this reason, we define a small but expressively rich
set of commitment patterns. By adding further structure
to a workflow, these patterns help us specify workflows
whose components truly do interact coherently. These
patterns are based on a study of real-life workflows as
well of examples from the literature. The patterns are
minimal, in that each imposes the fewest reasonable re-
strictions. Importantly, the patterns can be composed
so that they may be assigned in whatever combinations
that make sense to the workflow designer.

In order that appropriately minimal commitment pat-
terns be specifiable, we require that the agents follow a
general behavioral model. In other words, given a ca-
pability (realized in any manner that a vendor cares to
use), we would like to wrap some structure around it.

This structure has been designed exclusively to identify
the states using which the agent

e becomes a persistent computation

e is able to enter into the different commitments with-
out exposing any proprietary details of its design.

abort_event
/send_abort();
revoke_commit
—ments();

/send_outputs();
store_commitments();

['valid_commit

/send_outputs();
update_commitment();

valid_commitment]

Figure 3: Behavioral model for commitments

Figure 3 shows the above behavioral model expressed
as a statechart. Statecharts are well-established in soft-
ware engineering as a means to specify concurrent com-
putations [Harel, 1987]. Typically, such descriptions in-
volve complex sequences of events, actions, conditions
and information flow that combine to form a system’s
overall behavior. A statechart is primarily composed
of states (OR-states, AND-states, and basic states) and
transitions. Transitions are labeled by an expression of
the form e[c]/a. Intuitively, event e triggers the transi-
tion if condition ¢ is true when e occurs. As a result,
action a is performed. Each of e, ¢, and a is optional.
The states in our statecharts are abstract and correspond
to sets of physical states of the underlying computation
that are considered equivalent.

Satisfy consumer(Role to role)

-

-
-
-

- o

et Airline ~3s
e Entertain request(time) Entertain upda;té: N
0 s £z <"(_f|-iéﬁt—5héﬁgé)\ AN
7 flight DENRINN
‘7
. S Customer

Customer Travel agent m

Decide Make icehete::i:glle
to travel order i

Renotify Hotel
| N Consumer
N 7
Email E “~~_Entertain request(time) _ | E;gga < Entertain update -~
Entertain update(time) (room change)
L I
Spreadshee]

Figure 2: Workflow to plan a trip

Figure 3 describes the behavioral model for an agent
who can commit. On receiving a request or a control
signal, the agent begins reasoning. At the end, it re-
leases and commits to its results. Further events may
cause the agent to reexecute its reasoning. If its results
change substantially, i.e., invalidate any commitments,
it announces the new results and commits to them. The
steps of this model are all optional in principle. The
agent will have specific metacommitments that force it
to carry out those steps.

Figure 4 shows how an agent reasons. Much of the
complexity of this figure arises from allowing nested
agents, i.e., agents that are teams. The member agents
presuppose or guess some inputs, perform some tempo-
rary computations, and negotiate with each other. The
process iterates until all members of a team agree, in
which case the agreed upon results are made permanent
within the team. If they fail to agree, they send a failure
notification to their consumer. The number of times a
team may be made to reason on the same problem is
bounded; exceeding this bound results in dissatisfaction
to its requesters.

Given this behavioral model, the different commit-
ment patterns are fragments of it that an agent is com-
mitted to obeying. We presently have a dozen or so
patterns. Of these we describe some representative ones
that apply on our running example. Each of these is
extracted from Figure 3.

4 Rule-Based Execution

Figure 5 describes the generic execution model fol-
lowed by our agents. The agents are rule-based, but can

execute procedural capabilities. Jess is the rule-based
engine we use (see Section 5).

In obtaining a rule-based characterization of multia-
gent teams for workflow, we have to bring out some ad-
ditional details of the execution framework. The rules
we develop are based on the following.

e specific instance of the workflow

tasks in the workflow

events dealing with the capabilities that implement
the tasks

states of the agent in performing a task
e what iteration of the given task is being attempted
e states of the agent in interacting with others.

There are two main ways to implement the connectors.
One, a designated agent would handle a connector by
receiving “done” messages from the sources and send-
ing “ready” messages to the targets. The target agent
can then decide whether to wait for additional condi-
tions. Two, there is no designated agent for a connector.
Each source sends “done” messages to each target of a
given connector. The target agent must check the con-
nector conditions and its own guard conditions to decide
whether to execute. This approach requires more mes-
sages, but is more flexible, and leaves much autonomy
for the agents. Since most commitments among agents
are pairwise (one agent makes commitment to the other),
this point to point communication eases collaborations
among agents. Therefore, we prefer the second approach.

Instead of considering each control connector in our
metamodel, for brevity, we consider only a single generic

not—computing

[num_iterations=Max
_iterations]

\send_dissatisfaction();
send_reasons();

/parse_inputs();
select_capability()
parse_reasons—or
_results();

pre—supposing

reflecting

['(num_trials=Max_trials)]
/send_outputs();

pre-committed
negotiating

exception_event
!(num_trials=Max
_trials)]

—

exception_event
[num_trials=Max
_trials]/abort();

t(all_agree &
acceptable_quality)]

[all_agree &
acceptable_quality]

Figure 4: Model for reasoning (and negotiation)

version of them. We are given a connector with m inputs
and n outputs. The connector fires if all inputs are re-
ceived and the condition on some out-branch evaluates
to true. This translates to a simple forward-chaining
rule. When the connector requires fewer than the total
number of inputs (e.g., if it is an or-join), then the rule
for each of the receiving agents is a little more complex
to count the number of available inputs, so it can fire
when the desired number of them has arrived.

4.1 Reentrance of Connectors

After the connector condition evaluates to true and tar-
get tasks have been executed, there might be update
or corrections sent from source tasks that require tar-
get tasks to execute again. We term this behavior reen-
trance.

Load Jessrules

P

Wait for messages <————

1
1
1
1
1
i
Create Jess engine !
1
1
1
1
1
1
1

webe JBYIO

| O |
ittt R R L L L L 1 g
Jess ! 3
engine ! 5
Assert facts | 0:9@
. 2
l 8
h 4 ' g
Evauate rules| i @
1
1
1
1
1

Execute capability <i—T—T—

A 4

Send messages ——————
and results !

Figure 5: Execution model

There are two approaches for handling reentrance.
One, the connector condition is always checked to en-
sure that the number of executions of each task reenter-
ing the connector is identical. (This test is essential for
the first execution.) Two, the connector condition is not
checked for executions (after the first execution). Events
generated by the source tasks are sent directly to the tar-
get, which may reexecute. The second approach is more
practical, but also more challenging from a theoretical
standpoint, e.g., to ensure correctness.

4.2 Incorporating Commitment Patterns

The commitment patterns are converted into rules,
which are treated on par with other rules and are ex-
ecuted by an agent adopting the given role. We now
consider some interesting commitment patterns. P, C,
refer to the producer and consumer roles, and W to the
context, here the workflow itself.

Notify the consumer. This commitment pattern
expressed as C(P,C,COMPUTING_DONE— notify, W)
comes into effect when a role finishes its execution the
first time. COMPUTING_DONE is an event that signifies
the “computed” state in the statechart of Figure 6. The
rule is fired when COMPUTING_DONE is received. Re-
sults are sent to the given consumer and the associated
commitment is created and stored.

/send_outputs();
store_commitments();

Figure 6: Notify-consumer commitment pattern

Renotify the consumer. This commitment pattern
is C(P,C, COMPUTING_DONE A !valid_commitment—>
renotify, W). It is enacted when P finishes its execu-
tion a second or later time. If a previous commitment to
C doesn’t hold, then P must tell C' again and (as before)
store the new commitment.

['valid_commitment]

/send_outputs();

[valid_commitment] update_commitment();

Figure 7: Renotify-consumer commitment pattern

Entertain request from another role. This com-
mitment pattern is expressed as C(C, R, START_EVENT A
REQUEST_EVENT— entertain-request, W). This pat-
tern consists (from Figure 3) of the start, reasoning,
and computed states, and the REQUEST_EVENT transi-
tion and the succeeding transition.

Entertain update from producer. C is commit-
ted to P (or to W) that if P sends it an up-
date or correction, C' will reexecute the capability.
Formally, C(C,R,START_EVENTA UPDATE_EVENT—>
entertain-update, W). This pattern consists (from Fig-
ure 3) of the committed, reasoning, and recomputed
states, and the UPDATE_EVENT transition and the suc-
ceeding transition.

Satisfy the consumer. This commitment pattern is
similar to entertain-update pattern with UPDATE_EVENT
replaced by DISSATISFACTION_EVENT. The practical
ramifications of this pattern are much greater, however,
because it enables an agent to send a complaint upstream
and to demand that a property it desires in its inputs be
satisfied.

5 Architecture and Implementation

Figure 8 shows our system architecture. Initially, a work-
flow specification is created. This is then compiled into
a set of specifications for the roles.

Specification. Our metamodel translates naturally
into a set of document type definitions (DTDs) for the
extensible markup language (XML). XML is an emerging
standard for exchange of information. We use our DTDs
as an intermediate representation between a graphical
interface and the reasoning system. We exploit XML
tools, including an object interface for XML documents,
to validate and parse workflow specifications.

Execution. Our execution framework is through a set
of agents, each written in Jess, the Java Expert System
Shell. Jess is a well-regarded, open source Java-based
forward-chaining inference engine. A programmer can
define rules and assert facts. Jess evaluates these rules
and executes any actions embedded in them, such as as-
serting more facts or invoking the desired capabilities.
Jess evaluates the rules against the facts, executing any
rule all of whose antecedents are true, potentially as-
serting more facts, and executing still more rules until
quiescense.

Jess offers seamless integration with Java: it can be
invoked from or invoke Java method. This simplifies
the implementation of a system such as ours. An agent
is realized as a combination of Java and Jess. The Jess
engine is embedded in a Java thread. The former reasons
about the interactions with other agents while the latter
facilitates these interactions by providing the means of
accessing the external world.

Example 3 We now describe how our system executes
on our running example. The traveler orders a trip from
the travel agent, who requests bookings from the airline
and the hotel (notify-consumer pattern). The airline and
hotel clerks begin processing (entertain-request pattern).
Both airline and hotel succeed and notify their consumer,
the traveler. But the traveler is not satisfied, because the
hotel is too far from the airport. She sends a dissatis-
faction event to the travel agent along with the reason.
The travel agent sends an update to the hotel (renotify-
consumer pattern), but not to the airline, because the
old commitment is still valid. The hotel clerk accepts
the update (entertain-update pattern), and books the
traveler at the airport location. He sends an updated
confirmation to the traveler (renotify-consumer pattern).
The traveler is satisfied this time and the workflow in-
stance concludes. However, the different parties don’t
forget what they did in case there are further changes. I

Resource (DC & CDI)
Capabilities

Connectors

Tasks

Roles

Commitment patterns

Workflow i P

DC: Data container
CDI: Commitment data interface
R: Resource

Workflow
designer

R
Available
el — (" omom

Role specification
(Jessrules)

Communlcatlon Layer

% %

Figure 8: System architecture

6 Discussion

Workflows are attractive, because they promise to add
coherence to distributed activities in a heterogeneous,
open information environment. Being able to change
your mind in a controlled way is an important way to
achieve progress in a dynamic, unpredictable world. Un-
fortunately, conventional workflow techniques are either
rigid or unstructured, and therefore inapplicable for all
but the simplest problems. The approach we develop
introduces a number of ideas relating to agents for both
modeling and enactment. Although our research was
motivated by workflows, its results can apply wherever
teams of agents are employed to carry out complex ac-
tivities in a coordinated manner.

6.1 Literature

There are several products and a huge body of litera-
ture on workflows. The work on rule-based systems for
workflows is pertinent. A lot of it, however, deals with
the lower-level aspects of workflow management. Several
approaches include rules for handling exceptions [Singh
& Huhns, 1994; Casati et al., 1996], but they do not
capture the bigger patterns of long-lived workflows.
The language for action metamodel involves commit-
ments as well [Winograd & Flores, 1987], and is applied
in the ActionWorkflow tool. This metamodel uses loops
representing a four-step exchange between a customer
and a performer: (a) a request from the customer, (b)
negotiation by the two about the task, (¢) actual perfor-
mance of the task, and (d) evaluation of the performance

by the customer. A step may potentially be nested with
other loops. The loops metamodel has some limitations.
It only considers two actors at a time, and does not ex-
plicitly consider the surrounding organizational struc-
ture. It cannot easily accommodate modifications or re-
vocations of the commitments.

Several agent-based approaches exist. Klein exploits
a knowledge base of generic exception detection, diagno-
sis, and resolution expertise [1999]. Specialized agents
are dedicated to exception handling. This approach is
complementary to ours, and special roles could be in-
cluded in our workflows with commitments by other
roles. The advanced decision environment for decision
tasks (ADEPT) project also considered workflow man-
agement [Jennings et al., 1996]. This project emphasized
negotiation among agents. However, the underlying no-
tion of commitments doesn’t allow contextual nesting,
as in our approach.

6.2 Directions

A number of interesting technical problems are opened
up by our research. One of the charms of our approach
is how it synthesizes conventional software engineering
techniques (namely, statecharts and process modeling)
with AI techniques (namely, agents and commitments)
to develop a powerful approach for workflow manage-
ment. Each of these ingredients can be further improved.
Specifically, on the conventional side, we are investigat-
ing a formal semantics for our approach that goes beyond
the conventional statechart semantics in terms of allow-

ing reentrance and revision. On the Al side, we are in-
vestigating enhanced representations for teams and orga-
nizations that would better accommodate the challenges
of coherent, long-lived, complex activities in information
environments and elsewhere.

References

[Bayardo et al., 1997] Bayardo, R. et al. 1997. InfoS-
leuth: Semantic integration of information in open
and dynamic environments. In Proc. ACM SIGMOD
Conference.

[Casati et al., 1996] Casati, F.; Grefen, P.; Pernici, B.;
Pozzi, G.; and Sanchez, G. 1996. WIDE workflow
model and architecture. TR 96.050, Dipartimento di
Elettronica e Informazione, Politecnico di Milano.

[Fowler, 1997] Fowler, M. 1997. UML Distilled. Read-
ing, MA: Addison-Wesley.

[Harel, 1987] Harel, D. 1987. Statecharts: A visual for-
malism for complex systems. Science of Computer
Programming 8:231-274.

[Jennings et al., 1996] Jennings, N. R.; Faratin, P.;
Johnson, M. J.; Norman, T. J.; O’Brien, P.; and Wie-
gand, M. E. 1996. Agent-based business process man-
agement. International Journal of Cooperative Infor-
mation Systems 5(2&3):105-130.

[Klein, 1999] Klein, M. 1999. Exception handling in
agent systems. In Proc. 3rd International Conference
on Autonomous Agents.

[Singh & Huhns, 1994] Singh, M. P., and Huhns, M. N.
1994. Automating workflows for service provisioning;:
Integrating AT and database technologies. IEEE Fx-
pert 9(5):19-23.

[Winograd & Flores, 1987] Winograd, T., and Flores, F.
1987. Understanding Computers and Cognition. Read-
ing, MA: Addison-Wesley.

